Care and Feeding of Power Grid Tubes The second secon

CARE AND FEEDING OF POWER GRID TUBES

Copy right © 1967 by Varian. All right reserved. Printed in the United States of America. This book, or parts thereof may not be reproduced in any form without permission of the publisher.

LIBRARY OF CONGRESS NO. 67-30070

Table of Contents

SECTION I				
INTRO	DUCTION	1		
SEC	TION 2	3		
<u>WHAT</u> 2. 1	IS A POWER GRID TUBE? TRIODES 3	3		
2.2	TETRODE 8			
2.3	PENTODES 13			
2.4	INDUCTIVE OUTPUT TUBE (IOT) 14			
2.5	MULTISTAGE DEPRESSED COLLECTOR IOT (MSDC IOT) 21			
2.6	CATHODE EMITTERS 23			
SEC	TION 3	31		
<u>ELEC[.] 3.1</u>	TRICAL DESIGN CONSIDERATIONS CLASS OF OPERATION 31	31		
3.2	TUBE PERFORMANCE COMPUTER FOR R-FAMPLIFIERS33			
3.3	TYPICAL R-F AMPLIFIER CIRCUIT DESIGNS 47			

- 3.4 COMPONENT PARTS 53
- 3.6 FILAMENT BY-PASSING 56
- 3.7 SCREEN AND SUPPRESSOR GRID BY-PASSING AND SCREEN TUNING 58
- 3.8 GROUNDED-GRID CIRCUITS 59
- 3.9 PROTECTION 61
- 3.10 KEYING 63
- 3. 11 AMPLITUDE MODULATION 65
- 3.12 POWER SUPPLY CONSIDERATION 67
- 3.13 STABILIZING THE AMPLIFIER 69

SECTION 4

74

74

LINEAR AMPLIFIER AND SINGLE SIDEBAND SERVICE

- 4.1 WHY SINGLE SIDEBAND 74
- 4.2 RATING TUBES FOR LINEAR AMPLIFIER SERVICE 75
- 4.3 SELECTION OF TUBES FOR SINGLE SIDEBAND SERVICE 83
- 4.4 LINEAR AMPLIFIER DESIGN 91
- 4.5 ADJUSTING AND MONITORING THE LINEAR AMPLIFIER 95

SECTION 5

NEUTRALIZATION 98				
5.1	NEUTRALIZATION BELOW VHF	98		
5.2	PUSH-PULL NEUTRALIZATION	100		
5.3	SINGLE-ENDED NEUTRALIZATION	100		
5.4	NEUTRALIZING GROUNDED-GRID A 102	MPLIFIERS		
5.5	NEUTRALIZATION PROCEDURE	106		
5.6	SELF-NEUTRALIZING FREQUENCIE TETRODES AND PENTODES 109	S OF		

SECTION 6

VARIOUS APPLICATIONS 114 ADJUSTMENT OF LOADING AND EXCITATION 6.1 114 6.2 **OPERATING VOLTAGES AND CURRENTS** 115 6.3 EFFECT OF DIFFERENT SCREEN VOLTAGES 116 6.4 THE THREE HALVES POWER LAW 116 6.5 BALANCE OF AMBLIFIERS 118 6.6 HARMONIC AMPLIFIER AND CONTROL OF HARMONICS 119 6.7 SHIELDING 121

6.8 DRIVE POWER REQUIREMENTS 123

114

- 6.9 VHF AND UHF OPERATING CONDITIONS FOR SATISFACTORY PLATE EFFICIENCY AND MINIMUM DRIVE 125
- 6.10 COOLING TECHNIQUES 127
- 6.11 TUBE LIFE 159

