
Guide to IP Layer Network
Administration with Linux

Version 0.4.4

Martin A. Brown
SecurePipe, Inc. (http://www.securepipe.com/)

Network Administration

mabrown@securepipe.com

Guide to IP Layer Network Administration with Linux: Version 0.4.4
by Martin A. Brown

Published 2003-04-26
Copyright © 2002, 2003 Martin A. Brown

This guide provides an overview of many of the tools available for IP network administration of the linux operating
system, kernels in the 2.2 and 2.4 series. It covers Ethernet, ARP, IP routing, NAT, and other topics central to the
management of IP networks.

Revision History

Revision 0.4.4 2003-04-26 Revised by: MAB
added index, began packet filtering chapter
Revision 0.4.3 2003-04-14 Revised by: MAB
ongoing editing, ARP/NAT fixes, routing content
Revision 0.4.2 2003-03-16 Revised by: MAB
ongoing editing; unreleased version
Revision 0.4.1 2003-02-19 Revised by: MAB
major routing revision; better use of callouts
Revision 0.4.0 2003-02-11 Revised by: MAB
major NAT revs; add inline scripts; outline FIB
Revision 0.3.9 2003-02-05 Revised by: MAB
fleshed out bonding; added bridging chapter
Revision 0.3.8 2003-02-03 Revised by: MAB
move to linux-ip.net; use TLDP XSL stylesheets
Revision 0.3.7 2003-02-02 Revised by: MAB
major editing on ARP; minor editing on routing
Revision 0.3.6 2003-01-30 Revised by: MAB
switch to XSLT processing; minor revs; CVS
Revision 0.3.5 2003-01-08 Revised by: MAB
ARP flux complete; ARP filtering touched
Revision 0.3.4 2003-01-06 Revised by: MAB
ARP complete; bridging added; ip neigh complete
Revision 0.3.3 2003-01-05 Revised by: MAB
split into 3 parts; ARP chapter begun
Revision 0.3.2 2002-12-29 Revised by: MAB
links updated; minor editing
Revision 0.3.1 2002-11-26 Revised by: MAB
edited: intro, snat, nat; split advanced in two
Revision 0.3.0 2002-11-14 Revised by: MAB
chapters finally have good HTML names
Revision 0.2.9 2002-11-11 Revised by: MAB
routing chapter heavily edited
Revision 0.2.8 2002-11-07 Revised by: MAB
basic chapter heavily edited
Revision 0.2.7 2002-11-04 Revised by: MAB
routing chapter finished; links rearranged
Revision 0.2.6 2002-10-29 Revised by: MAB
routing chapter continued
Revision 0.2.5 2002-10-28 Revised by: MAB
routing chapter partly complete
Revision 0.2.4 2002-10-08 Revised by: MAB

advanced routing additions and overview
Revision 0.2.3 2002-09-30 Revised by: MAB
minor editing; worked on tools/netstat; advanced routing
Revision 0.2.2 2002-09-24 Revised by: MAB
formalized revisioning; finished basic networking; started netstat
Revision 0.2.1 2002-09-21 Revised by: MAB
added network map to incomplete rough draft
Revision 0.2 2002-09-20 Revised by: MAB
incomplete rough draft released on LARTC list
Revision 0.1 2002-08-04 Revised by: MAB
rough draft begun

Table of Contents
Introduction...i

Target Audience, Assumptions, and Recommendations...i
Conventions...i
Bugs and Roadmap ... ii
Technical Note and Summary of Approach .. ii
Acknowledgements and Request for Remarks ... ii

I. Concepts ...i

1. Basic IP Connectivity...1
IP Networking Control Files ..1
Reading Routes and IP Information ...2

Sending Packets to the Local Network ...4
Sending Packets to Unknown Networks Through the Default Gateway5
Static Routes to Networks...6

Changing IP Addresses and Routes..7
Changing the IP on a machine ..7
Setting the Default Route..9
Adding and removing a static route ..9

Conclusion..10
2. Ethernet ..12

Address Resolution Protocol (ARP)...12
Overview of Address Resolution Protocol..12
The ARP cache ...15
ARP Suppression ..17
The ARP Flux Problem...17

ARP flux prevention with arp_filter ...18
ARP flux prevention with hidden ..19

Proxy ARP ..20
ARP filtering ...20

Connecting to an Ethernet 802.1q VLAN ..21
Link Aggregation and High Availability with Bonding ...22

Link Aggregation ..22
High Availability...23

3. Bridging ...25
Concepts of Bridging..25
Bridging and Spanning Tree Protocol ..25
Bridging and Packet Filtering...25
Traffic Control with a Bridge ...25
ebtables ..25

4. IP Routing ..26
Introduction to Linux Routing..26
Routing to Locally Connected Networks ...29
Sending Packets Through a Gateway ...30
Operating as a Router ...31
Route Selection...31

The Common Case..31

iv

The Whole Story ...32
Summary...34

Source Address Selection ...34
Routing Cache ..35
Routing Tables..37

Routing Table Entries (Routes)...39
The Local Routing Table ..41
The Main Routing Table ...43

Routing Policy Database (RPDB) ..43
ICMP and Routing..45

MTU, MSS, and ICMP ...45
ICMP Redirects and Routing ..45

5. Network Address Translation (NAT) ...48
Rationale for and Introduction to NAT...48
Application Layer Protocols with Embedded Network Information50
Stateless NAT with iproute2 ..51

Stateless NAT Packet Capture and Introduction ...51
Stateless NAT Practicum...52
Conditional Stateless NAT..53

Stateless NAT and Packet Filtering ..54
Destination NAT with netfilter (DNAT) ...56

Port Address Translation with DNAT ...56
Port Address Translation (PAT) from Userspace..57
Transparent PAT from Userspace ...57

6. Masquerading and Source Network Address Translation..58
Concepts of Source NAT ..58

Differences Between SNAT and Masquerading ...58
Double SNAT/Masquerading..58

Issues with SNAT/Masquerading and Inbound Traffic...58
Where Masquerading and SNAT Break ...58

7. Packet Filtering ..59
Rationale for and Introduction to Packet Filtering ...59

History of Linux Packet Filter Support...59
Limits of the Usefulness of Packet Filtering...60

Weaknesses of Packet Filtering ..61
Complex Network Layer Stateless Packet Filters...61

General Packet Filter Requirements ...61
The Netfilter Architecture...62

Packet Filtering with iptables...62
Packet Filtering with ipchains ...62

Packet Mangling with ipchains ..62
Protecting a Host ..62
Protecting a Network ..63
Further Resources...63

8. Statefulness and Statelessness..65
...65

Statelessness of IP Routing ..65
Netfilter Connection Tracking ..65

v

...65

...65

II. Cookbook...66

9. Advanced IP Management ...67
Multiple IPs and the ARP Problem ..67
Multiple IP Networks on one Ethernet Segment ..67
Breaking a network in two with proxy ARP ..67
Multiple IPs on an Interface ...68
Multiple connections to the same Ethernet ..69
Multihomed Hosts ..69
Binding to Non-local Addresses...69

10. Advanced IP Routing ...70
Introduction to Policy Routing ...70
Overview of Routing and Packet Filter Interactions ..70
Using the Routing Policy Database and Multiple Routing Tables ...71

Using Type of Service Policy Routing..72
Using fwmark for Policy Routing...72
Policy Routing and NAT ...72

Multiple Connections to the Internet ..72
Outbound traffic Using Multiple Connections to the Internet73
Inbound traffic Using Multiple Connections to the Internet ...75
Using Multiple Connections to the Internet for Inbound and Outbound Connections .77

11. Scripts for Managing IP ...79
Proxy ARP Scripts..79
NAT Scripts ..82

12. Troubleshooting ...90
Introduction to Troubleshooting...90
Troubleshooting at the Ethernet Layer ...90
Troubleshooting at the IP Layer ...90
Handling and Diagnosing Routing Problems ...90
Identifying Problems with TCP Sessions ...90
DNS Troubleshooting...90

III. Appendices and Reference ...91

A. An Example Network and Description ...92
Example Network Map and General Notes..92
Example Network Addressing Charts ..92

B. Ethernet Layer Tools ...94
arp ..94
arping...95
ip link ...96

Displaying link layer characteristics with ip link show ...96
Changing link layer characteristics with ip link set ...97
Deactivating a device with ip link set ..98
Activating a device with ip link set ..99
Using ip link set to change the MTU ...100
Changing the device name with ip link set ..100
Changing hardware or Ethernet broadcast address with ip link set100

vi

ip neighbor ..101
mii-tool...104

C. IP Address Management ...107
ifconfig ...107

Displaying interface information with ifconfig ..107
Bringing down an interface with ifconfig ...108
Bringing up an interface with ifconfig..108
Reading ifconfig output ..109
Changing MTU with ifconfig ...109
Changing device flags with ifconfig ...110
General remarks about ifconfig ..111

ip address...111
Displaying interface information with ip address show ..111
Using ip address add to configure IP address information112
Using ip address del to remove IP addresses from an interface113
Removing all IP address information from an interface with ip address flush114
Conclusion ..114

D. IP Route Management...116
route ...116

Displaying the routing table with route..116
Reading route’s output ...117
Using route to display the routing cache..118
Creating a static route with route add..119
Creating a default route with route add default ..121
Removing routes with route del ...121

ip route...123
Displaying a routing table with ip route show...123
Displaying the routing cache with ip route show cache..125
Using ip route add to populate a routing table ..127
Adding a default route with ip route add default..128
Setting up NAT with ip route add nat ...128
Removing routes with ip route del...129
Altering existing routes with ip route change ...130
Programmatically fetching route information with ip route get131
Clearing routing tables with ip route flush ..131
ip route flush cache ...132
Summary of the use of ip route..132

ip rule ...133
ip rule show..133
Displaying the RPDB with ip rule show..133
Adding a rule to the RPDB with ip rule add ...134
ip rule add nat ...135
ip rule del ...136

E. Tunnels and VPNs ...138
Lightweight encrypted tunnel with CIPE ..138
GRE tunnels with ip tunnel ...138
All manner of tunnels with ssh...138
IPSec implementation via FreeS/WAN ...138

vii

IPSec implementation in the kernel..138
PPTP ..138

F. Sockets; Servers and Clients ..139
telnet...139
nc ..139
socat ...140
tcpclient ...141
xinetd ...141
tcpserver ..141
redir..142

G. Diagnostics ..143
ping...143

Using ping to test reachability..144
Using ping to stress a network..146
Recording a network route with ping ...146
Setting the TTL on a ping packet ...147
Setting ToS for a diagnostic ping ...148
Specifying a source address for ping..149
Summary on the use of ping ...149

traceroute ..149
Using traceroute ..150
Telling traceroute to use ICMP echo request instead of UDP...................................151
Setting ToS with traceroute ...151
Summary on the use of traceroute...151

mtr..151
netstat...151

Displaying socket status with netstat ...151
Displaying the main routing table with netstat ..154
Displaying network interface statistics with netstat ..155
Displaying network stack statistics with netstat ..155
Displaying the masquerading table with netstat ..155

tcpdump...155
Using tcpdump to view ARP messages ...156
Using tcpdump to see ICMP unreachable messages ...156
Using tcpdump to watch TCP sessions..157
Reading and writing tcpdump data..157
Understanding fragmentation as reported by tcpdump..158
Other options to the tcpdump command..158

tcpflow..159
tcpreplay ..159

H. Miscellany ...160
ipcalc and other IP addressing calculators ...160
Some general remarks about iproute2 tools ..160
Brief introduction to sysctl ...161

I. Links to other Resources ..162
Links to Documentation ...162

Linux Networking Introduction and Overview Material ..162
Linux Security and Network Security...162

viii

General IP Networking Resources..162
Masquerading topics ...163
Network Address Translation ...163
iproute2 documentation ..164
Netfilter Resources..164
ipchains Resources...165
ipfwadm Resources ..165
General Systems References...165
Bridging ..166
Traffic Control...166
IPv4 Multicast...167
Miscellaneous Linux IP Resources...167

Links to Software ...168
Basic Utilities..168
Virtual Private Networking software ..168
Traffic Control queueing disciplines and command line tools....................................169
Interfaces to lower layer tools ...169
Packet sniffing and diagnostic tools..169

