

Mobile IPv6 Tutorial Karim El Malki **Core Unit Core Network Development Ericsson AB**

Outline

Mobile IPv6 overview

Mobile IPv6 improvements

Mobile IPv6 Applications

Why IP mobility?

Address 1: PREFIX_B: HOST_ID

Why IP mobility?

Address 1: PREFIX_B: HOST_ID

Mobile IPv6 – Routing through HA

North American IPv6 Summit

Mobile IPv6 – Route Optimisation

Securing Route optimisation signalling

- Why do we need to secure it?
 - The BU orders the receiver to send traffic to a different IP address (e.g. Packets intended for address X should be sent to Y)
 - Attackers can:
 - Direct a MN's traffic to themselves (steal traffic)
 - Direct a MN's traffic somewhere else (Bombing attacks)
 - Deny a MN from communicating with other nodes (DoS attacks).
 - More attacks are possible.

Securing Route optimisation signalling...cont

- What type of security is needed?
 - The CN needs to determine whether the MN has the right to send the BU
 - To do this the MN must prove that it owns both Home Address and Careof Address
 - Encryption is not required, no confidential information.
- Is a proof of identity enough?
 - Proof that a user is <u>Person@ericsson.com</u> does not mean that Person owns home address X or CoA Y.
 - Certificate including Home Address could be used but can be complex to set up in practice (i.e. who gives out these special certificates, global PKI)

MIPv6 security – Return Routability

Current and future Mobile IPv6 optimisations

- Localised Mobility Management (LMM)
- Fast handovers
- Granularity of movement:
 - Flow movement
- Network mobility

Why are "Fast" & "Local" Mobility important?

- Fast Handoffs: Anticipates Mobile IP messaging (before L2 movement)
- Local Mobility: Reduces Mobile to Home network roundtrip delay
- Local Mobility: Reduces number of messages (radio transm. efficiency)

Mobile IP Handover performance

From "Performance Evaluation of TCP over Mobile IP, PIMRC 1999, Fikouras, El Malki et al.

- Real-time services are sensitive to Mobile IP delays
- Mobile IP delays DO affect non-real-time services
- Results would be worse if we considered Route Optimisation RR tests

Local Mobility using Mobile IPv6

North American IPv6 Summit

Fast Handoffs Overview

- Detect Movement in Anticipation -> Update Old AR (before L2 mov.)
- Traffic is then forwarded from Old AR to New AR (non-optimal)
- The MN must then also update HA and CNs (for optimal routing)
- "Bicasting" can improve performance

Flow movement

Where can we find mobile nets: Cars, PANs, Trains, Buses, multi-access technologies ..etc

Mobile IPv6 in current wireless systems

- Why is it needed?
 - Session continuity
 - Access independence
 - Reachability => Permanent Public IP addresses
 - The role of Mobile IP in current wireless systems:

IP Network	Mobile IP			
Core Network	GPRS CN (GTP)		CDMA2000 (MIP-based)	
RAN	GSM	WCDMA	CDMA	WLAN/Other

North American IPv6 Summit

