CERAFIL ${ }^{\circledR}$ kHz SMD Type CFXCE Series

CFXCE series are very small and high-efficiency surface mount, ladder type $450 / 455 \mathrm{kHz}$ ceramic filters "CERAFIL" for IF section.
Compared to our previous compact surface mounted 6-element product, this ceramic filter has been significantly downsized to approximately one-third the original volume and reduced to less than 2 mm in height.
As for electrical performance, this product, which consists of 4 elements, provides stop band attenuation equivalent to that of our previous 6 -element product. The input/output impedance characteristics are also equivalent to those of the previous product, and spurious responses in the vicinity of the passing band can now be eliminated. This allows mobile telecommunications equipment manufacturers to easily design the periphery of the IF section and thus greatly enhance the interference suppression capability of the equipment. In addition, this ceramic filter provides flatter group delay time characteristics than the previous product, and will effectively work as a component for data transmission in digital mobile telecommunications systems.

■ Features

1. Compact, thin, and lightweight

Size: $3.8 \times 3.2 \times 1.25 \mathrm{~mm}$
Weight: 40 mg
2. Out-of-band attenuation is increased and spurious responses are greatly decreased.
3. Group delay time characteristics are flattened.
4. Surface mountable, and reflow soldering can be used for mounting. Available lead (Pb) free solder reflow

■ Applications

1. IF filters for PDCs
2. IF filters for various types of pagers
3. IF filters for various types of analog and digital cellular telephones
4. IF filters for radio communication circuits applicable for PDA or PCMCIA
5. IF filters for other general mobile wireless equipment

Part Number	Nominal Center Frequency (fn) (kHz)	3dB Bandwidth (kHz)	6dB Bandwidth	$\begin{gathered} \text { Stop } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Stop Band Attenuation (dB)	Stop Band Att.(2) (dB)	Stop Band Att.(3) (dB)	$\begin{gathered} \hline \text { Insertion } \\ \text { Loss } \\ (d B) \\ \hline \end{gathered}$	Ripple (dB)	GDT Deviation (us)
CFXCE450KCFA-R1	450	$\begin{gathered} \mathrm{fn} \pm 9.0 \text { to } \\ \pm 12.0 \mathrm{kHz} \text { max. } \end{gathered}$.	$\left\|\begin{array}{c} \text { fn } \pm 35.0 \text { max. } \\ {[\text { within } 50 \mathrm{~dB}]} \end{array}\right\|$	$\begin{gathered} 30 \mathrm{~min} . \\ \text { [at fn } \pm 25 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 55 \mathrm{~min} . \\ \text { [within fn } \pm 40 \mathrm{kHz} \text { to } \pm 50 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 47 \mathrm{~min} . \\ {[\text { [within fn } \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at fn]	$\begin{gathered} 0.5 \text { max. } \\ \text { [within fn } \pm 10.5 \mathrm{kHz}] \end{gathered}$	$\begin{gathered} 27.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 10.5 \mathrm{kHz} \text {] } \end{gathered}$

Spurious: 40 dB [within 0.1 to 1.0 MHz]
Input/Output Impedance: 2000 ohm
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Frequency Characteristics

Ceramic Filters (CERAFIll ${ }^{\text {Q }}$ Ceramic Discriminators for Communications Equipment
 miPnta

CERAFIL ${ }^{\circledR}$ kHz SMD Type SFPKA Series

The SFPKA series is comprised of small, high performance, economical, thin $(5.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements.
Their innovative construction is perfect for shrinking mobile communication products such as cordless phones, pager and transceivers.

Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.

3. They are slim, at only 5.0 mm maximum thickness.
4. The bandwidth ranges from D to H.
5. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	$\begin{gathered} \text { 6dB } \\ \text { Bandwidth } \\ \text { (kHz) } \end{gathered}$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{aligned} & \hline \text { Insertion } \\ & \text { Loss } \\ & \text { (dB) } \\ & \hline \end{aligned}$	Ripple (dB)	Input/Output Impedance (ohm)
SFPKA455KD4A-R1	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f} n \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	4.0 max. [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
SFPKA455KE4A-R1	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
SFPKA455KF4A-R1	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } \mathrm{fn} \pm 4 \mathrm{kHz} \end{gathered}$	1500
SFPKA455KG1A-R1	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ \text { [within fn } \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	1500
SFPKA455KH1A-R1	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 9.0$ max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } \mathrm{fn} \pm 2 \mathrm{kHz} \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics

SFPKA455KE4A-R1

Ceramic Filters (CERAFIll ${ }^{\text {Q }}$ Ceramic Discriminators for Communications Equipment

murnta

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKG Series

The CFUKG series is comprised of small, high performance, thin $(4.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements. Their innovative construction is perfect for shrinking mobile communication products such as pocket pagers and cellular phones.

Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.
3. They are slim, at only 4.0 mm maximum thickness,
 and have a small mounting area ($7.5 \times 6.0 \mathrm{~mm}$) enabling flexible PCB design.
4. The bandwidth ranges from D to G.
5. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{gathered} \text { Insertion } \\ \text { Loss } \\ \text { (dB) } \\ \hline \end{gathered}$	Ripple (dB)	Input/Output Impedance (ohm)
CFUKG455KD4A-R0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 10.0$ min.	fn ± 20.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 2.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 7 \mathrm{kHz}]} \end{gathered}$	1500
CFUKG455KE4A-R0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \end{gathered}$	1500
CFUKG455KF4A-R0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 6.0$ min.	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ \text { [within fn } \pm 4 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFUKG455KG1A-R0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 4.5$ min.	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 1.5 \mathrm{max} . \\ \text { [within fn } \pm 3 \mathrm{kHz}] \end{gathered}$	1500

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics

CFUKG455KE4A-R 0

CFUKG455KE4A-RO

Ceramic Filters (CERAFIl ${ }^{\text {® }} \|$ Ceramic Discriminators for Communications Equipment

murata

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKG_X Series

The CFUKG_X series is comprised of small, high performance, thin $(4.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements. The filters exhibit an extremely flat GDT characteristic combined with a narrow bandwidth. The filters are recommended for narrow band digital communication applications.

■ Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.

3. They are slim, at only 4.0 mm maximum thickness, and have a small mounting area ($7.5 \times 6.0 \mathrm{~mm}$) enabling flexible PCB design.
4. The bandwidth ranges from E to H.
5. Operating temperature range: -20 to +80 (degree C) Storage temperature range: -40 to +85 (degree C)

Part Number	Center Frequency (fo) $(\mathbf{k H z)}$	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Ripple (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFUKG455KE4X-R0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	fn ± 7.5 min.	fn ± 17.5 max. [within 40dB]	27 min. [within fn $\pm 100 \mathrm{kHz}$]	6.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 25.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 5 \mathrm{kHz}]} \end{gathered}$	1500
CFUKG455KF4X-R0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$f n \pm 6.0$ min.	fn ± 15.0 max. [within 40dB]	27 min. [within fn $\pm 100 \mathrm{kHz}$]	6.0 max. [at minimum loss point]	```c```	$\begin{gathered} 25.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 4 \mathrm{kHz}]} \end{gathered}$	1500
CFUKG455KG1X-R0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	fn ± 4.5 min.	fn ± 12.5 max. [within 40dB]	25 min. [within fn $\pm 100 \mathrm{kHz}$]	6.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 3 \mathrm{kHz}]} \end{gathered}$	$\begin{gathered} 25.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 3 \mathrm{kHz}]} \end{gathered}$	1500
CFUKG455KH1X-R0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	fn ± 3.0 min.	fn ± 10.0 max. [within 40dB]	25 min. $[$ within $\mathrm{fn} \pm 100 \mathrm{kHz}]$	7.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within fn } \pm 2 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 25.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 2 \mathrm{kHz}]} \end{gathered}$	1500

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R g+R 1=R 2=$ Input/Output Impedance

■ Frequency Characteristics
CFUKG455KE4X-R0

CFUKG455KE4X-RO

Ceramic Filters (CERAFIl ${ }^{\text {® }} \|$ Ceramic Discriminators for Communications Equipment

murata

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFUKF Series

The CFUKF series is comprised of small, high performance, thin $(4.0 \mathrm{~mm})$ filters consisting of 4 ceramic elements. The filters exhibit an extremely flat GDT characteristic.
The filters are recommended for digital communication applications and are perfect in hand held cellular phones, etc.

Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered and withstand washing.
3. They are slim, at only 4.0 mm maximum thickness, and have a small mounting area ($7.5 \times 6.0 \mathrm{~mm}$) enabling flexible PCB design.
4. The bandwidth ranges from A to E.
5. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{array}{c\|} \hline \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{array}$	6dB Bandwidth (kHz) fnit.	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Ripple (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFUKF455KA2X-R0	$\begin{gathered} 455.0 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 17.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 40.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	4.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 12 \mathrm{kHz}]} \end{gathered}$	$\left\|\begin{array}{c} 15.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 12 \mathrm{kHz}]} \end{array}\right\|$	1000
CFUKF455KB4X-R0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 35.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	5.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 10 \mathrm{kHz}]} \end{gathered}$	$\left\|\begin{array}{c} 15.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 10 \mathrm{kHz}]} \end{array}\right\|$	1000
CFUKF455KC4X-R0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 15.0 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	1000
CFUKF455KD1X-R0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 25.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 20.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 7 \mathrm{kHz}]} \end{gathered}$	1500
CFUKF455KE1X-R0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 1.0 \mathrm{max} . \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 20.0 \text { max. } \\ \text { [within fn } \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics

CFUKF455KE1X-R0

Ceramic Fiters (CERAFI® ${ }^{\text {Q }}$ Ceramic Discriminators for Communications Equipment

murata

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFWKA Series

The CFWKA series is comprised of small, high performance, thin $(3.0 \mathrm{~mm})$ filters consisting of 6 ceramic elements. The filters are recommend for pager or hand held cellular phones.

Features

1. The filters are mountable by automatic placers.
2. The filters can be reflow soldered.
3. They are slim, at only 3.0 mm maximum thickness.

4. The filters are wide bandwidth, flat GDT within pass band.
5. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	Nominal Center Frequency (fn) (kHz)	3dB Bandwidth (kHz)	6dB Bandwidth (kHz)	$\begin{gathered} \text { Stop } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Stop Band Attenuation (dB)	Stop Band Att.(2) (dB)	Insertion Loss (dB)	Ripple (dB)	Input/Output Impedance (ohm)
CFWKA450KDFA-R0	450	-	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 20.0 max. [within 50dB]	$\begin{gathered} 50 \text { min. } \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	-	4.0 max. [at minimum loss point	$\begin{aligned} & 3.0 \text { max. } \\ & {[\text { within } \mathrm{fn} \pm 7 \mathrm{kHz}]} \end{aligned}$	1500
CFWKA450KEFA-R0	450	-	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \text { min. } \end{gathered}$	fn ± 15.0 max. [within 50dB]	$\begin{gathered} 50 \text { min. } \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	-	$\begin{gathered} 6.0 \text { max. } \\ {[\text { at minimum loss point! }} \end{gathered}$	$\begin{gathered} 3.0 \text { max. } \\ {[\text { within fn } \pm 5 \mathrm{kHz}]} \end{gathered}$	1500
CFWKA450KEFA001-R0	450	$\mathrm{fn} \pm 6.5 \mathrm{~min}$.	-	fn ± 15.0 max. [within 50dB]	$\begin{gathered} 55 \mathrm{~min} . \\ {[\mathrm{fn} \pm 18 \text { to } \pm 33 \mathrm{kHz}]} \end{gathered}$	$\begin{gathered} 50 \text { min. } \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	4.0 max. [at fn]	$\begin{gathered} 3.0 \text { max. } \\ \text { [within fn } 46.5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWKA450KFFA-R0	450	-	$\begin{gathered} \text { fn } \pm 6.0 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 12.5 \mathrm{~min}$. [within 50dB]	$\begin{gathered} 50 \text { min. } \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	-	$\begin{gathered} 6.0 \text { max. } \\ {[\text { Iat minimum loss point! }} \end{gathered}$	$\begin{gathered} 3.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 4 \mathrm{kHz}]} \end{gathered}$	1500
CFWKA450KGFA-R0	450	-	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \text { min. } \end{gathered}$	fn ± 11.0 max. [within 50dB]	$\begin{gathered} 50 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	-	$\begin{gathered} 6.0 \text { max. } \\ {[\text { [at minimum loss point! }} \end{gathered}$	$\begin{gathered} 2.0 \text { max. } \\ \text { [within fn } \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	1500

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics

CFWKA450KEFA001-R0

CFWKA450KEFA001-RO

CFWKA450KEFA001-RO

Ceramic Filters (CERAFIll ${ }^{\text {Q }}$ Ceramic Discriminators for Communicatons Equipment
 murata

CERAFIL ${ }^{\circledR}$ kHz SMD Type CFWKA_Y Series

The CFWKA_Y series is comprised of small, high performance, thin $(3.0 \mathrm{~mm})$ filters consisting of 6 ceramic elements. The filters are recommend for digital communication applications and are perfect in hand held cellular phones.

■ Features

1. The filters are mountable by automatic placers, and can be reflow soldered.
2. They are slim, at only 3.0 mm maximum thickness.
3. The filters are wide bandwidth, flat GDT within pass band.
4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	Nominal Center Frequency (fn) (kHz)	3dB Bandwidth (kHz)	$\begin{gathered} \text { 6dB } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	Insertion Loss (dB)	Spurious Response (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFWKA450KBFY001-R0	450	$\mathrm{fn} \pm 11.5 \mathrm{~min}$.	$\begin{gathered} \mathrm{fn} \pm 13.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 50dB]	$\begin{gathered} 45 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	4.0 max. [at minimum loss point]	$\begin{gathered} 20 \mathrm{~min} . \\ \text { [within } 0.1 \text { to } 1.0 \mathrm{MHz} \text {] } \end{gathered}$	$\begin{aligned} & 30.0 \text { max. } \\ & \text { [within fn } \pm 10 \mathrm{kHz} \text {] } \end{aligned}$	1000

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics

Ceramic Filters (CERAFIl ${ }^{\text {® }} \|$ Ceramic Discriminators for Communicatons Equipment

murata

CERAFIL ${ }^{\circledR}$ MHz SMD Type SFECS10M8 Series

The SFECS10M8 series are small, high performance and super thin (1.5 mm max.) filters. Piezoelectric element is connected in the sandwich shape by heat resistant substrate.
The filters exhibit flat GDT characteristic in pass band.
The filters are recommended for digital communication applications and are perfect in hand held cellular phones, pocket cordless phones, etc.

Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.5 mm max. thickness, and have a small mounting area $(3.45 \times 3.1 \mathrm{~mm})$ enabling flexible PCB design.
3. Types with $10.7 / 10.75 / 10.8 \mathrm{MHz}$ of center frequency are available.
4. Operating temperature range: -10 to +50 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	Nominal Center Frequency (fn) (MHz)	$\begin{gathered} \text { 3dB } \\ \text { Bandwidth } \\ \text { (kHz) } \end{gathered}$	Stop Bandwidth $\left.(x)^{2}\right)$ (kHz)	Insertion Loss (dB)	Ripple (dB)	Spurious Response (dB)	GDT Deviation ($\mu \mathrm{s}$)	Absolute GDT ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
SFECS10M8PF00-R0	10.800	fn $\pm 110 \mathrm{~min}$.	fn $\ddagger 310$ max. [within 20dB]	6.0 max. [at fn]	0.5 max. [within fn $\pm 100 \mathrm{kHz}$]	-	$\begin{gathered} 1.5 \text { max. } \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 2.8 \pm 1.0 \mathrm{us} \\ {[\text { at } \mathrm{fn}]} \end{gathered}$	330
SFECS10M8RF00-R0	10.800	fn 135 min .	$\begin{aligned} & \text { fn } 3350 \text { max. } \\ & \text { [within 20dB] } \end{aligned}$	6.0 max. [at fn]	$\begin{gathered} 0.5 \text { max. } \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	-	$\begin{gathered} 1.2 \text { max. } \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{gathered} 2.6 \pm 1.0 \mu \mathrm{~s} \\ {[\text { [at fn] }} \end{gathered}$	330
SFECS10M8SF00-R0	10.800	fn 1150 min .	fn ± 420 max. [within 20dB]	5.0 max. [at fn]	$\begin{gathered} 1.0 \text { max. } \\ \text { [within fn } 1110 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{aligned} & 25 \text { min. } \\ & \text { [within } 9 \text { to } 12 \mathrm{MHz} \text {] } \end{aligned}$	$\begin{gathered} 1.5 \text { max. } \\ \text { [within fn } 1110 \mathrm{kHz} \text {] } \end{gathered}$	-	330

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

Frequency Characteristics
SFECS10M8PF00-R0

SFECS10M8PF00-R0

Ceramic Filters (CERAFIl ${ }^{\text {® }} \|$ Ceramic Discriminators for Communicatons Equipment

murata

CERAFIL ${ }^{\circledR}$ MHz SMD Type SFECF10M7 Series

SFECF10M7 series for FM-receivers are small, high performance and super thin (1.4 mm max.) filters.
Piezoelectric element is connected in the sandwich shape by ceramics substrate.
They have 1.4 mm max. thickness and small mounting area. ($3.45 \times 3.1 \mathrm{~mm}$)
SFECF series and CDSCB series (MHz Discriminator) enable customers to make VICS/RKE/TPMS set so thin and small sized.

Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.4 mm max. thickness, and have a small mounting area ($3.45 \times 3.1 \mathrm{~mm}$) enabling flexible PCB design.
3. Various bandwidths are available. Select a suitable type in accordance with the desired selectivity.
4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ \text { (MHz) } \end{gathered}$	Nominal Center Frequency (fn) (MHz)	3dB Bandwidth (kHz)	Attenuation (kHz)	Insertion Loss (dB)	Ripple (dB)	Spurious Attenuation (dB)	Input/Output Impedance (ohm)
SFECF10M7HA00-R0	$10.700 \pm 30 \mathrm{kHz}$	-	$180 \pm 40 \mathrm{kHz}$	470 max.	$4.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min .	330
SFECF10M7GA00-R0	$10.700 \pm 30 \mathrm{kHz}$	-	$230 \pm 50 \mathrm{kHz}$	510 max.	$3.5 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min .	330
SFECF10M7FA00-R0	$10.700 \pm 30 \mathrm{kHz}$	-	$280 \pm 50 \mathrm{kHz}$	590 max.	$3.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min .	330
SFECF10M7EA00-R0	$10.700 \pm 30 \mathrm{kHz}$	-	$330 \pm 50 \mathrm{kHz}$	700 max.	$3.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min .	330
SFECF10M7DF00-R0	-	10.700	$\mathrm{fn} \pm 150 \mathrm{~min}$.	990 max.	6.0 max. [at fn]	3.0 max.	20 min .	330

Area of Attenuation: [within 20 dB] Area of Spurious Attenuation: [within 9 MHz to 12 MHz]
Area of Insertion Loss: at minimum loss point Area of Ripple: within 3dB B.W.
Center frequency (fo) defined by center of 3dB bandwidth.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

[^0]■ Frequency Characteristics
SFECF10M7FA00-R0

SFECF10M7FA00-R0

Ceramic Filters (CERAFIll) Ceramic Discriminaturs for Communcations Equipment

minita

CERAFIL ${ }^{\circledR}$ MHz SMD Type SFECD10M7 Series

SFECD10M7 series for FM-receivers are small, high performance and ultra thin (1.0 mm max.) filters.
Piezoelectric element is connected in the sandwich shape by very thin ceramics substrate.
They have 1.0 mm max. thickness and small mounting area.
($3.45 \times 3.1 \mathrm{~mm}$)
SFECD series enable customers to make RF modules so thin and small sized.

Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.0 mm max. thickness, and have a small mounting area ($3.45 \times 3.1 \mathrm{~mm}$) enabling flexible PCB design.
3. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Applications

1. Card type radios
2. Card type RKE modules
3. Card type PHS modules

Part Number	Center Frequency (fo) (MHz)	Nominal Center Frequency (fn)	3dB Bandwidth $\mathbf{(k H z)}$	Attenuation (kHz)	Insertion Loss (dB)	Ripple (dB)	Spurious Attenuation (dB)	Input/Output Impedance (ohm)
SFECD10M7FA00-R0	$10.700 \pm 30 \mathrm{kHz}$	-	$280 \pm 50 \mathrm{kHz}$	590 max	$3.0 \pm 2.0 \mathrm{~dB}$	1.0 max.	30 min.	330

Area of Attenuation: [within 20dB] Area of Spurious Attenuation: [within 9 MHz to 12 MHz]
Area of Insertion Loss: at minimum loss point Area of Ripple: within 3dB B.W.
Center frequency (fo) defined by center of 3 dB bandwidth.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics

Ceramic Fitters (CERAFI® ${ }^{\text {Q }}$ Ceramic Discriminators for Communications Equipment

mintata

CERAFIL ${ }^{\circledR}$ MHz SMD Type SFSCD20M0 Series

SFSCD series are chip surface mount filter, having center frequency 15 to 22 MHz and 3 dB bandwidth 1.2 to 1.8 MHz (at 20 MHz).
(More than twice width compared with current types) They have 1.0 mm max. thickness and small mounting area. ($4.5 \times 3.8 \mathrm{~mm}$)

Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.0 mm max. thickness, and
 have a small mounting area ($4.5 \times 3.8 \mathrm{~mm}$) enabling flexible PCB design.
3. Available lead (Pb) free solder reflow.
4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	Nominal Center Frequency (fn) (MHz)	3dB Bandwidth (kHz)	Stop Bandwidth (MHz)	Insertion Loss (dB)	Ripple (dB)	Spurious Response (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
SFSCD20M0WF01-R0	20.000	fn 820 min .	3.6 max. (Total) [within 20dB]	6.0 max. [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ \text { [within 3dB Bandwidth] } \end{gathered}$	$\begin{gathered} 34 / 23 \text { min. } \\ \text { [within } 15 \mathrm{MHz} \text { to fn / fn to } 25 \mathrm{MHz} \text {] } \end{gathered}$	$\begin{gathered} 0.4 \text { max. } \\ \text { [within fn } \pm 750 \mathrm{kHz} \text {] } \end{gathered}$	470

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

■ Test C ircuit

(1) : Input
(2) : Output
(3) : No Connect

R1+Rg=R2=Input/Output Impedance, $\mathrm{Rg}=50 \Omega$
$\mathrm{C} 2=10 \mathrm{pF}$ (Including stray capacitance and Input capacitance of RF Voltmeter)
E1 : S.S.G. Output Voltage

Frequency Characteristics

Ceramic Filters (CERAFIl ${ }^{\text {® }} \|$ Ceramic Discriminators for Communicatons Equipment

murata

CERAFIL ${ }^{\circledR}$ MHz SMD Type SFSCE10M7 Series

SFSCE series are chip surface mount filter and available for 3 dB bandwidth at 700 kHz to 1.3 MHz . (more than twice width compared with current types) They have 1.0 mm max. thickness and small mounting area. ($4.5 \times 3.8 \mathrm{~mm}$)

■ Features

1. The filters are mountable by automatic placers.
2. They are slim, at only 1.0 mm max. thickness, and have a small mounting area ($4.5 \times 3.8 \mathrm{~mm}$) enabling
 flexible PCB design.
3. Available lead (Pb) free solder reflow.
4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Applications

1. SS digital communication system
2. Digital wireless audio
3. PHS Evolution system
4. RFID Reader Writer
5. RKE

Part Number	Nominal Center Frequency (fn) (MHz)	3dB Bandwidth (kHz)	$\begin{aligned} & \text { Stop } \\ & \text { Bandwidth } \\ & \text { (MHz) } \end{aligned}$	Insertion Loss (dB)	Ripple (dB)	Spurious Response (dB)	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
SFSCE10M7WF03-R0	10.700	fn 5000 min .	2.2 max. (Total) [within 20dB]	6.0 max. [at minimum loss point]	$\begin{gathered} 2.0 \text { max. } \\ \text { [within } 3 \mathrm{~dB} \text { Bandwidth] } \end{gathered}$	30/25 min. [within 5.7 MHz to fn / fn to 15.7 MHz]	0.6 max. [within fn $\pm 400 \mathrm{kHz}$]	470
SFSCE10M7WF04-R0	10.700	fn 400 min .	1.8 max. (Total) [within 20dB]	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } 3 \mathrm{~dB} \text { Bandwidth] } \end{gathered}$	$\begin{gathered} 35 / 25 \mathrm{~min} . \\ \text { [within } 5.7 \mathrm{MHz} \text { to fn / f to } 15.7 \mathrm{MHz} \text {] } \end{gathered}$	0.6 max. [within fn +325 kHz]	470
SFSCE10M7WF05-R0	10.700	fn 3325 min.	1.7 max. (Total) [within 20dB]	6.0 max. [at minimum loss point]	$\begin{gathered} 1.5 \text { max. } \\ \text { [within } 3 \mathrm{~dB} \text { Bandwidth] } \end{gathered}$	40/30 min. [within 5.7 MHz to fn / fn to 15.7 MHz]	0.6 max. [within fn $\pm 250 \mathrm{kHz}$]	470

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

(1) : Input
(2) : Output
(4) : Ground
$\mathrm{R} 1+\mathrm{Rg}=\mathrm{R} 2=$ Input/Output Impedance, $\mathrm{Rg}=50 \Omega$
$\mathrm{C} 2=10 \mathrm{pF}$ (Including stray capacitance and Input capacitance of RF Voltmeter)
E1 : S.S.G. Output Voltage

■ Frequency Characteristics
SFSCE10M7WF03-R0

SFSCE10M7WF03-R0

Ceramic Fiters (CERAFI® ${ }^{\text {Q }}$ Ceramic Discriminators for Communications Equipment

murata

CERAFIL ${ }^{\circledR}$ Plastic Case General Use CFULA Series

CFULA series are high selectivity ceramic filters, which consist of 4 ceramic elements connected in a ladder form.
Most suitable for digital communications and cellular phones because of their improved GDT characteristics.