J. GNU Free Documentation License ..171
PREAMBLE...171
APPLICABILITY AND DEFINITIONS...171
VERBATIM COPYING ...172
COPYING IN QUANTITY..172
MODIFICATIONS...173
COMBINING DOCUMENTS ...174
COLLECTIONS OF DOCUMENTS...175
AGGREGATION WITH INDEPENDENT WORKS..175
TRANSLATION...175
TERMINATION...176
FUTURE REVISIONS OF THIS LICENSE ...176
ADDENDUM: How to use this License for your documents ..176

Reference Bibliography and Recommended Reading..178

Index..179

ix

List of Tables
2-1. Active ARP cache entry states ...15
4-1. Keys used for hash table lookups during route selection ...33
5-1. Filtering an iproute2 NAT packet with ipchains...54
A-1. Example Network; Network Addressing...92
A-2. Example Network; Host Addressing ...93
B-1. ip link link layer device states...98
B-2. Ethernet Port Speed Abbreviations..104
C-1. Interface Flags ...110
C-2. IP Scope under ip address ..112
G-1. Possible Session States in netstat output ..153
H-1. iproute2 Synonyms...161

List of Examples
1-1. Sample ifconfig output ...2
1-2. Testing reachability of a locally connected host with ping..4
1-3. Testing reachability of non-local hosts...5
1-4. Sample routing table with a static route ...6
1-5. ifconfig and route output before the change..7
1-6. Bringing down a network interface with ifconfig ..8
1-7. Bringing up an Ethernet interface with ifconfig...8
1-8. Adding a default route with route..9
1-9. Adding a static route with route ..10
1-10. Removing a static network route and adding a static host route ..10
2-1. ARP conversation captured with tcpdump 3 ...13
2-2. Gratuitous ARP reply frames ...13
2-3. Unsolicited ARP request frames ..14
2-4. Duplicate Address Detection with ARP...14
2-5. ARP cache listings with arp and ip neighbor ...15
2-6. ARP cache timeout...16
2-7. ARP flux ...17
2-8. Correction of ARP flux with conf/$DEV/arp_filter ..18
2-9. Correction of ARP flux with net/$DEV/hidden ...20
2-10. Bringing up a VLAN interface...21
2-11. Link aggregation bonding ..22
2-12. High availability bonding ...23
4-1. Classes of IP addresses...27
4-2. Using ipcalc to display IP information...29
4-3. Identifying the locally connected networks with route ...29
4-4. Routing Selection Algorithm in Pseudo-code ..33
4-5. Listing the Routing Policy Database (RPDB)..33
4-6. Typical content of /etc/iproute2/rt_tables ..38
4-7. unicast route types ..39
4-8. broadcast route types ..39

x

4-9. local route types..40
4-10. nat route types ..40
4-11. unreachable route types ..40
4-12. prohibit route types...41
4-13. blackhole route types..41
4-14. throw route types ..41
4-15. Kernel maintenance of the local routing table...42
4-16. unicast rule type..43
4-17. nat rule type ..44
4-18. unreachable rule type..44
4-19. prohibit rule type ..44
4-20. blackhole rule type ...45
4-21. ICMP Redirect on the Wire 14...46
5-1. Stateless NAT Packet Capture 3 ..51
5-2. Basic commands to create a stateless NAT ..52
5-3. Conditional Stateless NAT (not performing NAT for a specified destination network).....................53
5-4. Using an ipchains packet filter with stateless NAT ...54
5-5. Using DNAT for all protocols (and ports) on one IP..56
5-6. Using DNAT for a single port ..56
5-7. Simulating full NAT with SNAT and DNAT..56
7-1. Blocking a destination and using the REJECT target, cf. Example D-17 ...63
10-1. Multiple Outbound Internet links, part I; ip route ...73
10-2. Multiple Outbound Internet links, part II; iptables..74
10-3. Multiple Outbound Internet links, part III; ip rule ..75
10-4. Multiple Internet links, inbound traffic; using iproute2 only 5 ..77
11-1. Proxy ARP SysV initialization script...79
11-2. Proxy ARP configuration file ...80
11-3. Static NAT SysV initialization script ...82
11-4. Static NAT configuration file..86
B-1. Displaying the arp table with arp ..94
B-2. Adding arp table entries with arp..95
B-3. Deleting arp table entries with arp ..95
B-4. Displaying reachability of an IP on the local Ethernet with arping..95
B-5. Duplicate Address Detection with arping...96
B-6. Using ip link show ..97
B-7. Using ip link set to change device flags..97
B-8. Deactivating a link layer device with ip link set ...98
B-9. Activating a link layer device with ip link set ..99
B-10. Using ip link set to change device flags..100
B-11. Changing the device name with ip link set ...100
B-12. Changing broadcast and hardware addresses with ip link set...101
B-13. Displaying the ARP cache with ip neighbor show...102
B-14. Displaying the ARP cache on an interface with ip neighbor show ..102
B-15. Displaying the ARP cache for a particular network with ip neighbor show................................102
B-16. Entering a permanent entry into the ARP cache with ip neighbor add102
B-17. Entering a proxy ARP entry with ip neighbor add proxy ...103
B-18. Altering an entry in the ARP cache with ip neighbor change ...103
B-19. Removing an entry from the ARP cache with ip neighbor del ..103

xi

B-20. Removing learned entries from the ARP cache with ip neighbor flush.......................................103
B-21. Detecting link layer status with mii-tool ...104
B-22. Specifying Ethernet port speeds with mii-tool --advertise...105
B-23. Forcing Ethernet port speed with mii-tool --force ..105
C-1. Viewing interface information with ifconfig ...107
C-2. Bringing down an interface with ifconfig..108
C-3. Bringing up an interface with ifconfig...108
C-4. Changing MTU with ifconfig ..109
C-5. Setting interface flags with ifconfig...110
C-6. Displaying IP information with ip address...111
C-7. Adding IP addresses to an interface with ip address ..112
C-8. Removing IP addresses from interfaces with ip address ..113
C-9. Removing all IPs on an interface with ip address flush ...114
D-1. Viewing a simple routing table with route..116
D-2. Viewing a complex routing table with route...117
D-3. Viewing the routing cache with route ...118
D-4. Adding a static route to a network route add ...119
D-5. Adding a static route to a host with route add ...120
D-6. Adding a static route to a host on the same media with route add...120
D-7. Setting the default route with route ..121
D-8. An alternate method of setting the default route with route ...121
D-9. Removing a static host route with route del ...122
D-10. Removing the default route with route del ...122
D-11. Viewing the main routing table with ip route show ...124
D-12. Viewing the local routing table with ip route show table local ...124
D-13. Viewing a routing table with ip route show table ..125
D-14. Displaying the routing cache with ip route show cache ..126
D-15. Displaying statistics from the routing cache with ip -s route show cache126
D-16. Adding a static route to a network with route add, cf. Example D-4...127
D-17. Adding a prohibit route with route add ...127
D-18. Using from in a routing command with route add ..127
D-19. Using src in a routing command with route add ..128
D-20. Setting the default route with ip route add default..128
D-21. Creating a NAT route for a single IP with ip route add nat...129
D-22. Creating a NAT route for an entire network with ip route add nat..129
D-23. Removing routes with ip route del 11..130
D-24. Altering existing routes with ip route change ..130
D-25. Testing routing tables with ip route get ..131
D-26. Removing a specific route and emptying a routing table with ip route flush...............................131
D-27. Emptying the routing cache with ip route flush cache ..132
D-28. Displaying the RPDB with ip rule show ..133
D-29. Creating a simple entry in the RPDB with ip rule add 13 ...134
D-30. Creating a complex entry in the RPDB with ip rule add ...135
D-31. Creating a NAT rule with ip rule add nat ..135
D-32. Creating a NAT rule for an entire network with ip rule add nat..135
D-33. Removing a NAT rule for an entire network with ip rule del nat ..136
F-1. Simple use of nc...139
F-2. Specifying timeout with nc ..139

xii

F-3. Specifying source address with nc ...139
F-4. Using nc as a server ...139
F-5. Delaying a stream with nc..140
F-6. Using nc with UDP ..140
F-7. Simple use of socat ..140
F-8. Using socat with proxy connect...140
F-9. Using socat perform SSL...140
F-10. Connecting one end of socat to a file descriptor..140
F-11. Connecting socat to a serial line ..140
F-12. Using a PTY with socat ...140
F-13. Executing a command with socat ..141
F-14. Connecting one socat to another one ...141
F-15. Simple use of tcpclient ..141
F-16. Specifying the local port which tcpclient should request..141
F-17. Specifying the local IP to which tcpclient should bind...141
F-18. IP redirection with xinetd ..141
F-19. Publishing a service with xinetd..141
F-20. Simple use of tcpserver ...142
F-21. Specifying a CDB for tcpserver ..142
F-22. Limiting the number of concurrently accept TCP sessions under tcpserver142
F-23. Specifying a UID for tcpserver’s spawned processes ...142
F-24. Redirecting a TCP port with redir ...142
F-25. Running redir in transparent mode..142
F-26. Running redir from another TCP server..142
F-27. Specifying a source address for redir’s client side ..142
G-1. Using ping to test reachability ..144
G-2. Using ping to specify number of packets to send ...145
G-3. Using ping to specify number of packets to send ...145
G-4. Using ping to stress a network ..146
G-5. Using ping to stress a network with large packets ..146
G-6. Recording a network route with ping..147
G-7. Setting the TTL on a ping packet..148
G-8. Setting ToS for a diagnostic ping ..148
G-9. Specifying a source address for ping ..149
G-10. Simple usage of traceroute...150
G-11. Displaying IP socket status with netstat ...152
G-12. Displaying IP socket status details with netstat..153
G-13. Displaying the main routing table with netstat...154
G-14. Displaying the routing cache with netstat ..154
G-15. Displaying the masquerading table with netstat...155
G-16. Viewing an ARP broadcast request and reply with tcpdump...156
G-17. Viewing a gratuitous ARP packet with tcpdump ...156
G-18. Viewing unicast ARP packets with tcpdump ...156
G-19. tcpdump reporting port unreachable ..156
G-20. tcpdump reporting host unreachable ..156
G-21. tcpdump reporting net unreachable..157
G-22. Monitoring TCP window sizes with tcpdump..157
G-23. Examining TCP flags with tcpdump ..157

xiii

G-24. Examining TCP acknowledgement numbers with tcpdump ..157
G-25. Writing tcpdump data to a file..158
G-26. Reading tcpdump data from a file ..158
G-27. Causing tcpdump to use a line buffer...158
G-28. Understanding fragmentation as reported by tcpdump ..158
G-29. Specifying interface with tcpdump ..158
G-30. Timestamp related options to tcpdump ..158

xiv

Introduction
This guide is as an overview of the IP networking capabilities of linux kernels 2.2 and 2.4. The target
audience is any beginning to advanced network administrator who wants practical examples and
explanation of rumoured features of linux. As the Internet is lousy with documentation on the nooks and
crannies of linux networking support, I have tried to provide links to existing documentation on IP
networking with linux.

The documentation you’ll find here covers kernels 2.2 and 2.4, although a good number of the examples
and concepts may also apply to older kernels. In the event that I cover a feature that is only present or
supported under a particular kernel, I’ll identify which kernel supports that feature.

Target Audience, Assumptions, and Recommendations
I assume a few things about the reader. First, the reader has a basic understanding (at least) of IP
addressing and networking. If this is not the case, or the reader has some trouble following my
networking examples, I have provided a section of links to IP layer tutorials and general introductory
documentation in the appendix. Second, I assume the reader is comfortable with command line tools and
the Linux, Unix, or BSD environments. Finally, I assume the reader has working network cards and a
Linux OS. For assistance with Ethernet cards, the there exists a good Ethernet HOWTO
(http://www.tldp.org/HOWTO/Ethernet-HOWTO.html).

The examples I give are intended as tutorial examples only. The user should understand and accept the
ramifications of using these examples on his/her own machines. I recommend that before running any
example on a production machine, the user test in a controlled environment. I accept no responsibility for
damage, misconfiguration or loss of any kind as a result of referring to this documentation. Proceed with
caution at your own risk.

This guide has been written primarily as a companion reference to IP networking on Ethernets. Although
I do allude to other link layer types occasionally in this book, the focus has been IP as used in Ethernet.
Ethernet is one of the most common networking devices supported under linux, and is practically
ubiquitous.