BIBLIOGRAPHY

164

Illustrations

Figure 1:	Constant current curves for 3CX3000A1 (µ = 5)5
Figure 2:	Constant current curves for 3CX3000A7 (μ = 160)
Figure 3:	Constant current curves for a zero-bias triode with a µ of 2006
Figure 4:	Internal configuration of a planar triode7
Figure 5:	Incorrect screen circuit for tube requiring low impedance screen
Figure 6:	A correct screen circuit for tube requiring low impedance screen
	supply11
Figure 7:	Another approach to swamping the screen circuit
Figure 8.	Typical curve of grid current as a function of control grid voltage for a high power thoriated tungsten filament tetrode
Figure 9.	Secondary-emission characteristics of the metals under ordinary
0	conditions. The curve shows the ratio of the number of secondary
	to primary electrons for various primary-electron impact velocities
	expressed in volts. (After Harries.)
Figure 10:	Eimac K2 IOT Amplifier 17
Figure 11:	Eimac K2 Inductive Output Tube
Figure 12:	Typical tuning curves for UHF TV IOT. The lower curve is the
U	reflected drive signal. The upper curve shows the output tuning.20
Figure 13:	Equipotential Lines in a three stage collector. The potentials are
	determined by collector geometery and collector voltages 22
Figure 14:	Electron trajectories at near to ideal power. The tube gap is at the
	left side of the image, which is only half the collector. The right
	collector element is at cathode to anode potential. The middle
	section is approximately half the cathode
Figure 15:	Electron trajectories at higher than ideal power. Less power is
	recovered in the middle, depressed collector segment
Figure 16:	Typical MSDC IOT power supply schematic
Figure 17:	Pulse derating curve
Figure 18:	Typical oxide cathode
Figure 18:	Typical spiral tungsten filament
Figure 19:	Typical bar tungsten filament
Figure 20.	Typical mesh tungsten filament
Figure 21:	Typical Focus Cathode (LPT-62). The nonizontal assembly is the
	cathode assembly. The white area between the shiny bars is the
	actual cathode emitting areas. The shiny bars are essentially
	Shadow ghos. This calhode assembly is mounted insid
Figure 22:	Output Tubo
Eiguro 22	Anodo officiency via, conduction angle for an amplifier with tunod
Figure 25.	Anoue enciency vs. conduction angle for an ampliner with turied
	Drantias Hall Inc. Englowood Cliffe N J. 1055)
Eiguro 24	Variation of anodo and grid voltage
Figure 24.	Variation of anode and grid voltage scales
Figure 20.	Anoue voltage and grid voltage scales
Figure 20.	Constant current characteristics for 4CV20 0004/0000 totrade 26
riguie ∠ <i>i</i> .	

Figure 28.	Constant current characteristics for 4CWI00,000D tetrode 45
Figure 29.	A typical circuit for an R-F amplifier
Figure 30:	Relative harmonic vs.resonant circuit Q
Figure 31:	Determination of input capacitor C1
Figure 32:	Determination of loading Capacitor C2
Figure 33A.	Determination of Inductor L
Figure 33B.	Reactance of an r-f choke vs. frequency
Figure 34.	A typical circuit using "zero-bias" triodes showing metering
	circuits and method of grounding the grid to r-f. The grid current is
	measured in the return lead from ground to filament
Figure 35.	A typical circuit using "Zero-bias" triodes showing metering
	circuits. The grid is grounded to r-f with a by-pass capacitor. The
	grid is raised 1Ω above d-c ground to allow the grid current to be
	measured60
Figure 36.	3CX5000A7 with grid flange
Figure 37.	Tetrode and pentode protection chart This
	chart indicates the location of a suitable relay which should act to
	remove the principal supply voltage from the stage or transmitter
	to prevent damage to the tubes
Figure 38.	Triode protection chart. This chart indicates the location of a
	suitable relay which should act to remove the principal supply
	voltage from the stage or transmitter to prevent damage to the
	tube or transmitter
Figure 39A.	Screen voltage control circuit for exciter keying or protection
	against loss of excitation when supplying screen from high voltage
	source
Figure 39B.	A typical method of keying a tetrode or pentode amplifier
Figure 40.	Basic screen and anode modulation circuits
Figure 41.	Usual circuit supporting VHF parasitic oscillation in HF r-f
	amplifiers71
Figure 42:	Placement of parasitic suppressors to eliminate VHF parasitic
	oscillations in HF r-f amplifiers72
Figure 43.	Relative spectrum space occupied by AM signal and SSB signal
	modulated by frequencies of 200 to 3000 Hz
Figure 44.	R-F output of SSB transmitter with single-tone modulation. (a)
	Oscilloscope pattern (b) Spectrum for 1000-Hz tone
Figure 45.	Spectrum of SSB transmitter modulated by two-tone test signal
	containing 400- and 2500-Hz tones and transmitting upper
	sideband
Figure 46.	Spectrum of SSB trnasmitter modulated by 1500-Hz tone and
	injecting carrier to obtain second r-f signal equal in amplitude to
	tone
Figure 47.	R-f output of SSB transmitter modulated by two-tone test signal as
	seen on the oscilloscope78
Figure 48.	Single-tone condition
⊢igure 49.	Iwo-tone condition
⊢igure 50.	I hree-tone condition
⊢ıgure 51.	Spectrum at the output of a non-linear device with an input of two
	equal amplitude sine waves of f1 = 2.001 MHz and f2 = 2.003