Features

1. High selectivity
2. A variety of bandwidths available
3. Excellent GDT characteristics are available within pass bandwidth.

4. Easily mounted on a printed circuit board
5. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	$\underset{\substack{\text { 6dB } \\ \text { Bandwidth } \\ \text { (kHz) }}}{ }$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{gathered} \hline \text { Insertion } \\ \text { Loss } \\ \text { (dB) } \end{gathered}$	Input/Output Impedance (ohm)
CFULA455KB2A-B0	$\begin{gathered} 455.0 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFULA455KC2A-B0	$\begin{gathered} 455.0 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 24.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFULA455KD4A-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 10.0$ min.	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \mathrm{max} .$ [at minimum loss point]	1500
CFULA455KE4A-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 7.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	1500
CFULA455KF4A-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 6.0$ min.	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFULA455KG1A-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 4.5$ min.	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFULA455KH1A-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 3.0$ min.	$\mathrm{fn} \pm 9.0$ max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics
CFULA455KE4A-B0

CFULA455KE4A-B0

Ceramic Filters (CERAFILIU | Ceramic Discriminators for Communicatons Equipment

murnta

CERAFIL ${ }^{\circledR}$ Plastic Case Miniaturized Type CFWLA Series

Ceramic filter CFWLA series are low profile high selectivity ceramic filters which use 6 elements in ladder form.
They are best suitable to high-class transceivers, cordless telephones and amateur radios.

Features

1. Low profile, high selectivity
2. Available bandwidths are B to J as standard
3. Easily mountable on any PC board
4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	Nominal Center Frequency (fn) (kHz)	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{gathered} \hline \text { Insertion } \\ \text { Loss } \\ \text { (dB) } \\ \hline \end{gathered}$	Ripple (dB)	Input/Output Impedance (ohm)
CFWLA455KBFA-B0	455	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	$\left.\begin{gathered} 3.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 10 \mathrm{kHz}]} \end{gathered} \right\rvert\,$	1500
CFWLA455KCFA-B0	455	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 24.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 3.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLA455KDFA-B0	455	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { [within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 3.0 \mathrm{max} . \\ \text { [within fn } \pm 7 \mathrm{kHz} \end{gathered}$	1500
CFWLA455KEFA-B0	455	$f n \pm 7.5$ $\min .$	$\mathrm{fn} \pm 15.0$ max. [within 50dB]	35 min . [within fn $\pm 100 \mathrm{kHz}$]	6.0 max. [at minimum loss point]	$\begin{gathered} 3.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLA455KFFA-B0	455	$\mathrm{fn} \pm 6.0$ min.	$\mathrm{fn} \pm 12.5$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	3.0 max. [within $\mathrm{fn} \pm 4 \mathrm{kHz}$]	2000
CFWLA455KGFA-B0	455	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 10.0$ max. [within 50dB]	35 min . [within fn $\pm 100 \mathrm{kHz}$]	6.0 max. [at minimum loss point]	2.0 max. [within $\mathrm{fn} \pm 3 \mathrm{kHz}$]	2000
CFWLA455KHFA-B0	455	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 9.0$ max. [within 50dB]	60 min . [within fn $\pm 100 \mathrm{kHz}$]	6.0 max. [at minimum loss point]	$\begin{gathered} 2.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 2 \mathrm{kHz} \text {] } \end{gathered}$	2000
CFWLA455KJFA-B0	455	$\begin{gathered} \mathrm{fn} \pm 2.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 7.5$ max. [within 50dB]	60 min . [within fn $\pm 100 \mathrm{kHz}$]	7.0 max. [at minimum loss point]	2.0 max. [within $\mathrm{fn} \pm 1.5 \mathrm{kHz}$]	2000

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

■ Frequency Characteristics
CFWLA455KEFA-B0

CFWLA455KEFA-BO

Ceramic Filters (CERAFIl ${ }^{\text {Q }} \|$ Ceramic Discriminators for Communications Equipment

minfata

CERAFIL ${ }^{\circledR}$ Plastic Case Miniaturized Type CFULB Series

CFULB series ceramic filters are miniature, high performance ceramic filters composed of piezoelectric elements connected in a ladder form.
These filters, only 6.3 mm high, are 65% the volume of conventional types. (CFULA455K series) They are well suited for miniaturizing various kinds of communications equipment, pocket pagers, car radios, cordless telephones and mobile telephones.

Features

1. Miniature and high selectivity
2. A variety of bandwidths are available
3. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathrm{kHz}) \end{gathered}$	$\underset{\substack{\text { 6dB } \\ \text { Bandwidth } \\ \text { (kHz) }}}{ }$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{gathered} \hline \text { Insertion } \\ \text { Loss } \\ \text { (dB) } \\ \hline \end{gathered}$	Input/Output Impedance (ohm)
CFULB455KB2A-B0	$\begin{gathered} 455.0 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFULB455KC2A-B0	$\begin{gathered} 455.0 \\ \pm 2.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 24.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFULB455KD4A-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 10.0$ min.	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	$4.0 \mathrm{max} .$ [at minimum loss point]	1500
CFULB455KE4A-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 7.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	6.0 max. [at minimum loss point]	1500
CFULB455KF4A-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 12.5$ max. [within 40dB]	$\begin{gathered} 27 \mathrm{~min} . \\ \text { [within fn } \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFULB455KG1A-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 10.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFULB455KH1A-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 3.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 9.0$ max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFULB455KJ1A-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 2.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 7.5$ max. [within 40dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
CFULB455K_series filters are 4-element ceramic filters and miniature versions of CFULA455K_series.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R g+R 1=R 2=$ Input/Output Impedance

■ Frequency Characteristics
CFULB455KE4A-B0

CFULB 455KE4A-B0

Ceramic Filters (CERAFILIU | Ceramic Discriminators for Communicatons Equipment

murnta

CERAFIL® ${ }^{\circledR}$ Plastic Case General Use CFWLB Series

CFWLB series ceramic filters are miniature, high performance ceramic filters composed of piezoelectric elements connected in a ladder form.
These filters, only 6.3 mm high, are 67% the volume of conventional types. (CFWLB series) They are well suited for miniaturizing various kinds of communications equipment, pocket pagers, pagers, car radios, cordless telephones and mobile telephones.

Features

1. Miniature and high selectivity
2. A variety of bandwidths are available.
3. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	Nominal Center Frequency (fn) (kHz)	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{gathered} \hline \text { Insertion } \\ \text { Loss } \\ \text { (dB) } \\ \hline \end{gathered}$	Input/Output Impedance (ohm)
CFWLB455KBFA-B0	455	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	$4.0 \text { max. }$ [at minimum loss point]	1500
CFWLB455KCFA-B0	455	$\mathrm{fn} \pm 12.5$ min.	$\mathrm{fn} \pm 24.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFWLB455KDFA-B0	455	$\mathrm{fn} \pm 10.0$ $\min .$	$\mathrm{fn} \pm 20.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	4.0 max. [at minimum loss point]	1500
CFWLB455KEFA-B0	455	$\mathrm{fn} \pm 7.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	1500
CFWLB455KEFA004-B0	455	$\mathrm{fn} \pm 7.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 60dB]	60 min . [within $\mathrm{fn} \pm 15 \mathrm{kHz}$ to 30 kHz]	5.0 max. [at fn]	1500
CFWLB455KFFA-B0	455	$\mathrm{fn} \pm 6.0$ min.	$\mathrm{fn} \pm 12.5$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFWLB455KGFA-B0	455	$\mathrm{fn} \pm 4.5$ min.	$\mathrm{fn} \pm 10.0$ max. [within 50dB]	$\begin{gathered} 35 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFWLB455KHFA-B0	455	$\mathrm{fn} \pm 3.0$ min.	$\mathrm{fn} \pm 9.0$ max. [within 50dB]	$\begin{gathered} 55 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \text {] } \end{gathered}$	6.0 max. [at minimum loss point]	2000
CFWLB455KJFA-B0	455	$\mathrm{fn} \pm 2.0$ min.	$\mathrm{fn} \pm 7.0$ max. [within 50dB]	$\begin{gathered} 55 \mathrm{~min} . \\ \text { [within } \mathrm{fn} \pm 100 \mathrm{kHz} \end{gathered}$	7.0 max. [at minimum loss point]	2000

CFWLB455K_series filters are 4-element ceramic filters and miniature versions of CFWLA455K_series.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R \mathrm{R}+\mathrm{R} 1=\mathrm{R} 2=$ Input/Output Impedance

■ Frequency Characteristics
CFWLB455KEFA-B0

CFWLB455KEFA-B0

Ceramic Filters (CERAFIl ${ }^{\text {Q }} \|$ Ceramic Discriminators for Communications Equipment

murnta

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFULA_Y Series

CFULA_Y series are high selectivity ceramic filters, which consist of 4 ceramic elements connected in a ladder form.
Most suitable for digital communications and cellular phones because of their improved GDT characteristics.