Conventions
This text was written in DocBook (http://www.docbook.org/) with vim (http://vim.sourceforge.net/). All
formatting has been applied by xsltproc (http://xmlsoft.org/XSLT/) based on DocBook
(http://docbook.sourceforge.net/projects/xsl/) and LDP XSL stylesheets
(http://www.tldp.org/LDP/LDP-Author-Guide/usingldpxsl.html). Typeface formatting and display
conventions are similar to most printed and electronically distributed technical documentation. A brief
summary of these conventions follows below.

The interactive shell prompt will look like

[root@hostname]#

for the root user and

[user@hostname]$

i

Introduction

for non-root users, although most of the operations we will be discussing will require root privileges.

Any commands to be entered by the user will always appear like

{ echo "Hi, I am exiting with a non-zero exit code."; exit 1 }

Output by any program will look something like this:

Hi, I am exiting with a non-zero exit code.

Where possible, an additional convention I have used is the suppression of all hostname lookup. DNS
and other naming based schemes often confuse the novice and expert alike, particularly when the name
resolver is slow or unreachable. Since the focus of this guide is IP layer networking, DNS names will be
used only where absolutely unambiguous.

Bugs and Roadmap
Perhaps this should be called things that are wrong with this document, or things which should be
improved. See the src/ROADMAP for notes on what is likely to be forthcoming in subsequent releases.

The internal document linking, while good, but could be better. Especially lame is the lack of an index.
External links should be used more commonly where appropriate instead of sending users to the links
page.

If you are looking for LARTC topics, you may find some LAR topics here, but you should try the
LARTC page (http://lartc.org/) itself if you have questions that are more TC than LAR. Consult
Appendix I for further references to available documentation.

Technical Note and Summary of Approach
There are many tools available under linux which are also available under other unix-like operating
systems, but there are additional tools and specific tools which are available only to users of linux. This
guide represents an effort to identify some of these tools. The most concrete example of the difference
between linux only tools and generally available unix-like tools is the difference between the traditional
ifconfig and route commands, available under most variants of unix, and the iproute2 command suite,
written specificially for linux.

Because this guide concerns itself with the features, strengths, and peculiarities of IP networking with
linux, the iproute2 command suite assumes a prominent role. The iproute2 tools expose the strength,
flexibility and potential of the linux networking stack.

Many of the tools introduced and concepts introduced are also detailed in other HOWTOs and guides
available at The Linux Documentation Project (http://www.tldp.org/) in addition to many other places on
the Internet and in printed books.

Acknowledgements and Request for Remarks
As with many human endeavours, this work is made possible by the efforts of others. For me, this effort
represents almost four years of learning and network administration. The knowledge collected here is in

ii

Introduction

large measure a repackaging of disparate resources and my own experiences over time. Without the
greater linux community, I would not be able to provide this resource.

I would like to take this opportunity to make a plug for my employer, SecurePipe, Inc.
(http://www.securepipe.com/) which has provided me stable and challenging employment for these
(almost) four years. SecurePipe is a managed security services provider specializing in managed firewall,
VPN, and IDS services to small and medium sized companies. They offer me the opportunity to hone my
networking skills and explore areas of linux networking unknown to me. Thanks also to SecurePipe, Inc.
for hosting this cost-free on their servers.

Over the course of the project, many people have contributed suggestions, modifications, corrections and
additions. I’ll acknowledge them briefly here. For full acknowledgements, see
src/ACKNOWLEDGEMENTS in the DocBook source tree.

• Russ Herrold, 2002-09-22

• Yann Hirou, 2002-09-26

• Julian Anastasov, 2002-10-29

• Bert Hubert, 2002-11-14

• Tony Kapela, 2002-11-30

• George Georgalis, 2003-01-11

• Alex Russell, 2003-02-02

• giovanni, 2003-02-06

• Gilles Douillet, 2003-02-28

Please feel free to point out any irregularities, factual errors, typographical errors, or logical gaps in this
documentation. If you have rants or raves about this documentation, please mail me directly at
<mabrown@securepipe.com>.

Now, let’s begin! Let me welcome you to the pleasure and reliability of IP networking with linux.

iii

I. Concepts

Chapter 1. Basic IP Connectivity
Internet Protocol (IP) networking is now among the most common networking technologies in use today.
The IP stack under linux is mature, robust and reliable. This chapter covers the basics of configuring a
linux machine or multiple linux machines to join an IP network.

This chapter covers a quick overview of the locations of the networking control files on different
distributions of linux. The remainder of the chapter is devoted to outlining the basics of IP networking
with linux.

These basics are written in a more tutorial style than the remainder of the first part of the book. Reading
and understanding IP addressing and routing information is a key skill to master when beginning with
linux. Naturally, the next step is to alter the IP configuration of a machine. This chapter will introduce
these two key skills in a tutorial style. Subsequent chapters will engage specific subtopics of linux
networking in a more thorough and less tutorial manner.

IP Networking Control Files
Different linux distribution vendors put their networking configuration files in different places in the
filesystem. Here is a brief summary of the locations of the IP networking configuration information
under a few common linux distributions along with links to further documentation.

Location of networking configuration files

• RedHat (and Mandrake)

• Interface definitions /etc/sysconfig/network-scripts/ifcfg-*
(http://www.redhat.com/support/resources/howto/sysconfig.html)

• Hostname and default gateway definition /etc/sysconfig/network
(http://www.redhat.com/support/resources/howto/sysconfig.html)

• Definition of static routes /etc/sysconfig/static-routes
(http://www.redhat.com/support/resources/howto/sysconfig.html)

• SuSe (version >= 8.0)

• Interface definitions /etc/sysconfig/network/ifcfg-*
(http://sdb.suse.de/en/sdb/html/mmj_network80.html)

• Static route definition /etc/sysconfig/network/routes
(http://sdb.suse.de/en/sdb/html/mmj_network80.html)

• Interface specific static route definition /etc/sysconfig/network/ifroute-*
(http://sdb.suse.de/en/sdb/html/mmj_network80.html)

• SuSe (version <= 8.0)

• Interface and route definitions /etc/rc.config

1

Chapter 1. Basic IP Connectivity

• Debian

• Interface and route definitions /etc/network/interfaces
(http://documents.made-it.com/Debian_Internet_Server/Debian_Internet_Server-5.html)

• Gentoo

• Interface and route definitions /etc/conf.d/net (http://www.gentoo.org/doc/en/rc-scripts.xml)

• Slackware

• Interface and route definitions /etc/rc.d/rc.inet1
(http://www.slackware.com/config/network.php)

The format of the networking configuration files differs significantly from distribution to distribution, yet
the tools used by these scripts are the same. This documentation will focus on these tools and how they
instruct the kernel to alter interface and route information. Consult the distribution’s documentation for
questions of file format and order of operation.

For the remainder of this document, many examples refer to machines in a hypothetical network. Refer
to the example network description for the network map and addressing scheme.

Reading Routes and IP Information
Assuming an already configured machine named tristan, let’s look at the IP addressing and routing table.
Next we’ll examine how the machine communicates with computers (hosts) on the locally reachable
network. We’ll then send packets through our default gateway to other networks. After learning what a
default route is, we’ll look at a static route.

One of the first things to learn about a machine attached to an IP network is its IP address. We’ll begin by
looking at a machine named tristan on the main desktop network (192.168.99.0/24).

The machine tristan is alive on IP 192.168.99.35 and has been properly configured by the system
administrator. By examining the route and ifconfig output we can learn a good deal about the network to
which tristan is connected 1.

Example 1-1. Sample ifconfig output

[root@tristan]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:27849718 errors:1 dropped:0 overruns:0 frame:0

TX packets:29968044 errors:5 dropped:0 overruns:2 carrier:3

collisions:0 txqueuelen:100

RX bytes:943447653 (899.7 Mb) TX bytes:2599122310 (2478.7 Mb)

Interrupt:9 Base address:0x1000

lo Link encap:Local Loopback

2

Chapter 1. Basic IP Connectivity

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:7028982 errors:0 dropped:0 overruns:0 frame:0

TX packets:7028982 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:1206918001 (1151.0 Mb) TX bytes:1206918001 (1151.0 Mb)

[root@tristan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

For the moment, ignore the loopback interface (lo) and concentrate on the Ethernet interface. Examine
the output of the ifconfig command. We can learn a great deal about the IP network to which we are
connected simply by reading the ifconfig output. For a thorough discussion of ifconfig, see the Section
called ifconfig in Appendix C.

The IP address active on tristan is 192.168.99.35. This means that any IP packets created by tristan will
have a source address of 192.168.99.35. Similarly any packet received by tristan will have the destination
address of 192.168.99.35. When creating an outbound packet tristan will set the destination address to
the server’s IP. This gives the remote host and the networking devices in between these hosts enough
information to carry packets between the two devices.

Because tristan will advertise that it accepts packets with a destination address of 192.168.99.35, any
frames (packets) appearing on the Ethernet bound for 192.168.99.35 will reach tristan. The process of
communicating the ownership of an IP address is called ARP. Read the Section called Overview of
Address Resolution Protocol in Chapter 2 for a complete discussion of this process.

This is fundamental to IP networking. It is fundamental that a host be able to generate and receive
packets on an IP address assigned to it. This IP address is a unique identifier for the machine on the
network to which it is connected.

Common traffic to and from machines today is unicast IP traffic. Unicast traffic is essentially a
conversation between two hosts. Though there may be routers between them, the two hosts are carrying
on a private conversation. Examples of common unicast traffic are protocols such as HTTP (web), SMTP
(sending mail), POP3 (fetching mail), IRC (chat), SSH (secure shell), and LDAP (directory access). To
participate in any of these kinds of traffic, tristan will send and receive packets on 192.168.99.35.

In contrast to unicast traffic, there is another common IP networking technique called broadcasting.
Broadcast traffic is a way of addressing all hosts in a given network range with a single destination IP
address. To continue the analogy of the unicast conversation, a broadcast is more like shouting in a room.
Occasionally, network administrators will refer to broadcast techniques and broadcasting as "chatty
network traffic".

Broadcast techniques are used at the Ethernet layer and the IP layer, so the cautious person talks about
Ethernet broadcasts or IP broadcast. Refer to the Section called Overview of Address Resolution Protocol
in Chapter 2, for more information on a common use of broadcast Ethernet frames.

IP Broadcast techniques can be used to share information with all partners on a network or to discover
characteristics of other members of a network. SMB (Server Message Block) as implemented by
Microsoft products and the samba (http://samba.org/) package makes extensive use of broadcasting

3

Chapter 1. Basic IP Connectivity

techniques for discovery and information sharing. Dynamic Host Configuration Protocol (DHCP
(http://www.isc.org/products/DHCP/)) also makes use of broadcasting techniques to manage IP
addressing.

The IP broadcast address is, usually, correctly derived from the IP address and network mask although it
can be easily be set explicitly to a different address. Because the broadcast address is used for
autodiscovery (e.g, SMB under some protocols, an incorrect broadcast address can inhibit a machine’s
ability to participate in networked communication 2.

The netmask on the interface should match the netmask in the routing table for the locally connected
network. Typically, the route and the IP interface definition are calculated from the same configuration
data so they should match perfectly.

If you are at all confused about how to address a network or how to read either the traditional notation or
the CIDR notation for network addressing, see one of the CIDR/netmask references in the Section called
General IP Networking Resources in Appendix I.

Sending Packets to the Local Network
We can see from the output above that the IP address 192.168.99.35 falls inside the address space
192.168.99.0/24. We also note that the machine tristan will route packets bound for 192.168.99.0/24
directly onto the Ethernet attached to eth0. This line in the routing table identifies a network available on
the Ethernet attached to eth0 ("Iface") by its network address ("Destination") and size ("Genmask").

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

Every host on the 192.168.99.0/24 network should share the network address and netmask specified
above. No two hosts should share the same IP address.

Currently, there are two hosts connected to the example desktop network. Both tristan and masq-gw are
connected to 192.168.99.0/24. Thus, 192.168.99.254 (masq-gw) should be reachable from tristan.
Success of this test provides evidence that tristan is configured properly. N.B., Assume that the network
administrator has properly configured masq-gw. Since the default gateway in any network is an
important host, testing reachability of the default gateway also has a value in determining the proper
operation of the local network.

The ping tool, designed to take advantage of Internet Control Message Protocol (ICMP), can be used to
test reachability of IP addresses. For a command summary and examples of the use of ping, see the
Section called ping in Appendix G.