Figure 52	MHz
Figure 52.	Block diagram of Intermodulation Distortion Analyzer. A low-
	distortion two-tone r-f signal is generated at 2 MHz and applied
	to the test amplifier. The output of the amplifier is dissipated in
	a dummy load and a portion of the output signal is examined on
	the screen of a high-resolution panoramic analyzer or tunable
	voltmeter. Distortion products as low as - 75 decibels below one
	tone of a
Figure 54.	Intermodulation distortion products may be predicted
	mathematically. This universal family of IMD curves applies
	to all perfect tubes obeying the 3/2-power law. (See Section
	6.4.) The curves are plots of IMD level (Y axis) referred to the
	drivibias. As the drive is increased, the various IMD products pass
	through maxima and minima. Misleading conclusions of amplifier
	performance may be drawn if the equipment happens to be
	tested near a cusp on the IMD curve, where a particular product
	drops to an extremely low level. The whole operating range of the
	equipment must be examined to draw a true picture of IMD per 91
Figure 55.	IM Distortion Test Data for EIMAC 4CX1500B (EC2 = $225V$) 94
Figure 56.	IN DISIONION TEST DATA FOR ETMAC 4CX 1500B (EC2 = 250V) 94
Figure 57.	Wile neutralizing system. 99 Duch null grid neutralization basic sizewit 100
Figure 50.	Single and a grid neutralization, basic circuit.
Figure 59.	100
Figure 60.	Single-ended plate neutralization, basic circuit
Figure 61.	Single-ended plate neutralization showing capacitance bridge
	circuit present
Figure 62.	Neutralization of a symmetrical grid-excited amplifier by cross-
	connected capacitors 104
Figure 63.	Neutralization by cross-connected capacitors of a symmetrical
	cathode-excited amplifier with grounded grids
Figure 64.	Neutralization by cross-connected capacitors of a symmetrical
	cathode-excited amplifier with compensation of lead inductance.
F : 0 F	
Figure 65.	Circuit of grounded-grid amplifier naving grid impedance and
Figure 66	neutralized for reactive currents
Figure 60.	Craphical presentation of components of output circuit voltages in
Figure 07.	totrade when self neutralized
Figure 68	Components of output voltage of a tetrode when neutralized by
rigure oo.	added series screenlead capacitance
Figure 684	Components of output voltage of a tetrode when neutralized by
riguie ook.	added external grid-to-plate capacitance
Figure 69	Components of output voltage of a tetrode neutralized by adding
i iguie 03.	inductance common to screen and cathode return 112
Figure 70	Three-halves power of commonly-used factors 117
Figure 71.	Plate-Current Pulse Length and Power Output of Harmonic
J	Amplifiers

Figure 72.	4.125A mounting providing cooling, shielding and isolation of output and input compartments
Figure 73.	4CX250B chassis mounting providing cooling, shielding and isolation of output and input compartments 120
Figure 74.	Incorrectly mounted tube. Submounted metal baseshell tube prevents effective cooling and does not contribute to shielding.130
Figure 75.	Measuring back-pressure
Figure 76.	Cooling Airflow Requirements
Figure 77.	Combined correction factors for land-based installations 136
Figure 78.	Conversion of mass airflow rate to volumetric airflow rate 137
Figure 79.	Typical vapor-phase cooling system
Figure 80.	4CV35,000A tetrode mounted in BR-200 boiler
Figure 81.	EIMAC vapor-cooled tubes for mounting in EIMAC Boilers 143
Figure 82.	CB-202 control box
Figure 83	Cutaway of "classic" boiler and tube combination (BR 101 boiler and 4CV8000A tetrode)146
Figure 84.	Cutaway view of EIMAC Control Box showing position of float
	switches and overflow pipe146
Figure 85.	Typical 4-tube vapor cooling system with common water supply. 147
Figure 86.	Cutaway of pressure equalizer fitting
Figure 87.	Typical 4-tube system using "steam-out-the-bottom" boilers 149
Figure 88.	Cutaway view of "steam-out-the-bottom" boilers
Figure 89.	Nukiyama heat transfer curves 153
Figure 91.	Useful conversion factors
Figure 92.	Different conduction cooled tubes manufactured by EIMAC 157
Figure 93.	Variation in properties due to changes in temperature
Figure 94.	Relative thermal conductivity of BeO