Features

1. High selectivity
2. A variety of bandwidths are available.
3. Excellent GDT characteristics are available within pass bandwidth.

. Easily mounted on a printed circuit board
4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathbf{k H z)} \end{gathered}$	$\begin{gathered} \text { 6dB } \\ \text { Bandwidth } \\ \text { (kHz) } \end{gathered}$	$\begin{gathered} \text { Stop } \\ \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Stop Band Attenuation (dB)	$\begin{aligned} & \hline \text { Insertion } \\ & \text { Loss } \\ & \text { (dB) } \end{aligned}$	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFULA455KB4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 35.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	5.0 max. [at minimum loss point]	$\left\|\begin{array}{c} 15.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 10 \mathrm{kHz}]} \end{array}\right\|$	1500
CFULA455KC4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 12.5$ min.	$\mathrm{fn} \pm 30.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$6.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 15.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 8 \mathrm{kHz}] \end{gathered}$	1500
CFULA455KD1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 10.0$ min.	$\mathrm{fn} \pm 25.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \mathrm{max} . \\ \text { [within fn } \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULA455KE1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 7.5$ min.	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULA455KF1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 6.0$ min.	$\mathrm{fn} \pm 17.5$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	9.0 max. [at minimum loss point]	20.0 max. [within $\mathrm{fn} \pm 4 \mathrm{kHz}$]	2000
CFULA455KG1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 4.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	10.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

■ Test Circuit

$R g+R 1=R 2=$ Input/Output Impedance

■ Frequency Characteristics

CFULA455KE1Y-B0

Ceramic Filters (CERAFIl ${ }^{\text {Q }} \|$ Ceramic Discriminators for Communications Equipment

minfata

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFWLA_Y Series

CFWLA_Y series are high selectivity ceramic filters, which consist of 6 ceramic elements connected in a ladder form.
Most suitable for digital communications and mobile telephones because of their improved GDT characteristics.

Features

1. High selectivity
2. A variety of bandwidths are available
3. Excellent GDT characteristics are available within pass bandwidth.
4. Easily mounted on a printed circuit board
5. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathbf{k H z}) \end{gathered}$	6dB Bandwidth (kHz)	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{aligned} & \hline \text { Insertion } \\ & \text { Loss } \\ & \text { (dB) } \\ & \hline \end{aligned}$	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFWLA455KB4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 35.0 max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\left\|\begin{array}{c} 30.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 10 \mathrm{kHz}]} \end{array}\right\|$	1500
CFWLA455KC4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{aligned} & 30.0 \mathrm{max} . \\ & \text { [within } \mathrm{fn} \pm 8 \mathrm{kHz} \text {] } \end{aligned}$	1500
CFWLA455KD1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 25.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 30.0 \mathrm{max} . \\ {[\text { within } \mathrm{fn} \pm 7 \mathrm{kHz}]} \end{gathered}$	1500
CFWLA455KE1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 7.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 20.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	9.0 max. [at minimum loss point]	$\begin{gathered} 30.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLA455KF1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 6.0$ min.	$\mathrm{fn} \pm 17.5$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$10.0 \max .$ [at minimum loss point]	$\begin{aligned} & 40.0 \mathrm{max} . \\ & \text { [within } \mathrm{fn} \pm 4 \mathrm{kHz} \text {] } \end{aligned}$	2000
CFWLA455KG1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\mathrm{fn} \pm 4.5$ min.	$\mathrm{fn} \pm 15.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	11.0 max. [at minimum loss point]	$\begin{gathered} 40.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R \mathrm{Rg}+\mathrm{R} 1=\mathrm{R} 2=$ Input/Output Impedance

■ Frequency Characteristics
CFWLA455KE1Y-B0

CFWLA455KE1Y-B0

Ceramic Filters (CERAFIl ${ }^{\text {Q }} \|$ Ceramic Discriminators for Communications Equipment

minfata

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type Miniaturized Type CFULB_Y Series

Ceramic filter CFULB_Y series are miniature and high performance filters. These filters, only 6.3 mm high, are 65% the volume of conventional types (CFULA455K_Y series).
Well suited for miniaturizing communications equipment, especially for a cellular phone.

Features

1. Miniature, flat GDT characteristics
2. Suitable for a cellular phone
3. A variety of bandwidths are available.
4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathbf{k H z)} \end{gathered}$	$\begin{gathered} \text { 6dB } \\ \text { Bandwidth } \\ \text { (kHz) } \end{gathered}$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{aligned} & \text { Insertion } \\ & \text { Loss } \\ & \text { (dB) } \end{aligned}$	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFULB455KB4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 35.0 max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	5.0 max. [at minimum loss point]	$\left\|\begin{array}{c} 15.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 10 \mathrm{kHz}]} \end{array}\right\|$	1500
CFULB455KC4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 30.0$ max. [within 40dB]	$\begin{gathered} 25 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	15.0 max. [within $\mathrm{fn} \pm 8 \mathrm{kHz}$]	1500
CFULB455KD1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 25.0 max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	7.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULB455KE1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	fn ± 7.5 min.	$\mathrm{fn} \pm 20.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	8.0 max. [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFULB455KF1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 17.5$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$9.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within fn } \pm 4 \mathrm{kHz} \text {] } \end{gathered}$	2000
CFULB455KG1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 15.0$ max. [within 40dB]	$\begin{gathered} 23 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$10.0 \text { max. }$ [at minimum loss point]	$\begin{gathered} 20.0 \text { max. } \\ \text { [within fn } \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
CFULB455K_Y series filters are 4-element ceramic filters and miniature versions of CFULA455K_Y series.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

$R g+R 1=R 2=$ Input/Output Impedance

■ Frequency Characteristics
CFULB455KE1Y-B0

CFULB455KE1Y-B0

Ceramic Filters (CERAFIl ${ }^{\text {Q }} \|$ Ceramic Discriminators for Communications Equipment

murnta

CERAFIL ${ }^{\circledR}$ Plastic Case Group Delay Flat Type CFWLB_Y Series

Ceramic filter CFWLB_Y series are miniature and high-performance filters. These filters, only 6.3 mm high, are 67% the volume of conventional types (CFWLA455K_Y series).
Well suited for miniaturizing communications equipment, especially for a cellular phone.

2. Suitable for a cellular phone
3. A variety of bandwidths are available.

4. Operating temperature range: -20 to +80 (degree C)

Storage temperature range: -40 to +85 (degree C)

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency (fo) } \\ (\mathbf{k H z)} \end{gathered}$	$\begin{gathered} \text { 6dB } \\ \text { Bandwidth } \\ \text { (kHz) } \end{gathered}$	Stop Bandwidth (kHz)	Stop Band Attenuation (dB)	$\begin{aligned} & \text { Insertion } \\ & \text { Loss } \\ & \text { (dB) } \end{aligned}$	GDT Deviation ($\mu \mathrm{s}$)	Input/Output Impedance (ohm)
CFWLB455KB4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 15.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 30.0 max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	6.0 max. [at minimum loss point]	$\left\|\begin{array}{c} 30.0 \text { max. } \\ {[\text { within } \mathrm{fn} \pm 10 \mathrm{kHz}]} \end{array}\right\|$	1500
CFWLB455KC4Y-B0	$\begin{gathered} 455.0 \\ \pm 1.5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 12.5 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 27.5$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	7.0 max. [at minimum loss point]	30.0 max. [within $\mathrm{fn} \pm 8 \mathrm{kHz}$]	1500
CFWLB455KD1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 10.0 \\ \mathrm{~min} . \end{gathered}$	fn ± 25.0 max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	$8.0 \max .$ [at minimum loss point]	$\begin{gathered} 30.0 \text { max. } \\ \text { [within } \mathrm{fn} \pm 7 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLB455KE1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	fn ± 7.5 min.	$\mathrm{fn} \pm 20.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	9.0 max. [at minimum loss point]	$\begin{gathered} 30.0 \mathrm{max} . \\ \text { [within } \mathrm{fn} \pm 5 \mathrm{kHz} \text {] } \end{gathered}$	1500
CFWLB455KF1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 6.0 \\ \mathrm{~min} . \end{gathered}$	$\mathrm{fn} \pm 17.5$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	10.0 max. [at minimum loss point]	$\begin{gathered} 40.0 \text { max. } \\ \text { [within fn } \pm 4 \mathrm{kHz} \text {] } \end{gathered}$	2000
CFWLB455KG1Y-B0	$\begin{gathered} 455.0 \\ \pm 1.0 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fn} \pm 4.5 \\ \text { min. } \end{gathered}$	$\mathrm{fn} \pm 15.0$ max. [within 50dB]	$\begin{gathered} 40 \mathrm{~min} . \\ {[\text { within } \mathrm{fn} \pm 100 \mathrm{kHz}]} \end{gathered}$	11.0 max. [at minimum loss point]	$\begin{gathered} 40.0 \text { max. } \\ \text { [within fn } \pm 3 \mathrm{kHz} \text {] } \end{gathered}$	2000