Example 1-2. Testing reachability of a locally connected host with ping

[root@tristan]# ping -c 1 -n 192.168.99.254
PING 192.168.99.254 (192.168.99.254) from 192.168.99.35 : 56(84) bytes of data.

--- 192.168.99.254 ping statistics ---

1 packets transmitted, 0 packets received, 100% packet loss

PING 192.168.99.254 (192.168.99.254) from 192.168.99.35 : 56(84) bytes of data.

64 bytes from 192.168.99.254: icmp_seq=0 ttl=255 time=238 usec

4

Chapter 1. Basic IP Connectivity

--- 192.168.99.254 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/mdev = 0.238/0.238/0.238/0.000 ms

Sending Packets to Unknown Networks Through the Default
Gateway
In the Section called Sending Packets to the Local Network, we verified that hosts connected to the same
local network can reach each other and, importantly, the default gateway. Now, let’s see what happens to
packets which have a destination address outside the locally connected network.

Assuming that the network administrator allows ping packets from the desktop network into the public
network, ping can be invoked with the record route option to show the path the packet travels from
tristan to wan-gw and back.

Example 1-3. Testing reachability of non-local hosts

[root@tristan]# ping -R -c 1 -n 205.254.211.254
PING 205.254.211.254 (205.254.211.254) from 192.168.99.35 : 56(84) bytes of data.

--- 205.254.211.254 ping statistics ---

1 packets transmitted, 0 packets received, 100% packet loss

PING 205.254.211.254 (205.254.211.254) from 192.168.99.35 : 56(84) bytes of data.

64 bytes from 205.254.211.254: icmp_seq=0 ttl=255 time=238 usec

RR: 192.168.99.35 ➊

205.254.211.179 ➋

205.254.211.254 ➌

205.254.211.254

192.168.99.254 ➍

192.168.99.35 ➎

--- 192.168.99.254 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/mdev = 0.238/0.238/0.238/0.000 ms

➊ As the packet passes through the IP stack on tristan, before hitting the Ethernet, tristan adds its IP to
the list of IPs in the option field in the header.

➋ This is masq-gw’s public IP address.

➌ Our intended destination! (Anybody know why there are two entries in the record route output?)

➍ This is masq-gw’s private IP address.

➎ And finally, tristan will add its IP to the option field in the header of the IP packet just before the
packet reaches the calling ping program.

By testing reachability of the local network 192.168.99.0/24 and an IP address outside our local network,
we have verified the basic elements of IP connectivity.

5

Chapter 1. Basic IP Connectivity

To summarize this section, we have:

• identified the IP address, network address and netmask in use on tristan using the tools ifconfig and
route

• verified that tristan can reach its default gateway

• tested that packets bound for destinations outside our local network reach the intended destination and
return

Static Routes to Networks
Static routes instruct the kernel to route packets for a known destination host or network to a router or
gateway different from the default gateway. In the example network, the desktop machine tristan would
need a static route to reach hosts in the 192.168.98.0/24 network. Note that the branch office network is
reachable over an ISDN line. The ISDN router’s IP in tristan’s network is 192.168.99.1. This means that
there are two gateways in the example desktop network, one connected to a small branch office network,
and the other connected to the Internet.

Without a static route to the branch office network, tristan would use masq-gw as the gateway, which is
not the most efficient path for packets bound for morgan. Let’s examine why a static route would be
better here.

If tristan generates a packet bound for morgan and sends the packet to the default gateway, masq-gw will
forward the packet to isdn-router as well as generate an ICMP redirect message to tristan. This ICMP
redirect message tells tristan to send future packets with a destination address of 192.168.98.82 (morgan)
directly to isdn-router. For a fuller discussion of ICMP redirect, see the Section called ICMP Redirects
and Routing in Chapter 4.

The absence of a static route has caused two extra packets to be generated on the Ethernet for no benefit.
Not only that, but tristan will eventually expire the temporary route entry 3 for 192.168.98.82, which
means that subsequent packets bound for morgan will repeat this process 4.

To solve this problem, add a static route to tristan’s routing table. Below is a modified routing table (see
the Section called Changing IP Addresses and Routes to learn how to change the routing table).

Example 1-4. Sample routing table with a static route

[root@tristan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.98.0 192.168.99.1 255.255.255.0 UG 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

According to this routing table, any packets with a destination address in the 192.168.98.0/24 network
will be routed to the gateway 192.168.99.1 instead of the default gateway. This will prevent unnecessary
ICMP redirect messages.

6

Chapter 1. Basic IP Connectivity

These are the basic tools for inspecting the IP address and the routes on a linux machine. Understanding
the output of these tools will help you understand how machines fit into simple networks, and will be a
base on which you can build an understanding of more complex networks.

Changing IP Addresses and Routes
This section introduces changing the IP address on an interface, changing the default gateway, and
adding and removing a static route. With the knowledge of ifconfig and route output it’s a small step to
learn how to change IP configuration with these same tools.

Changing the IP on a machine
For a practical example, let’s say that the branch office server, morgan, needs to visit the main office for
some hardware maintenance. Since the services on the machine are not in use, it’s a convenient time to
fetch some software updates, after configuring the machine to join the LAN.

Once the machine is booted and connected to the Ethernet, it’s ready for IP reconfiguration. In order to
join an IP network, the following information is required. Refer to the network map and appendix to
gather the required information below.

• An unused IP address (Use 192.168.99.14.)

• netmask (What’s your guess?)

• IP address of the default gateway (What’s your guess?)

• network address 5 (What’s your guess?)

• The IP address of a name resolver. (Use the IP of the default gateway here 6.)

Example 1-5. ifconfig and route output before the change

[root@morgan]# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:53

inet addr:192.168.98.82 Bcast:192.168.98.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Interrupt:9 Base address:0x5000

[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.98.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.98.254 0.0.0.0 UG 0 0 0 eth0

7

Chapter 1. Basic IP Connectivity

The process of readdressing for the new network involves three steps. It is clear in Example 1-5, that
morgan is configured for a different network than the main office desktop network. First, the active
interface must be brought down, then a new address must be configured on the interface and brought up,
and finally a new default route must be added. If the networking configuration is correct and the process
is successful, the machine should be able to connect to local and non-local destinations.

Example 1-6. Bringing down a network interface with ifconfig

[root@morgan]# ifconfig eth0 down

This is a fast way to stop networking on a single-homed machine such as a server or workstation. On
multi-homed hosts, other interfaces on the machine would be unaffected by this command. This method
of bringing down an interface has some serious side effects, which should be understood. Here is a
summary of the side effects of bringing down an interface.

Side effects of bringing down an interface with ifconfig

• all IP addresses on the specified interface are deactivated and removed

• any connections established to or from IPs on the specified interface are broken 7

• all routes to any destinations through the specified interface are removed from the routing tables

• the link layer device is deactivated

The next step, bringing up the interface, requires the new networking configuration information. It’s a
good habit to check the interface after configuration to verify settings.

Example 1-7. Bringing up an Ethernet interface with ifconfig

[root@morgan]# ifconfig eth0 192.168.99.14 netmask 255.255.255.0 up
[root@morgan]# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:53

inet addr:192.168.99.14 Bcast:192.168.99.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Interrupt:9 Base address:0x5000

The second call to ifconfig allows verification of the IP addressing information. The currently configured
IP address on eth0 is 192.168.99.14. Bringing up an interface also has a small set of side effects.

Side effects of bringing up an interface

• the link layer device is activated

• the requested IP address is assigned to the specified interface

• all local, network, and broadcast routes implied by the IP configuration are added to the routing tables

8

Chapter 1. Basic IP Connectivity

Use ping to verify the reachability of other locally connected hosts or skip directly to setting the default
gateway.

Setting the Default Route
It should come as no surprise to a close reader (hint), that the default route was removed at the execution
of ifconfig eth0 down. The crucial final step is configuring the default route.

Example 1-8. Adding a default route with route

[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

[root@morgan]# route add default gw 192.168.99.254
[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

The routing table on morgan should look exactly like the initial routing table on tristan. Compare the
routing tables in Example 1-1 and Example 1-8.

These changes to the routing table on morgan will stay in effect until they are manually changed, the
network is restarted, or the machine reboots. With knowledge of the addressing scheme of a network, and
the use of ifconfig and route it’s simple to readdress a machine on just about any Ethernet you can attach
to. The benefits of familiarity with these commands extend to non-Ethernet IP networks as well, because
these commands operate on the IP layer, independent of the link layer.

Adding and removing a static route
Now that morgan has joined the LAN at the main office and can reach the Internet, a static route to the
branch office would be convenient for accessing resources on that network.

A static route is any route entered into a routing table which specifies at least a destination address and a
gateway or device. Static routes are special instructions regarding the path a packet should take to reach a
destination and are usually used to specify reachability of a destination through a router other than the
default gateway.

As we saw above, in the Section called Static Routes to Networks, a static route provides a specific route
to a known destination. There are several pieces of information we need to know in order to be able to
add a static route.

• the address of the destination (192.168.98.0)

• the netmask of the destination (255.255.255.0)

9

Chapter 1. Basic IP Connectivity

• EITHER the IP address of the router through which the destination (192.168.99.1) is reachable

• OR the name of the link layer device to which the destination is directly connected

Example 1-9. Adding a static route with route

[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

[root@morgan]# route add -net 192.168.98.0 netmask 255.255.255.0 gw 192.168.99.1
[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.98.0 192.168.99.1 255.255.255.0 UG 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

Example 1-9 shows how to add a static route to the 192.168.98.0/24 network. In order to test the
reachability of the remote network, ping any machine on the 192.168.98.0/24 network. Routers are
usually a good choice, since they rarely have packet filters and are usually alive.

Because a more specific route is always chosen over a less specific route, it is even possible to support
host routes. These are routes for destinations which are single IP addresses. This can be accomplished
with a manually added static route as below.

Example 1-10. Removing a static network route and adding a static host route

[root@morgan]# route del -net 192.168.98.0 netmask 255.255.255.0 gw 192.168.99.1
[root@morgan]# route add -net 192.168.98.42 netmask 255.255.255.255 gw 192.168.99.1
[root@morgan]# route add -host 192.168.98.42 gw 192.168.99.1
SIOCADDRT: File exists

[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.98.42 192.168.99.1 255.255.255.255 UGH 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

This should serve as an illustration that there is no difference to the kernel in selecting a route between a
host route and a network route with a host netmask. If this is a surprise or is at all confusing, review the
use of netmasks in IP networking. Some collected links on general IP networking are available in the
Section called General IP Networking Resources in Appendix I.

10

Chapter 1. Basic IP Connectivity

Conclusion
This chapter has introduced the simplest uses of ifconfig and route to view and alter the IP configuration
of a host. To reiterate the minimum requirements to create an IP network between two machines:

Requirements for Two Hosts on the Same Ethernet to Communicate Using IP

• Each host must have a good connection to the Ethernet. Verify a good connection to the Ethernet with
mii-tool, documented in the Section called mii-tool in Appendix B.

• Each host must share IP network space. Practically, this means that each host should have the same
network address, netmask, and broadcast address 8.

• Each host must have a unique IP address.

• Neither host must block the other’s IP packets. (Host based packet filtering may hinder connections!)

This concludes the tour of basic host networking and IP layer configuration as well as some basic tools
available to the linux user. For further documentation on these tools, other tips, tricks, and more
advanced content, keep reading!

Notes
1. For BSD and UNIX users, the idiom netstat -rn may be more familiar than the common route -n on

a linux machine. Both of these commands provide the same basic information although the
formatting is a bit different. For a fuller discussion of these, see either the Section called netstat in
Appendix G or the Section called route in Appendix D. For access to all of the routing features of the
linux kernel, use ip route instead.

2. An incorrect broadcast address often highlights a mismatch of the configured IP address and netmask
on an interface. If in doubt, be sure to use an IP calculator to set the correct netmask and broadcast
addresses.

3. If the machine is a linux machine, then the temporary route entry is stored in the routing cache.
Consult the Section called Routing Cache in Chapter 4 for more information on the routing cache.

4. It is quite reasonable to ignore ICMP redirect messages from unknown hosts on the Internet, but
ICMP redirect messages on a LAN indicate that a host has mismatched netmasks or missing static
routes.

5. The network address can be calculated from the IP address and netmask. Refer to the Section called
ipcalc and other IP addressing calculators in Appendix H. Especially handy is the variable length
subnet mask RFC, RFC 1878 (http://www.isi.edu/in-notes/rfc1878.txt).

6. Many networks are configured with the name resolution services on a publicly connected host. See
the Section called DNS Troubleshooting in Chapter 12.

7. It is possible for a linux box which meets the following three criteria to maintain connections and
provide services without having the service IP configured on an interface. It must be functioning as a
router, be configured to support non-local binding and be in the route path of the client machine. This
is an uncommon need, frequently accomplished by the use of transparent proxying software.

8. Technically, the two hosts simply need to have routes to each other, but we are discussing the
simplest case here, so we’ll leave this for a discussion of shared media.

11

Chapter 2. Ethernet
The most common link layer network in use today is Ethernet. Although there are several common
speeds of Ethernet devices, they function identically with regard to higher layer protocols. As this
documentation focusses on higher layer protocols (IP), some fine distinctions about different types of
Ethernet will be overlooked in favor of depicting the uniform manner in which IP networks overlay
Ethernets.

Address Resolution Protocol provides the necessary mapping between link layer addresses and IP
addresses for machines connected to Ethernets. Linux offers control of ARP requests and replies via
several not-well-known /proc interfaces; net/ipv4/conf/$DEV/proxy_arp,
net/ipv4/conf/$DEV/medium_id, and net/ipv4/conf/$DEV/hidden. For even finer control of
ARP requests than is available in stock kernels, there are kernel and iproute2 patches.

This chapter will introduce the ARP conversation, discuss the ARP cache, a volatile mapping of the
reachable IPs and MAC addresses on a segment, examine the ARP flux problem, and explore several
ARP filtering and suppression techniques. A section on VLAN technology and channel bonding will
round out the chapter on Ethernet.

Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) hovers in the shadows of most networks. Because of its simplicity,
by comparison to higher layer protocols, ARP rarely intrudes upon the network administrator’s routine.
All modern IP-capable operating systems provide support for ARP. The uncommon alternative to ARP is
static link-layer-to-IP mappings.

ARP defines the exchanges between network interfaces connected to an Ethernet media segment in order
to map an IP address to a link layer address on demand. Link layer addresses are hardware addresses
(although they are not immutable) on Ethernet cards and IP addresses are logical addresses assigned to
machines attached to the Ethernet. Subsequently in this chapter, link layer addresses may be known by
many different names: Ethernet addresses, Media Access Control (MAC) addresses, and even hardware
addresses. Disputably, the correct term from the kernel’s perspective is "link layer address" because this
address can be changed (on many Ethernet cards) via command line tools. Nevertheless, these terms are
not realistically distinct and can be used interchangeably.

Overview of Address Resolution Protocol
Address Resolution Protocol (ARP) exists solely to glue together the IP and Ethernet networking layers.
Since networking hardware such as switches, hubs, and bridges operate on Ethernet frames, they are
unaware of the higher layer data carried by these frames 1. Similarly, IP layer devices, operating on IP
packets need to be able to transmit their IP data on Ethernets. ARP defines the conversation by which IP
capable hosts can exchange mappings of their Ethernet and IP addressing.

ARP is used to locate the Ethernet address associated with a desired IP address. When a machine has a
packet bound for another IP on a locally connected Ethernet network, it will send a broadcast Ethernet
frame containing an ARP request onto the Ethernet. All machines with the same Ethernet broadcast
address will receive this packet 2. If a machine receives the ARP request and it hosts the IP requested, it

12

Chapter 2. Ethernet

will respond with the link layer address on which it will receive packets for that IP address. N.B., the
arp_filter sysctl will alter this behaviour somewhat.

Once the requestor receives the response packet, it associates the MAC address and the IP address. This
information is stored in the arp cache. The arp cache can be manipulated with the ip neighbor and arp
commands. To learn how and when to manipulate the arp cache, see the Section called arp in Appendix
B.

In Example 1-2, we used ping to test reachability of masq-gw. Using a packet sniffer to capture the
sequence of packets on the Ethernet as a result of tristan’s attempt to ping, provides an example of ARP
in flagrante delicto. Consult the example network map for a visual representation of the network layout
in which this traffic occurs.

This is an archetypal conversation between two computers exchanging relevant hardware addressing in
order that they can pass IP packets, and is comprised of two Ethernet frames.

Example 2-1. ARP conversation captured with tcpdump 3

[root@masq-gw]# tcpdump -ennqti eth0 \(arp or icmp \)
tcpdump: listening on eth0

0:80:c8:f8:4a:51 ff:ff:ff:ff:ff:ff 42: arp who-has 192.168.99.254 tell 192.168.99.35 ➊

0:80:c8:f8:5c:73 0:80:c8:f8:4a:51 60: arp reply 192.168.99.254 is-at 0:80:c8:f8:5c:73 ➋

0:80:c8:f8:4a:51 0:80:c8:f8:5c:73 98: 192.168.99.35 > 192.168.99.254: icmp: echo request (DF) ➌

0:80:c8:f8:5c:73 0:80:c8:f8:4a:51 98: 192.168.99.254 > 192.168.99.35: icmp: echo reply ➍

➊

This broadcast Ethernet frame, identifiable by the destination Ethernet address with all bits set
(ff:ff:ff:ff:ff:ff) contains an ARP request from tristan for IP address 192.168.99.254. The request
includes the source link layer address and the IP address of the requestor, which provides enough
information for the owner of the IP address to reply with its link layer address.

➋

The ARP reply from masq-gw includes its link layer address and declaration of ownership of the
requested IP address. Note that the ARP reply is a unicast response to a broadcast request. The
payload of the ARP reply contains the link layer address mapping.

The machine which initiated the ARP request (tristan) now has enough information to encapsulate
an IP packet in an Ethernet frame and forward it to the link layer address of the recipient
(00:80:c8:f8:5c:73).

➌➍ The final two packets in Example 2-1 display the link layer header and the encapsulated ICMP
packets exchanged between these two hosts. Examining the ARP cache on each of these hosts would
reveal entries on each host for the other host’s link layer address.

This example is the commonest example of ARP traffic on an Ethernet. In summary, an ARP request is
transmitted in a broadcast Ethernet frame. The ARP reply is a unicast response, containing the desired
information, sent to the requestor’s link layer address.

An even rarer usage of ARP is gratuitous ARP, where a machine announces its ownership of an IP
address on a media segment. The arping utility can generate these gratuitous ARP frames. Linux kernels
will respect gratuitous ARP frames 4.

13

Chapter 2. Ethernet

Example 2-2. Gratuitous ARP reply frames

[root@tristan]# arping -q -c 3 -A -I eth0 192.168.99.35
[root@masq-gw]# tcpdump -c 3 -nni eth2 arp
tcpdump: listening on eth2

06:02:50.626330 arp reply 192.168.99.35 is-at 0:80:c8:f8:4a:51 (0:80:c8:f8:4a:51)

06:02:51.622727 arp reply 192.168.99.35 is-at 0:80:c8:f8:4a:51 (0:80:c8:f8:4a:51)

06:02:52.620954 arp reply 192.168.99.35 is-at 0:80:c8:f8:4a:51 (0:80:c8:f8:4a:51)

The frames generated in Example 2-2 are ARP replies to a question never asked. This sort of ARP is
common in failover solutions and also for nefarious sorts of purposes, such as ettercap
(http://ettercap.sourceforge.net/).

Unsolicited ARP request frames, on the other hand, are broadcast ARP requests initiated by a host
owning an IP address.

Example 2-3. Unsolicited ARP request frames

[root@tristan]# arping -q -c 3 -U -I eth0 192.168.99.35
[root@masq-gw]# tcpdump -c 3 -nni eth2 arp
tcpdump: listening on eth2

06:28:23.172068 arp who-has 192.168.99.35 (ff:ff:ff:ff:ff:ff) tell 192.168.99.35

06:28:24.167290 arp who-has 192.168.99.35 (ff:ff:ff:ff:ff:ff) tell 192.168.99.35

06:28:25.167250 arp who-has 192.168.99.35 (ff:ff:ff:ff:ff:ff) tell 192.168.99.35

[root@masq-gw]# ip neigh show

These two uses of arping can help diagnose Ethernet and ARP problems--particularly hosts replying for
addresses which do not belong to them.

To avoid IP address collisions on dynamic networks (where hosts are turning on and off, connecting and
disconnecting and otherwise changing IP addresses) duplicate address detection becomes important.
Fortunately, arping provides this functionality as well. A startup script could include the arping utility in
duplicate address detection mode to select between IP addresses or methods of acquiring an IP address.

Example 2-4. Duplicate Address Detection with ARP

[root@tristan]# arping -D -I eth0 192.168.99.147; echo $?
ARPING 192.168.99.47 from 0.0.0.0 eth0

Unicast reply from 192.168.99.47 [00:80:C8:E8:1E:FC] for 192.168.99.47 [00:80:C8:E8:1E:FC] 0.702ms

Sent 1 probes (1 broadcast(s))

Received 1 response(s)

1

[root@tristan]# tcpdump -eqtnni eth2 arp
tcpdump: listening on eth2

0:80:c8:f8:4a:51 ff:ff:ff:ff:ff:ff 60: arp who-has 192.168.99.147 (ff:ff:ff:ff:ff:ff) tell 0.0.0.0

0:80:c8:e8:1e:fc 0:80:c8:f8:4a:51 42: arp reply 192.168.99.147 is-at 0:80:c8:e8:1e:fc (0:80:c8:e8:1e:fc)

[root@masq-gw]# ip neigh show

Address Resolution Protocol, which provides a method to connect physical network addresses with
logical network addresses is a key element to the deployment of IP on Ethernet networks.

14

Chapter 2. Ethernet

The ARP cache
In simplest terms, an ARP cache is a stored mapping of IP addresses with link layer addresses. An ARP
cache obviates the need for an ARP request/reply conversation for each IP packet exchanged. Naturally,
this efficiency comes with a price. Each host maintains its own ARP cache, which can become outdated
when a host is replaced, or an IP address moves from one host to another. The ARP cache is also known
as the neighbor table.

To display the ARP cache, the venerable and cross-platform arp admirably dispatches its duty. As with
many of the iproute2 tools, more information is available via ip neighbor than with arp. Example 2-5
below illustrates the differences in the output between the output of these two different tools.

Example 2-5. ARP cache listings with arp and ip neighbor

[root@tristan]# arp -na
? (192.168.99.7) at 00:80:C8:E8:1E:FC [ether] on eth0

? (192.168.99.254) at 00:80:C8:F8:5C:73 [ether] on eth0

[root@tristan]# ip neighbor show
192.168.99.7 dev eth0 lladdr 00:80:c8:e8:1e:fc nud reachable

192.168.99.254 dev eth0 lladdr 00:80:c8:f8:5c:73 nud reachable

A major difference between the information reported by ip neighbor and arp is the state of the proxy
ARP table. The only way to list permanently advertised entries in the neighbor table (proxy ARP entries)
is with the arp.

Entries in the ARP cache are periodically and automatically verified unless continually used. Along with
net/ipv4/neigh/$DEV/gc_stale_time, there are a number of other parameters in
net/ipv4/neigh/$DEV which control the expiration of entries in the ARP cache.

When a host is down or disconnected from the Ethernet, there is a period of time during which other
hosts may have an ARP cache entry for the disconnected host. Any other machine may display a
neighbor table with the link layer address of the recently disconnected host. Because there is a recently
known-good link layer address on which the IP was reachable, the entry will abide. At gc_stale_time
the state of the entry will change, reflecting the need to verify the reachability of the link layer address.
When the disconnected host fails to respond ARP requests, the neighbor table entry will be marked as
incomplete

Here are a the possible states for entries in the neighbor table.

Table 2-1. Active ARP cache entry states

ARP cache entry state meaning action if used

permanent never expires; never verified reset use counter

noarp normal expiration; never verified reset use counter

reachable normal expiration reset use counter

stale still usable; needs verification reset use counter; change state to
delay

delay schedule ARP request; needs
verification

reset use counter

15

Chapter 2. Ethernet

ARP cache entry state meaning action if used

probe sending ARP request reset use counter

incomplete first ARP request sent send ARP request

failed no response received send ARP request

To resume, a host (192.168.99.7) in tristan’s ARP cache on the example network has just been
disconnected. There are a series of events which will occur as tristan’s ARP cache entry for 192.168.99.7
expires and gets scheduled for verification. Imagine that the following commands are run to capture each
of these states immediately before state change.