Center frequency (fo) defined by the center of 6 dB bandwidth.
(fn) means nominal center frequency 455 kHz .
CFWLB455K_Y series filters are 4-element ceramic filters and miniature versions of CFWLA455K_Y series.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

■ Test Circuit

- Frequency Characteristics

CFWLB455KE1Y-BO

CFWLB455KE1Y-B0

Ceramic Fiters (CERAFIl ${ }^{\text {Q }} /$ Ceramic Discriminators for Communications Equipment

mintata

kHz Type Ceramic Discriminators

Ceramic discriminator consists of wide band piezoelectric resonator.
It is ideal for mobile communications equipment due to its small size and light weight.
Standard line include products for wide range of applications, from cordless telecom to cellular telephone. It helps to realize adjustment free at detection circuit and down sizing.

Features

1. Small in size and light weight
2. Adjustment free at detection circuit
3. High sensitivity and stability
4. Wide range of standard products are available for various ICs.
5. Operating temperature range: -20 to +80 (degree C) Storage temperature range: -40 to +85 (degree C)

CDBKB Series

CDBLA Series

CDBLB_CAY Series
(in mm)

(in mm)

Specified by Impedance Characteristics (Type 1)

Part Number	Nominal Center Frequency (fn) (kHz)	Inclination of Impedance Curve(1)	Inclination of Impedance $\mathbf{C u r v e (2) ~}$	Capacitance (C)	IC	IC Maker	Type
CDBLB455KCAX02-B0	455	$447.0 \pm 1.5 \mathrm{kHz}$ (at $\|Z\|=2.05 \mathrm{kohm})$	$463.0 \pm 1.5 \mathrm{kHz}$ (at $\|Z\|=10.0 \mathrm{kohm})$	$140 \mathrm{pF} \pm 20 \%$	TA8104F	TOSHIBA	Lead
CDBLB455KCAX31-B0	455	$447.0 \pm 1.5 \mathrm{kHz}$ (at $\|Z\|=2.05 \mathrm{kohm})$	$463.0 \pm 1.5 \mathrm{kHz}$ (at $\|Z\|=10.0 \mathrm{kohm})$	$140 \mathrm{pF} \pm 20 \%$	TA31141	TOSHIBA	Lead

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Impedance Curve

CDBLB455KCAX02-BO

CDBLB455KCAX31-B 0

Specified by Impedance Characteristics (Type 2)

Part Number	Nominal Center Frequency (fn) (kHz)	Anti-resonant Frequency (Fa)	Delta F (Fa-Fr)	Resonant Resistance (R)	Capacitance (C)	IC	IC Maker	Type
CDBKB455KCAX33-R0	-	$458.0 \pm 1.5 \mathrm{kHz}$	$42 \pm 4.0 \mathrm{kHz}$	300 hm max.	$280 \mathrm{pF} \pm 20 \%$	CXA1474	SONY	SMD
CDBLA455KCAY03-B0	-	$455.0 \pm 1.5 \mathrm{kHz}$	$48 \pm 5.0 \mathrm{kHz}$	700 hm max.	$600 \mathrm{pF} \pm 20 \%$	CXA1184	SONY	Lead
CDBLB455KCAY03-B0	-	$455.0 \pm 1.5 \mathrm{kHz}$	$46 \pm 5.0 \mathrm{kHz}$	700 hm max.	$550 \mathrm{pF} \pm 20 \%$	CXA1184M	SONY	Lead
CDBLB455KCAX15-B0	-	$463.5 \pm 1.0 \mathrm{kHz}$	$43 \pm 2.0 \mathrm{kHz}$	300 hm max.	$140 \mathrm{pF} \pm 20 \%$	CXA1183M	SONY	Lead
CDBLB455KCAX25-B0	455	$465.0 \pm 1.5 \mathrm{kHz}$	$45 \pm 4.0 \mathrm{kHz}$	300 hm max.	$135 \mathrm{pF} \pm 20 \%$	CXA1484	SONY	Lead
CDBLB455KCAX33-B0	455	$465.0 \pm 1.5 \mathrm{kHz}$	$45 \pm 4.0 \mathrm{kHz}$	300 hm max.	$135 \mathrm{pF} \pm 20 \%$	CXA1474	SONY	Lead

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Impedance Curve

CDBLA/CDBLB455KCAY03-B0

CDBLB455KCAX15-B0

\searrow Continued from the preceding page.

Impedance Curve

CDBLB455KCAX25-B0

CDBKB455KCAX33-R0

CDBLB455KCAX33-B0

Specified by Recovered Audio Characteristics

Part Number	Nominal Center Frequency (fn) (kHz)	Recovered Audio 3dB BW (kHz)	Recovered Audio Output (mV)	Distortion (at fn) (\%)	Distortion (\%)	IC	IC Maker	Type
CDBKB455KCAY07-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	350 ± 60	3.0 max.	-	MC3357	MOTOROLA	SMD
CDBKB455KCAY09-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	120 ± 40	1.5 max.	-	NE604N	PHILIPS	SMD
CDBKB455KCAY13-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	330 ± 50	4.0 max.	-	CXA1003BM	SONY	SMD
CDBKB455KCAY16-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	175 ± 40	2.0 max.	-	MC3372	MOTOROLA	SMD
CDBKB455KCAY24-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 40	2.0 max.	-	TA31136	TOSHIBA	SMD
CDBKB455KCAY27-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	90 ± 30	2.0 max.	-	TK10487	TOKO	SMD
CDBKB455KCAY28-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.0 max.	-	TA31142F	TOSHIBA	SMD
CDBKB455KCAY29-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 30	2.5 max.	-	NE605	PHILIPS	SMD
CDBKB455KCAY35-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 40	2.5 max.	-	TK10930	TOKO	SMD
CDBKB455KCAY40-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.5 max.	-	TA31145	TOSHIBA	SMD
CDBKB455KCAY49-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	45 ± 10	3.0 max.	-	MC3361	MOTOROLA	SMD
CDBKB455KCAY50-R0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	64 ± 6.4	4.0 max.	-	CXA3117N	SONY	SMD
CDBKB455KCAY66-R0	455	$\mathrm{fn} \pm 4.2 \mathrm{~min}$.	40 ± 10	4.0 max.	-	NJ M2590	JRC	SMD
CDBKB455KCLX36-R0	455	$\mathrm{fn} \pm 13.0 \mathrm{~min}$.	90 ± 30	2.5 max.	$\begin{gathered} 5.0 \mathrm{max} . \\ \text { [within fn } \pm 6 \mathrm{kHz} \text {] } \end{gathered}$	NE(SA)606 /NE(SA)616	PHILIPS	SMD
CDBKB455KCLX39-R0	455	$\mathrm{fn} \pm 11.0 \mathrm{~min}$.	130 ± 20	2.5 max.	$\begin{gathered} 7.0 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	$\begin{aligned} & \text { NE607 } \\ & \text { /NE617 } \end{aligned}$	PHILIPS	SMD
CDBKB455KCLY13-R0	455	$\mathrm{fn} \pm 13.0 \mathrm{~min}$.	120 ± 30	1.5 max.	$\begin{gathered} 5.0 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	CXA1003BM	SONY	SMD
CDBLA455KCAY07-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	340 ± 60	2.5 max.	-	MC3357	MOTOROLA	Lead
CDBLA455KCAY09-B0	455	$\mathrm{fn} \pm 5.0 \mathrm{~min}$.	100 min.	1.5 max.	-	NE604N	PHILIPS	Lead
CDBLA455KCAY13A-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	350 ± 50	3.0 max.	-	CXA1003BM	SONY	Lead
CDBLA455KCAY16-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	185 ± 40	2.0 max.	-	MC3372	MOTOROLA	Lead
CDBLA455KCAY24-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 40	2.0 max.	-	TA31136	TOSHIBA	Lead
CDBLA455KCAY28-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.0 max.	-	TA31142	TOSHIBA	Lead
CDBLA455KCAY34-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	65 ± 20	2.5 max.	-	MC13136	MOTOROLA	Lead
CDBLA455KCLY09-B0	455	$\mathrm{fn} \pm 15.0$ min.	70 ± 20	1.5 max.	$\begin{gathered} 3.5 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	NE604N	PHILIPS	Lead
CDBLA455KCLY13-B0	455	$\mathrm{fn} \pm 15.0$ min.	110 ± 30	1.5 max.	$\begin{gathered} 5.0 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	CXA1003BM	SONY	Lead
CDBLB455KCAY07-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	340 ± 60	3.0 max.	-	MC3357	MOTOROLA	Lead
CDBLB455KCAY13A-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	350 ± 50	3.0 max.	-	CXA1003BM	SONY	Lead

\searrow continued from the preceding page.