Example 2-6. ARP cache timeout

[root@tristan]# ip neighbor show 192.168.99.7
192.168.99.7 dev eth0 lladdr 00:80:c8:e8:1e:fc nud reachable ➊

[root@tristan]# ip neighbor show 192.168.99.7
192.168.99.7 dev eth0 lladdr 00:80:c8:e8:1e:fc nud stale ➋

[root@tristan]# ip neighbor show 192.168.99.7
192.168.99.7 dev eth0 lladdr 00:80:c8:e8:1e:fc nud delay ➌

[root@tristan]# ip neighbor show 192.168.99.7
192.168.99.7 dev eth0 lladdr 00:80:c8:e8:1e:fc nud probe ➍

[root@tristan]# ip neighbor show 192.168.99.7
192.168.99.7 dev eth0 nud incomplete ➎

➊ Before the entry has expired for 192.168.99.7, but after the host has been disconnected from the
network. During this time, tristan will continue to send out Ethernet frames with the destination
frame address set to the link layer address according to this entry.

➋ It has been gc_stale_time seconds since the entry has been verified, so the state has changed to
stale.

➌ This entry in the neighbor table has been requested. Because the entry was in a stale state, the link
layer address was used, but now the kernel needs to verify the accuracy of the address. The kernel
will soon send an ARP request for the destination IP address.

➍ The kernel is actively performing address resolution for the entry. It will send a total of
ucast_solicit frames to the last known link layer address to attempt to verify reachability of the
address. Failing this, it will send mcast_solicit broadcast frames before altering the ARP cache
state and returning an error to any higher layer services.

➎ After all attempts to reach the destination address have failed, the entry will appear in the neighbor
table in this state.

The remaining neighbor table flags are visible when initial ARP requests are made. If no ARP cache
entry exists for a requested destination IP, the kernel will generate mcast_solicit ARP requests until
receiving an answer. During this discovery period, the ARP cache entry will be listed in an incomplete
state. If the lookup does not succeed after the specified number of ARP requests, the ARP cache entry
will be listed in a failed state. If the lookup does succeed, the kernel enters the response into the ARP
cache and resets the confirmation and update timers.

16

Chapter 2. Ethernet

After receipt of a corresponding ARP reply, the kernel enters the response into the ARP cache and resets
the confirmation and update timers.

For machines not using a static mapping for link layer and IP addresses, ARP provides on demand
mappings. The remainder of this section will cover the methods available under linux to control the
address resolution protocol.

ARP Suppression
Complete ARP suppression is not difficult at all. ARP suppression can be accomplished under linux on a
per-interface basis by setting the noarp flag on any Ethernet interface. Disabling ARP will require static
neighbor table mappings for all hosts wishing to exchange packets across the Ethernet.

To suppress ARP on an interface simply use ip link set dev $DEV arp off as in Example B-7 or ifconfig
$DEV -arp as in Example C-5. Complete ARP suppression will prevent the host from sending any ARP
requests or responding with any ARP replies.

The ARP Flux Problem
When a linux box is connected to a network segment with multiple network cards, a potential problem
with the link layer address to IP address mapping can occur. The machine may respond to ARP requests
from both Ethernet interfaces. On the machine creating the ARP request, these multiple answers can
cause confusion, or worse yet, non-deterministic population of the ARP cache. Known as ARP flux 5,
this can lead to the possibly puzzling effect that an IP migrates non-deterministically through multiple
link layer addresses. It’s important to understand that ARP flux typically only affects hosts which have
multiple physical connections to the same medium or broadcast domain.

This is a simple illustration of the problem in a network where a server has two Ethernet adapters
connected to the same media segment. They need not have IP addresses in the same IP network for the
ARP reply to be generated by each interface. Note the first two replies received in response to the ARP
broadcast request. These replies arrive from conflicting link layer addresses in response to this request.
Also notice the greater time required for the sending and receiving hosts to process the broadcast ARP
request frames than the unicast frames which follow (probes two and three).

Example 2-7. ARP flux

[root@real-client]# arping -I eth0 -c 3 10.10.20.67
ARPING 10.10.20.67 from 10.10.20.33 eth0

Unicast reply from 10.10.20.67 [00:80:C8:7E:71:D4] 11.298ms

Unicast reply from 10.10.20.67 [00:80:C8:E8:1E:FC] 12.077ms

Unicast reply from 10.10.20.67 [00:80:C8:E8:1E:FC] 1.542ms

Unicast reply from 10.10.20.67 [00:80:C8:E8:1E:FC] 1.547ms

Sent 3 probes (1 broadcast(s))

Received 4 response(s)

There are four solutions to this problem. The common solution for kernel 2.4 harnesses the arp_filter
sysctl, while the common solution for kernel 2.2 takes advantage of the hidden sysctl. These two

17

Chapter 2. Ethernet

solutions alter the behaviour of ARP on a per interface basis and only if the functionality has been
enabled.

Alternate solutions which provide much greater control of ARP (possibly documented here at a later
date) include Julian Anastasov’s ip arp (http://www.ssi.bg/~ja/#iparp) tool and his noarp route flag
(http://www.ssi.bg/~ja/#noarp). While these tools were conceived in the course of the Linux Virtual
Server (http://www.linuxvirtualserver.org/) project, they have practical application outside this realm.

ARP flux prevention with arp_filter

One method for preventing ARP flux involves the use of net/ipv4/conf/$DEV/arp_filter. In
short, the use of arp_filter causes the recipient (in the case below, real-server) to perform a route
lookup to determine the interface through which to send the reply, instead of the default behaviour
(shown above), replying from all Ethernet interfaces which receive the request.

The arp_filter solution can have unintended effects if the only route to the destination is through one
of the network cards. In Example 2-8, real-client will demonstrate this. This instructive example should
highlight the shortcomings of the arp_filter solution in very complex networks where finer-grained
control is required.

In general, the arp_filter solution sufficiently solves the ARP flux problem. First, hosts do not
generate ARP requests for networks to which they do not have a direct route (see the Section called
Routing to Locally Connected Networks in Chapter 4) and second, when such a route exists, the host
normally chooses a source address in the same network as the destination. So, the arp_filter solution
is a good general solution, but does not adequately address the occasional need for more control over
ARP requests and replies.

Example 2-8. Correction of ARP flux with conf/$DEV/arp_filter

[root@real-server]# echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
[root@real-server]# echo 1 > /proc/sys/net/ipv4/conf/eth0/arp_filter
[root@real-server]# echo 1 > /proc/sys/net/ipv4/conf/eth1/arp_filter
[root@real-server]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:e8:1e:fc brd ff:ff:ff:ff:ff:ff

inet 10.10.20.67/24 scope global eth0

[root@real-server]# ip address show dev eth1
3: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:7e:71:d4 brd ff:ff:ff:ff:ff:ff

inet 192.168.100.1/24 brd 192.168.100.255 scope global eth1 ➊

[root@real-client]# arping -I eth0 -c 3 10.10.20.67
ARPING 10.10.20.67 from 10.10.20.33 eth0

Unicast reply from 10.10.20.67 [00:80:C8:E8:1E:FC] 0.882ms

Unicast reply from 10.10.20.67 [00:80:C8:E8:1E:FC] 1.221ms

Unicast reply from 10.10.20.67 [00:80:C8:E8:1E:FC] 1.487ms ➋

Sent 3 probes (1 broadcast(s))

Received 3 response(s)

[root@real-client]# arping -I eth0 -c 3 192.168.100.1
ARPING 192.168.100.1 from 10.10.20.33 eth0

Unicast reply from 192.168.100.1 [00:80:C8:E8:1E:FC] 0.877ms

Unicast reply from 192.168.100.1 [00:80:C8:E8:1E:FC] 1.517ms

Unicast reply from 192.168.100.1 [00:80:C8:E8:1E:FC] 1.661ms ➌

18

Chapter 2. Ethernet

Sent 3 probes (1 broadcast(s))

Received 3 response(s)

[root@real-client]# ip neighbor del 192.168.100.1 dev eth0 ➍

[root@real-client]# ip address add 192.168.100.2/24 brd + dev eth0 ➎

[root@real-client]# arping -I eth0 -c 3 192.168.100.1
ARPING 192.168.100.1 from 192.168.100.2 eth0

Unicast reply from 192.168.100.1 [00:80:C8:7E:71:D4] 0.804ms

Unicast reply from 192.168.100.1 [00:80:C8:7E:71:D4] 1.381ms

Unicast reply from 192.168.100.1 [00:80:C8:7E:71:D4] 2.487ms ➏

Sent 3 probes (1 broadcast(s))

Received 3 response(s)

➊ Set the sysctl variables to enable the arp_filter functionality. After this, you might expect that
ARP replies for 10.10.20.67 would only advertise the link layer address on eth0 (00:80:c8:e8:1e:fc).

➋ Here is the expected behaviour. Only one reply comes in for the IP 10.10.20.67 after the
arp_filter sysctl has been enabled. The reply originates from the interface on real-server which
actually hosts the IP address. Note that the source address on the ARP queries is 10.10.20.33, and
that the ARP query causes real-server to perform a route lookup on 10.10.20.33 to choose an
interface from which to send the reply.

➌ Here, real-client requests the link layer address of the host 192.168.100.1, but the source IP on the
request packet (chosen according to the rules for source address selection) is 10.10.20.33. When
real-server looks up a route to this destination, it chooses its eth0, and replies with the link layer
address of its eth0. Conventional networking needs should not run afoul of this oddity of the
arp_filter ARP flux prevention technique.

➍ Remove the entry in the neighbor table before testing again.

➎ By adding an IP address in the same network as the intended destination (which would be rather
common where multiple IP networks share the same medium or broadcast domain), the kernel can
now select a different source address for the ARP request packets.

➏ Note the source address of the ARP queries is now 192.168.100.2. When real-server performs a
route lookup for the 192.168.100.0/24 destination, the chosen path is through eth1. The ARP reply
packets now have the correct link layer address.

In general, the arp_filter solution should suffice, but this knowledge can be key in determining
whether or not an alternate solution, such as an ARP filtering solution are necessary.

ARP flux prevention with hidden

The ARP flux problem can also be combatted with a kernel patch (http://www.ssi.bg/~ja/#hidden) by
Julian Anastasov, which was incorporated into the 2.2.14+ kernel series, but never into the 2.4+ kernel
series. Therefore, the functionality may not be available in all kernels.

The sysctl net/ipv4/conf/$DEV/hidden toggles the generation of ARP replies for requested IPs. It
marks an interface and all of its IP addresses invisible to other interfaces for the purpose of ARP
requests. When an ARP request arrives on any interface, the kernel tests to see if the IP address is locally
hosted anywhere on the machine. If the IP is found on any interface, the kernel will generate a reply.

19

Chapter 2. Ethernet

Since this is not always desirable, the hidden sysctl can be employed. This prevents the kernel from
finding the IP address when testing to see what IP addresses are locally hosted. The kernel can always
find IPs hosted on the interface on which the packet arrived, but it cannot find addresses which are
hidden.

As shown in Example 2-9, not only can ARP flux be corrected, but sensitive information about the IP
addresses available on a linux box can be safeguarded 6. This makes the hidden sysctl useful for
preventing unwanted IP disclosure via ARP on multi-homed hosts, in addition to preventing ARP flux on
hosts connected to the same network medium.

Example 2-9. Correction of ARP flux with net/$DEV/hidden

[root@real-client]# arping -I eth0 -c 1 172.19.22.254
ARPING 172.19.22.254 from 172.19.22.2 eth0

Unicast reply from 172.19.22.254 [00:60:F5:08:8A:2D] 0.704ms

Unicast reply from 172.19.22.254 [00:60:F5:08:8A:2E] 0.844ms

Unicast reply from 172.19.22.254 [00:60:F5:08:8A:2F] 0.918ms

Unicast reply from 172.19.22.254 [00:60:F5:08:8A:2C] 0.974ms

Sent 1 probes (1 broadcast(s))

Received 4 response(s)

[root@real-server]# for i in all eth2 eth3 eth4 eth5 ; do
> echo 1 > /proc/sys/net/ipv4/conf/$i/hidden
> done
[root@real-client]# arping -I eth0 -c 2 172.19.22.254
ARPING 172.19.22.254 from 172.19.22.2 eth0

Unicast reply from 172.19.22.254 [00:60:F5:08:8A:2D] 0.710ms

Unicast reply from 172.19.22.254 [00:60:F5:08:8A:2D] 0.624ms

Sent 2 probes (1 broadcast(s))

Received 2 response(s)

These are two examples of methods to prevent ARP flux. Other alternatives for correcting this problem
are documented in the Section called ARP filtering, where much more sophisticated tools are available
for manipulation and control over the ARP functions of linux.