Part Number	Nominal Center Frequency (fn) (kHz)	$\begin{gathered} \text { Recovered } \\ \text { Audio } 3 \mathrm{~dB} \text { BW } \\ (\mathrm{kHz}) \end{gathered}$	Recovered Audio Output (mV)	Distortion (at fn) (\%)	Distortion (\%)	IC	IC Maker	Type
CDBLB455KCAY24-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	100 ± 40	2.0 max.	-	TA31136	TOSHIBA	Lead
CDBLB455KCAY28-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.0 max.	-	TA31142FN	TOSHIBA	Lead
CDBLB455KCAY34-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	65 ± 20	2.5 max.	-	MC13136	MOTOROLA	Lead
CDBLB455KCAY40-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 20	3.0 max.	-	TA31145	TOSHIBA	Lead
CDBLB455KCAY42-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	40 ± 15	3.0 max.	-	$\begin{aligned} & \text { TK14590 } \\ & \text { /TK14591 } \end{aligned}$	TOKO	Lead
CDBLB455KCAY49-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	45 ± 10	3.0 max.	-	MC3361	MOTOROLA	Lead
CDBLB455KCAY50-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	64 ± 6.4	4.0 max.	-	CXA3117N	SONY	Lead
CDBLB455KCLY09-B0	455	$\mathrm{fn} \pm 15.0 \mathrm{~min}$.	70 ± 20	1.5 max.	$\begin{gathered} 3.5 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	NE604N	PHILIPS	Lead
CDBLB455KCLY13-B0	455	$\mathrm{fn} \pm 15.0 \mathrm{~min}$.	110 ± 30	1.5 max.	$\begin{gathered} 5.0 \mathrm{max} . \\ \text { [within fn } \pm 8 \mathrm{kHz} \text {] } \end{gathered}$	CXA1003BM	SONY	Lead
CDBLB455KCAX16-B0	455	$\mathrm{fn} \pm 4.0 \mathrm{~min}$.	185 ± 40	2.0 max.	-	MC3372	MOTOROLA	Lead
CDBLB455KCAX18-B0	455	$\mathrm{fn} \pm 3.0 \mathrm{~min}$.	180 ± 40	2.0 max.	-	MC3371	MOTOROLA	Lead
CDBLB455KCAX36-B0	455	$\mathrm{fn} \pm 3.5 \mathrm{~min}$.	100 ± 25	3.5 max.	-	$\begin{aligned} & \text { NE606 } \\ & \text { /616 } \end{aligned}$	PHILIPS	Lead

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.
The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

MC 3357

MC 3372

NE 604N

- Test Circuit

TA31136

TK10487

NE (SA) 606/616

TK10930

Unit $\mathrm{C}: \mathrm{F}$
$\mathrm{R}: \Omega$
TA31142

\square Test Circuit

NE(SA)607/617

Part Number (X)	C	R	L
CDBKB455KCLX39-R0	22 pF	$2.7 \mathrm{k} \Omega$	1 mH

$R: \Omega$
$\mathrm{L}: \mathrm{H}$

TK14590/14591

CXA3117

TA31145

MC3361

NJ M2590

■ Recovered Audio Curve

T.H.D. (\%)

CDBKB455KCAY13-R0

Recovered Audio Curve

T.H.D. (\%)

■ Recovered Audio Curve

Recovered Audio Curve

CDBLA/CDBLB455KCAY34-B 0

■ Recovered Audio Curve

CDBKB455KCAY49-R0

CDBKB455KCAY50-RO

\searrow Continued from the preceding page.

Recovered Audio Curve

CDBLB455KCAY50-B0

CDBKB 455KCAY66-RO

Specified by S Curve Characteristics

Part Number	Nominal Center Frequency (fn) $\mathbf{(k H z)}$	S Curve (1) Output Volt. at fn $(\mathbf{m V})$	S Curve (2) at fn $\pm \mathbf{4 . 8 k H z}$ $(\mathbf{m V})$	IC	IC Maker	Type
CDBKB455KCAY54-R0	455	165 ± 20	170 ± 20	TA31149	TOSHIBA	SMD

For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters. The order quantity shoud be an integral multiple of the "Minimum Quantity" shown in package page in this catalog.

Test Circuit

TA31149

S Curve

CDBKB455KCAY54-R0

Ceramic Filters (CERAFll ${ }^{\text {Q }} \|$ Ceramic Discriminators for Communications Equipment

murata

MHz Type Ceramic Discriminators

CDSCB10M7 series forms a resonator on a piezoelectric ceramic substrate. In combination with ICs, this type obtains stable demodulation characteristics in a wide bandwidth.
They have 1.0 mm max. thickness and small mounting area ($4.5 \times 2.0 \mathrm{~mm}$).

Features

1. Compact and high reliability and recommended for automotive applications.
2. Can be combined with various ICs. The IC is determined by the last number in the part number.
3. Stable demodulation characteristics can be obtained without adjustment.
4. Stable temperature characteristics
5. Recommended for Pb free soldering

Part Number	Center Frequency (fo) (MHz)	Recovered Audio 3dB BW (kHz)	Recovered Audio Output (mV)	Distortion (\%)	IC
CDSCB10M7GA105A-R0	$10.700 \pm 30 \mathrm{kHz}$	220 min .	110 min .	1.5 max.	TEA5757HL
CDSCB10M7GA113-R0	$10.700 \pm 30 \mathrm{kHz}$	300 min .	110 min .	1.0 max.	TA2154FN
CDSCB10M7GA119-R0	$10.700 \pm 30 \mathrm{kHz}$	500 min .	75 min .	1.0 max.	TRF6901
CDSCB10M7GA121-R0	$10.700 \pm 30 \mathrm{kHz}$	390 min.	80 min .	1.0 max.	LV23100V
CDSCB10M7GF072-R0	10.700 (fn)	$\mathrm{fn} \pm 150 \mathrm{~min}$.	130 min .	2.0 max.	TA31161
CDSCB10M7GF109-R0	10.700 (fn)	$\mathrm{fn} \pm 100 \mathrm{~min}$.	170 min.	3.0 max.	TK14588V

(fn) means nominal center frequency.
The order quantity should be an integral multiple of the "Minimum Quantity" shown in the package page.
For safety purposes, connect the output of filters to the IF amplifier through a D.C. blocking capacitor. Avoid applying a direct current to the output of ceramic filters.

Test Circuit

CDSCB10M7GA113-R0

- Test Circuit

CDSCB10M7GA119-R0

CDSCB10M7GF072-R0

Frequency Characteristics

CDSCB10M7GA121-R0

Unit $C: F$
$R: \Omega$

CDSCB10M7GF109-R0

CDSCB10M7GA113-R0

■ Frequency Characteristics
CDSCB10M7GA119-RO

Input $=100 \mathrm{~dB} \mu$
fdev. $= \pm 60 \mathrm{kHz}$ fmod. $=1 \mathrm{kHz}$ $\mathrm{Vcc}=3.0 \mathrm{~V}$

CDSCB10M7GA121-RO

$\begin{aligned} \text { Input } & =100 \mathrm{~dB} \mu \\ \text { fdev. } & = \pm 64 \mathrm{kHz} \\ \text { fmod. } & =1 \mathrm{kHz} \\ \mathrm{Vcc} & =3.0 \mathrm{~V}\end{aligned}$

for IF

SAW Filters

- AMPS/ADC

Part Number	$\begin{gathered} \hline \text { Center } \\ \text { Frequency } \\ \text { (MHz) } \end{gathered}$	3dB Bandwidth (kHz)	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFCG130MCA0T00	130.380	$\pm 630 \mathrm{~min}$.	5.5 max. (at fo point)	-	$310 \mathrm{ohm} / / 1.6 \mu \mathrm{H}$ (Input) 310ohm//1.6 $\mu \mathrm{H}$ (Output)
SAFCT85M3JB0X05	85.380	$\pm 12 \mathrm{~min}$.	$\begin{aligned} & 5.5 \text { max. } \\ & \text { (at min. loss point) } \end{aligned}$	$\begin{gathered} 1.5 \\ (\mathrm{fo} \pm 12 \mathrm{kHz}) \end{gathered}$	870ohm//-1.8pF (Input) 8700hm//-1.8pF (Output)

DECT

Part Number	Center Frequency (MHz)	3dB Bandwidth $\mathbf{(k H z)}$	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFCT110MCA1T00	110.592	$\pm 576 \mathrm{~min}$.	4.5 max (at min. loss point)	$300 \mathrm{ohm} / / 1.2 \mu \mathrm{H}(\mathrm{Input})$ $300 \mathrm{ohm} / / 1.2 \mu \mathrm{H}(O \mathrm{utput})$	

- ETCS

Part Number	Center Frequency (MHz)	3dB Bandwidth (MHz)	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFJA40MOWQAZ00R10	40.000	$\pm 2.5 \mathrm{~min}$.	21.5 max. (at min. loss point)	-	

GPS

Part Number	$\begin{gathered} \text { Center } \\ \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	3dB Bandwidth (MHz)	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFCC110MCA1T00	110.0	$\pm 1.023 \mathrm{~min}$.	$\begin{gathered} 3.7 \text { max. } \\ \text { (at min. loss point) } \end{gathered}$	0.6	480ohm//-1.6 $\mu \mathrm{H}$ (Input) 650ohm//-1.6 $\mu \mathrm{H}$ (Output)
SAFJA35M4WCOZ00R03	35.42 (fn)	1.90 min. (1dB Bandwidth)	$\begin{aligned} & 20.5 \max . \\ & \text { (at fn) } \end{aligned}$	$\begin{gathered} 1.6 \\ \text { (within } 34.62 \text { to } 36.22 \mathrm{MHz} \text {) } \end{gathered}$	14.3k ohm//5.1pF (Input) 4.0k ohm//5.1pF (Output)

- GSM

Part Number	Center Frequency (MHz)	3dB Bandwidth $\mathbf{(k H z)}$	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFCC225MRA0X00	225.000	$\pm 80 \mathrm{~min}$.	9.0 max. (at min. loss point)	1.5 (fo $\pm 80 \mathrm{kHz})$	$1100 \mathrm{ohm} / /-0.42 \mathrm{pF}(\mathrm{Input})$ $900 \mathrm{hm} / /-0.30 \mathrm{pF}(0 \mathrm{utput})$
SAFCC282MRA0X01	282.000	$\pm 80 \mathrm{~min}$.	9.0 max. (at min. loss point)	1.5 (fo $\pm 80 \mathrm{kHz})$	$1000 \mathrm{ohm} / /-0.34 \mathrm{pF}(\mathrm{lnput})$ $860 \mathrm{hm} / /-0.34 \mathrm{pF}$ (0utput)

- PHS

Part Number	Center Frequency (MHz)	3dB Bandwidth (kHz)	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFDA243MRD9X00	243.950	$\pm 130 \mathrm{~min}$.	$4.5 \text { max. }$ (at fo point)	$\begin{gathered} 1.0 \\ \text { (fo } \pm 100 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 760 \mathrm{ohm} / /-1.0 \mathrm{pF} \text { (Input) } \\ 760 \mathrm{ohm} / /-0.8 \mathrm{pF} \text { (Output) } \end{gathered}$
SAFCC243MRB9X00	243.950	$\pm 130 \mathrm{~min}$.	$\begin{gathered} 4.5 \text { max. } \\ \text { (at min. loss point) } \end{gathered}$	$\begin{gathered} 1.0 \\ (\mathrm{fo} \pm 100 \mathrm{kHz}) \end{gathered}$	760ohm//-1.0pF (Input) 760ohm//-0.8pF (Output)
SAFCC265MRB5X01	265.550	$\pm 130 \mathrm{~min}$.	4.5 max. (at fo point)	$\begin{gathered} 1.0 \\ \text { (fo } \pm 100 \mathrm{kHz} \text {) } \end{gathered}$	740ohm//-1.0pF (Input) 820ohm//-0.9pF (Output)

- W-CDMA

Part Number	Center Frequency (MHz)	3dB Bandwidth (MHz)	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFSD570MCMOT00	570	$\pm 2.5 \mathrm{~min}$.	3.5 max. (at fo point)	0.8 (fo $\pm 1.92 \mathrm{MHz})$	$310 \mathrm{ohm} / / 120 \mathrm{nH}(\mathrm{Input})$ $310 \mathrm{hm} / / 120 \mathrm{nH}(0 \mathrm{utput})$

- Wireless LAN

Part Number	Center Frequency (MHz)	3dB Bandwidth (MHz)	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFJA43MOWCOZOOR03	$43.00 \pm 0.1 \mathrm{MHz}$ (fo)	1.25 min.	21.0 max (at fo point)	-	-

- 5G W-LAN

Part Number	Center Frequency (MHz)	3dB Bandwidth (MHz)	Insertion Loss (dB)	Ripple (dB max.)	Input/Output Impedance
SAFCD450MCL0N00	450	$\pm 8.2 \mathrm{~min}$.	$\begin{gathered} 4.5 \text { max. } \\ \text { (at min. loss point) } \end{gathered}$	$\begin{gathered} 1.5 \\ (\mathrm{fo} \pm 8.2 \mathrm{MHz}) \end{gathered}$	200ohm//150nH (Input) 200ohm//150nH (Output)
SAFCD570MCL0N00	570	$\pm 8.5 \mathrm{~min}$. (2dB Bandwidth)	$\begin{gathered} 7.0 \mathrm{max} . \\ (\mathrm{fo} \pm 8.5 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} 2.0 \\ (\mathrm{fo} \pm 8.5 \mathrm{MHz}) \end{gathered}$	200ohm//100nH (Input) 200ohm//100nH (Output)

for IF

Chip LC Filters (Balance-balance Type)

LFB32130MSH3A569
(in mm)
*Terminal of "NC1" should be fixed to the no connected pattern.
Terminal of "NC2" should not be fixed to any pattern.
Terminal of "NC2" should not be fixed to any pattern.
All the technical data and Information contained herein are
subject to change without prior notice.

Part Number	Nominal Center Frequency (fo) (MHz)	Bandwidth (BW) (MHz)	Insertion Loss in BW (dB)	Input Balance Impedance (Differential) (Nom.) (ohm)	Output Balance Impedance (Differential) (Nom.) (ohm)
LFB32130MSH3A569	130.38	fo ± 0.7	$5.0 \mathrm{max} .\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$	1000	250
LFB32166MSH2A570	166.85	fo ± 0.65	$5.0 \mathrm{max} .\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$	300	300

for IF

Chip LC Filters (Balance-unbalance Type)

$\xrightarrow{0.4 \pm 0.2 \xrightarrow{0.6 \pm 0.15}+1 \rightarrow 1}$
1)(3) : Balance IN
(2)(7): GND
$(2)(7): ~ G N D$
$(4)(5)(9)(10): ~ N C 2$
(6) : Unbalance OUT
(8) : NC1 (Biasing terminal

LFB32130MSQ1A552
$\xrightarrow{0.4 \pm 0.15} \xrightarrow{1.0 \pm 0.1}$
(8) : NC1 (Biasing terminal
*Terminal of "NC1" should be fixed to the no connected patte
Terminal of "NC2" should not be fixed to any pattern.
All the technical data and Information contained herein are subject
to change without prior notice. (in mm)

Part Number	Nominal Center Frequency (fo) (MHz)	Bandwidth (BW) (MHz)	Insertion Loss in BW (dB)	Balance Impedance (Differential) (Nom.) (ohm)	Unbalance Impedance (Nom.) (ohm)
LFB32130MSQ1A552	130.38	fo ± 0.65	$5.5 \mathrm{max} .\left(\mathrm{at} 25^{\circ} \mathrm{C}\right)$	1000	50
LFB32166MSQ1A527	166.85	fo ± 0.7	$4.0 \mathrm{max} .\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$	200	50

[^0]: $R g=50 \Omega \quad R 1=280 \Omega \pm 5 \% \quad R_{2}=330 \Omega \pm 5 \%$
 (1) : Input
 $\mathrm{C} 2=10 \pm 2 \mathrm{pF}$ (Including stray capacitance and Input capacitance (2)(5) : Ground
 E_{1} :S.S. Of RF Volt Meter)
 3)(4) : No connect
 (6) : Output