Proxy ARP
FIXME; manual proxy ARP (see also the Section called Breaking a network in two with proxy ARP in
Chapter 9), kernel proxy ARP, and the newly supported
/proc/sys/net/ipv4/conf/$DEV/medium_id.

For a brief description of the use of medium_id, see Julian’s remarks
(http://www.ssi.bg/~ja/#medium_id).

FIXME; Kernel proxy ARP with /proc/sys/net/ipv4/conf/$DEV/proxy_arp.

20

Chapter 2. Ethernet

ARP filtering
This section should be part of the "ghetto" which will include documentation on ip arp. There’s nothing
more to add here at the moment (low priority).

ip arp help
Usage: ip arp [list | flush] [RULE]

ip arp [append | prepend | add | del | change | replace | test] RULE

RULE := [table TABLE_NAME] [pref NUMBER] [from PREFIX] [to PREFIX]

[iif STRING] [oif STRING] [llfrom PREFIX] [llto PREFIX]

[broadcasts] [unicasts] [ACTION] [ALTER]

TABLE_NAME := [input | forward | output]

ACTION := [deny | allow]

ALTER := [src IP] [llsrc LLADDR] [lldst LLADDR]

The ip arp (http://www.ssi.bg/~ja/#iparp) tool. Patches and code for the noarp route flag
(http://www.ssi.bg/~ja/#noarp).

FIXME; add a few paragraphs on ip arp and the noarp flag.

Connecting to an Ethernet 802.1q VLAN
Virtual LANs are a way to take a single switch and subdivide it into logical media segments. A single
switch port in a VLAN-capable switch can carry packets from multiple virtual LANs and linux can
understand the format of these Ethernet frames. For more on this, see the linux 802.1q VLAN
implementation site (http://www.candelatech.com/~greear/vlan.html).

Kernels in the late 2.4 series have support for VLAN incorporated into the stock release. The vconfig
tool, however needs to be compiled against the kernel source in order to provide userland configurability
of the kernel support for VLANs.

There are a few items of note which may prevent quick adoption of VLAN support under linux. Ben
McKeegan wrote a good summary (http://www.wanfear.com/pipermail/vlan/2002q4/002882.html) of the
MTU/MRU issues involved with VLANs and 10/100 Ethernet. Gigabit Ethernet drivers are not
hamstrung with this problem. Consider using gigabit Ethernet cards from the outset to avoid these
potential problems.

Example 2-10. Bringing up a VLAN interface

[root@real-router]# vconfig add eth0 7
[root@real-router]# ip addr add dev eth0.7 192.168.30.254/24 brd +
[root@real-router]# ip link set dev eth0.7 up

Each interface defined using the vconfig utility takes its name from the base device to which it has been
bound, and appends the VLAN tag ID, as shown in Example 2-10.

21

Chapter 2. Ethernet

This documentation is sparse. Visit the main site (http://www.candelatech.com/~greear/vlan.html) and
the VLAN mailing list archives (http://www.wanfear.com/pipermail/vlan/).

Link Aggregation and High Availability with Bonding
Networking vendors have long offered a functionality for aggregating bandwidth across multiple
physical links to a switch. This allows a machine (frequently a server) to treat multiple physical
connections to switch units as a single logical link. The standard moniker for this technology is IEEE
802.3ad, although it is known by the common names of trunking, port trunking and link aggregation. The
conventional use of bonding under linux is an implementation of this link aggregation.

A separate use of the same driver allows the kernel to present a single logical interface for two physical
links to two separate switches. Only one link is used at any given time. By using media independent
interface signal failure to detect when a switch or link becomes unusable, the kernel can, transparently to
userspace and application layer services, fail to the backup physical connection. Though not common,
the failure of switches, network interfaces, and cables can cause outages. As a component of high
availability planning, these bonding techniques can help reduce the number of single points of failure.

For more information on bonding, see the Documentation/networking/bonding.txt from the
linux source code tree.

Link Aggregation
Bonding for link aggregation must be supported by both endpoints. Two linux machines connected via
crossover cables can take advantage of link aggregation. A single machine connected with two physical
cables to a switch which supports port trunking can use link aggregation to the switch. Any conventional
switch will become ineffably confused by a hardware address appearing on multiple ports
simultaneously.

Example 2-11. Link aggregation bonding

[root@real-server root]# modprobe bonding
[root@real-server root]# ip addr add 192.168.100.33/24 brd + dev bond0
[root@real-server root]# ip link set dev bond0 up
[root@real-server root]# ifenslave bond0 eth2 eth3
master has no hw address assigned; getting one from slave!

The interface eth2 is up, shutting it down it to enslave it.

The interface eth3 is up, shutting it down it to enslave it.

[root@real-server root]# ifenslave bond0 eth2 eth3
[root@real-server root]# cat /proc/net/bond0/info
Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: eth2

MII Status: up

22

Chapter 2. Ethernet

Link Failure Count: 0

Slave Interface: eth3

MII Status: up

Link Failure Count: 0

FIXME; Need an experiment here....maybe a tcpdump to show how the management frames appear on
the wire.

This Beowulf software page (http://www.beowulf.org/software/bonding.html) describes in a bit more
detail the rationale and a practical application of linux channel bonding (for link aggregation).

High Availability
Bonding support under linux is part of a high availability solution. For an entry point into the complexity
of high availability in conjunction with linux, see the linux-ha.org (http://linux-ha.org/) site. To guard
against layer two (switch) and layer one (cable) failure, a machine can be configured with multiple
physical connections to separate switch devices while presenting a single logical interface to userspace.

The name of the interface can be specified by the user. It is commonly bond0 or something similar. As a
logical interface, it can be used in routing tables and by tcpdump.

The bond interface, when created, has no link layer address. In the example below, an address is
manually added to the interface. See Example 2-11 for an example of the bonding driver reporting
setting the link layer address when the first device is enslaved to the bond (doesn’t that sound cruel!).

Example 2-12. High availability bonding

[root@real-server root]# modprobe bonding mode=1 miimon=100 downdelay=200 updelay=200
[root@real-server root]# ip link set dev bond0 addr 00:80:c8:e7:ab:5c
[root@real-server root]# ip addr add 192.168.100.33/24 brd + dev bond0
[root@real-server root]# ip link set dev bond0 up
[root@real-server root]# ifenslave bond0 eth2 eth3
The interface eth2 is up, shutting it down it to enslave it.

The interface eth3 is up, shutting it down it to enslave it.

[root@real-server root]# ip link show eth2 ; ip link show eth3 ; ip link show bond0
4: eth2: <BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc pfifo_fast master bond0 qlen 100

link/ether 00:80:c8:e7:ab:5c brd ff:ff:ff:ff:ff:ff

5: eth3: <BROADCAST,MULTICAST,NOARP,SLAVE,DEBUG,AUTOMEDIA,PORTSEL,NOTRAILERS,UP> mtu 1500 qdisc pfifo_fast mas-

ter bond0 qlen 100

link/ether 00:80:c8:e7:ab:5c brd ff:ff:ff:ff:ff:ff

58: bond0: <BROADCAST,MULTICAST,MASTER,UP> mtu 1500 qdisc noqueue

link/ether 00:80:c8:e7:ab:5c brd ff:ff:ff:ff:ff:ff

Immediately noticeable, there is a new flag in the ip link show output. The MASTER and SLAVE flags
clearly report the nature of the relationship between the interfaces. Also, the Ethernet interfaces indicate
the master interface via the keywords master bond0.

Note also, that all three of the interfaces share the same link layer address, 00:80:c8:e7:ab:5c.

23

Chapter 2. Ethernet

FIXME; What doe DEBUG,AUTOMEDIA,PORTSEL,NOTRAILERS mean?

Notes
1. Some networking equipment vendors have built devices which are sold as high performance switches

and are capable of performing operations on higher layer contents of Ethernet frames. Typically,
however, a switching device is not capable of operating on IP packets.

2. The kernel uses the Ethernet broadcast address configured on the link layer device. This is rarely
anything but ff:ff:ff:ff:ff:ff. In the extraordinary event that this is not the Ethernet broadcast address
in your network, see the Section called Changing hardware or Ethernet broadcast address with ip
link set in Appendix B.

3. tcpdump is one of a number of utilities for watching packets visible to an interface. For further
introduction to tcdpump, see the Section called tcpdump in Appendix G.

4. I have repeatedly tested using arping in gratuitous ARP mode, and have found that linux kernels
appear to respect gratuitous ARP. This is a surprise. Does anybody have ideas about this? Must
research!

5. I have seen it called names other than ARP flux--anybody out there heard of this called anything
besides ARP flux?

6. Consider a masquerading firewall which answers ARP requests on a public segment for IPs hosted
on an internal interface. This amounts to inadvertent exposure of internal addressing, and can be used
by an attacker as part of a data-gathering or reconaissance operation on a network.

24

Chapter 3. Bridging
Bridging, once the realm of hardware devices, can also be performed by a linux machine. Along with
bridging comes the capability of filtering and transforming frames (or even higher layer protocols) via
hooks at the Ethernet layer with the ebtables and iptables commands.

Linux can function as a bridge, the equivalent of an extremely power-thirsty switch. For now, the best
place to go is the main linux bridging site (http://bridge.sourceforge.net/).

Often ebtables and bridging are used together.

Concepts of Bridging

Bridging and Spanning Tree Protocol

Bridging and Packet Filtering

There is a Bridge and Netfilter HOWTO
(http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html) which illustrates the use of a
bridge as a firewall.

Traffic Control with a Bridge
Yes, Virginia, it can be done.

ebtables
In order to take advantage of ebtables the machine needs to be running as a bridge. (Accurate, nicht
wahr?)

If you believe in really scary stuff, you can run the bridging code with netfilter, so you can manipulate IP
packets transparently on your bridge. For more on this, see the documentation of bridging and firewalling
(http://bridge.sourceforge.net/docs.html). The firewall and bridge architecture is part of the development
branch of the kernel 2.5 series.

25

Chapter 4. IP Routing
Routing is fundamental to the design of the Internet Protocol. IP routing has been cleverly designed to
minimize the complexity for leaf nodes and networks. Linux can be used as a leaf node, such as a
workstation, where setting the IP address, netmask and default gateway suffices for all routing needs.
Alternatively, the same routing subsystem can be used in the core of a network connecting multiple
public and private networks.

This chapter will begin with the basics of IP routing with linux, routing to locally connected destinations,
routing to destinations through the default gateway, and using linux as a router. Subsequent topics will
include the kernel’s route selection algorithm, the routing cache, routing tables, the routing policy
database, and issues with ICMP and routing.

The precinct of this documentation is primarily static routing. Though dynamic routing is important to
large networks, Internet service providers, and backbone providers, this documentation is targetted for
smaller networks, particularly networks which use static routing. Nonetheless, the concepts governing
the manipulation of a packet in the kernel, and how routing decisions are made by the kernel are
applicable to dynamic routing environments.

The linux routing subsystem has been designed with large scale networks in mind, without forgetting the
need for easy configurability for leaf nodes, such as workstations and servers.

Introduction to Linux Routing
The design of IP routing allows for very simple route definitions for small networks, while not hindering
the flexibility of routing in complex environments. A key concept in IP routing is the ability to define
what addresses are locally reachable as opposed to not directly known destinations. Every IP capable host
knows about at least three classes of destination: itself, locally connected computers and everywhere else.

Most fully-featured IP-aware networked operating systems (all unix-like operating systems with IP
stacks, modern Macintoshes, and modern Windows) include support for the loopback device and IP. This
is an IP and range configured on the host machine itself which allows the machine to talk to itself. Linux
systems can communicate over IP on any locally configured IP address, whether on the loopback device
or not. This is the first class of destinations: locally hosted addresses.

The second class of IP addresses are addresses in the locally connected network segment. Each machine
with a connection to an IP network can reach a subset of the entire IP address space on its directly
connected network interface.

All other hosts or destination IPs fall into a third range. Any IP which is not on the machine itself or
locally reachable (i.e. connected to the same media segment) is only reachable through an IP routing
device. This routing device must have an IP address in a locally reachable IP address range.

All IP networking is a permutation of these three fundamental concepts of reachability. This list
summarizes the three possible classifications for reachability of destination IP addresses from any single
source machine.

1. The IP address is reachable on the machine itself. Under linux this is considered scope host and is
used for IPs bound to any network device including loopback devices, and the network range for the
loopback device. Addresses of this nature are called local IPs or locally hosted IPs.

26

Chapter 4. IP Routing

2. The IP address is reachable on the directly connected link layer medium. Addresses of this type are
called locally reachable or (preferred) directly reachable IPs.

3. The IP address is ultimately reachable through a router which is reachable on a directly connected
link layer medium. This class of IP addresses is only reachable through a gateway.

As a practical description of the above, this partial diagram of the example network shows two machines
connected to 192.168.99.0/24. On tristan the IP addresses 127.0.0.1 (loopback--not pictured) and
192.168.99.35 are considered locally hosted IP addresses. The directly reachable IP addresses fall inside
the 192.168.99.0/24 network. Any other destination addresses are only reachable through a gateway,
probably masq-gw.

Example 4-1. Classes of IP addresses

tristan
eth0 − 192.168.99.35

lo − 127.0.0.1

lo − 127.0.0.1

eth2 − 192.168.99.254

masq−gw

192.168.99.0/24

Internet

Before examining the routing system in more detail, there are some terms to identify and define. These
terms are general IP networking terms and should be familiar to users who have used IP on other
operating systems and networking equipment.

octet

A single number between decimal 0 and 255, hexadecimal 0x00 and 0xff. An octet is a single byte
in size.

Examples: 140, 254, 255, 1, 0, 7.

IP address
IP

A locally unique four octet logical identifier which a machine can use to communicate using the
Internet Protocol. This address is determined by combining the network address and the
administratively assigned host address. Simply put, the IP address is a unique number identifying a
host on a network.

Examples: 192.168.99.35, 140.71.38.7, 205.254.210.186.

host address portion

The rightmost bits (frequently octets) in an IP address which are not a part of the network address.
The part of an IP address which identifies the computer on a network independent of the network.

27

Chapter 4. IP Routing

Examples: 192.168.1.27/24, 10.10.17.24/8, 172.20.158.75/16.

network address
network
subnetwork address

A four octet address and network mask identifying the usable range of IP addresses. Conventional
and CIDR notations combine the four bare octets with the netmask or prefix length to define this
address. Briefly, a network address is the first address in a range, and is reserved to identify the
entire network.

Examples: 192.168.187.0/24, 205.254.211.192/26, 4.20.17.128/255.255.255.248,
10.0.0.0/255.0.0.0, 12.35.17.112/28.

network mask
netmask
network bitmask

A four-octet set of bits which, when AND’d with a particular IP address produces the network
address. Combined with a network address or IP address, the netmask identifies the range of IP
addresses which are directly reachable.

Examples: 255.255.255.0, 255.255.0.0, 255.255.192.0, 255.255.255.224, 255.0.0.0.

prefix length

An alternate representation of network mask, this is a single integer between 0 and 32, identifying
the number of significant bits in an IP address or network address. This is the "slash-number"
component of a CIDR address.

Examples: 4.20.17.0/24, 66.14.17.116/30, 10.158.42.72/29, 10.48.7.198/9, 192.168.154.64/26.

broadcast address

A four octet address derived from an OR operation between the host address portion of a network
address and the full broadcast special 255.255.255.255. The broadcast is the highest allowable
address in a given network, and is reserved for broadcast traffic.

Examples: 192.168.205.255/24, 172.18.255.255/16, 12.7.149.63/26.

28

Chapter 4. IP Routing

These definitions are common to IP networking in general, and are understood by all in the IP
networking community. For less terse introductory material on matters of IP network addressing in
general, see the Section called General IP Networking Resources in Appendix I.

As is apparent from the interdependencies amongst the above definitions, each term defines a separate
part of the concept of the relationships between an IP address and its network. A good IP calculator can
assist in mastering these IP fundamentals.

Example 4-2. Using ipcalc to display IP information

[user@workstation]$ ipcalc -n 12.7.149.0/26

Address: 12.7.149.0 00001100.00000111.10010101.00 000000
Netmask: 255.255.255.192 = 26 11111111.11111111.11111111.11 000000
Wildcard: 0.0.0.63 00000000.00000000.00000000.00 111111
=>
Network: 12.7.149.0/26 00001100.00000111.10010101.00 000000 (Class A)
Broadcast: 12.7.149.63 00001100.00000111.10010101.00 111111
HostMin: 12.7.149.1 00001100.00000111.10010101.00 000001
HostMax: 12.7.149.62 00001100.00000111.10010101.00 111110
Hosts/Net: 62

A tool similar to the one shown in Example 4-2 can assist in visualizing the relationships among IP
addressing concepts.

Subequently, this chapter will introduce some concrete examples of routing in a real network. The
example network illustrates this network and all of the addresses involved.

Routing to Locally Connected Networks
Any IP network is defined by two sets of numbers: network address and netmask. By convention, there
are two ways to represent these two numbers. Netmask notation is the convention and tradition in IP
networking although the more succinct CIDR notation is gaining popularity.

In the example network, isolde has IP address 192.168.100.17. In CIDR notation, isolde’s address is
192.168.100.17/24, and in traditional netmask notation, 192.168.100.17/255.255.255.0. Any of the IP
calculators, confirms that the first usable IP address is 192.168.100.1 and the last usable IP address is
192.168.100.254. Importantly, the IP network address, 192.168.100.0/24, is reachable through the
directly connected Ethernet interface (refer to classification 2). Therefore, isolde should be able to reach
any IP address in this range directly on the locally connected Ethernet segment.

Below is the routing table for isolde, first shown with the conventional route -n output 1 and then with
the ip route show 2 command. Each of these tools conveys the same routing table and operates on the
same kernel routing table. For more on the routing table displayed in Example 4-3, consult the Section
called The Main Routing Table.

Example 4-3. Identifying the locally connected networks with route

[root@isolde]# route -n

29

Chapter 4. IP Routing

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.100.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.100.254 0.0.0.0 UG 0 0 0 eth0

[root@isolde]# ip route show
192.168.100.0/24 dev eth0 scope link

127.0.0.0/8 dev lo scope link

default via 192.168.100.254 dev eth0

In the above example, the locally reachable destination is 192.168.100.0/255.255.255.0 which can also
be written 192.168.100.0/24 as in ip route show. In classful networking terms, the network to which
isolde is directly connected is called a class C sized network.

When a process on isolde needs to send a packet to another machine on the locally connected network,
packets will be sent from 192.168.100.17 (isolde’s IP). The kernel will consult the routing table to
determine the route and the source address to use when sending this packet. Assuming the destination is
192.168.100.32, the kernel will find that 192.168.100.32 falls inside the IP address range
192.168.100.0/24 and will select this route for the outbound packet. For further details on source address
selection, see the Section called Source Address Selection. The source address on the outbound packet
conveys vital information to the host receiving the packet. In order for the packet to be able to return,
isolde has to use an IP address that is locally available, 192.168.100.32 has to have a route to isolde and
neither host must block the packet.

The packet will be sent to the locally connected network segment directly, because isolde interprets from
the routing table that 192.168.100.32 is directly reachable through the physical network connection on
eth0.

Occasionally, a machine will be directly connected to two different IP networks on the same device. The
routing table will show that both networks are reachable through the same physical device. For more on
this topic, see the Section called Multiple IP Networks on one Ethernet Segment in Chapter 9. Similarly,
multi-homed hosts will have routes for all locally connected networks through the locally-connected
network interface. For more on this sort of configuration, see the Section called Multihomed Hosts in
Chapter 9.

This covers the classification of IP destinations which are available on a locally connected network. This
highlights the importance of an accurate netmask and network address. The next section will cover IP
ranges which are neither locally hosted nor fall in the range of the locally reachable networks. These
destinations must be reached through a router.

Sending Packets Through a Gateway
By comparison to the total number of publicly accessible hosts on the Internet there is an almost
insignificant number of hosts inside any locally reachable network. This means that the majority of
potential destinations are only available via a router.

Any machine which will accept and forward packets between two networks is a router. Every router is at
least dual-homed; one NIC connects to one network, and a second NIC connects to another network.

30

Chapter 4. IP Routing

Machines connected to either network learn by a routing protocol or are statically configured to pass
traffic for the other network to the router.

For tristan, there are two different paths out of 192.168.99.0/24. One path has another leaf network,
192.168.98.0/24, and the other path has many networks, including the Internet. The routing table on
tristan should then contain two different routes out of the network. One destination 192.168.98.0/24 will
be reachable through 192.168.99.1. So, if tristan has a packet with a destination IP address in the range
of the branch office network, it will choose to send the packet directly to isdn-router.

The default route is another way to say the route for destination 0/0. This is the most general possible
route. It is the catch-all route. If no more specific route exists in a routing table, a default route will be
used. Many servers and workstations are connected to leaf networks with only one router, hence
Example 4-3 shows a very common sort of routing table. There’s a route for localhost, for the locally
connected IP network, and a default route.

For Internet-connected hosts, the default route is customarily set to the IP of the locally reachable router
which has a path to the Internet. Each router in turn has a default gateway pointing to another
Internet-connected router until the packet is handed off to an Internet Service Provider’s network.

Operating as a Router
Operating as a router allows a linux machine to accept packets on one interface and transmit them on
another. This is the nature of a router. The process of accepting and transmitting IP packets is known as
forwarding. IP forwarding is a requirement for many of the networking techniques identified here.
Stateless NAT and firewalling, transparent proxying and masquerading all require the support of IP
forwarding in order to function correctly.

The sysctl net/ipv4/ip_forward toggles the IP forwarding functionality on a linux box. Note that
setting this sysctl alters other routing-related sysctl entries, so it is wise to set this first, and then alter
other entries. Frequently, an administrator will forget this simple and crucial detail when configuring a
new machine to operate as a router only to be frustrated at the simple error.

The sysctl net/ipv4/conf/$DEV/forward defaults to the value of net/ipv4/ip_forward, but can
be independently modified. In order to allow forwarding of packets between two interfaces while
prohibiting such behaviour on a third interface, this sysctl can be employed.

Route Selection
Crucial to the proper ability of hosts to exchange IP packets is the correct selection of a route to the
destination. The rules for the selection of route path are traditionally made on a hop-by-hop basis 3 based
solely upon the destination address of the packet. Linux behaves as a conventional routing device in this
way, but can also provide a more flexible capability. Routes can be chosen and prioritized based on other
packet characteristics.

The route selection algorithm under linux has been generalized to enable the powerful latter scenario
without complicating the overwhelmingly common case of the former scenario.

31

Chapter 4. IP Routing

The Common Case
The above sections on routing to a local network and the default gateway expose the importance of
destination address for route selection. In this simplified model, the kernel need only know the
destination address of the packet, which it compares against the routing tables to determine the route by
which to send the packet.

The kernel searches for a matching entry for the destination first in the routing cache and then the main
routing table. In the case that the machine has recently transmitted a packet to the destination address,
the routing cache will contain an entry for the destination. The kernel will select the same route, and
transmit the packet accordingly.

If the linux machine has not recently transmitted a packet to this destination address, it will look up the
destination in its routing table using a technique known longest prefix match 4. In practical terms, the
concept of longest prefix match means that the most specific route to the destination will be chosen.

The use of the longest prefix match allows routes for large networks to be overridden by more specific
host or network routes, as required in Example 1-10, for example. Conversely, it is this same property of
longest prefix match which allows routes to individual destinations to be aggregated into larger network
addresses. Instead of entering individual routes for each host, large numbers of contiguous network
addresses can be aggregated. This is the realized promise of CIDR networking. See the Section called
General IP Networking Resources in Appendix I for further details.

In the common case, route selection is based completely on the destination address. Conventional (as
opposed to policy-based) IP networking relies on only the destination address to select a route for a
packet.

Because the majority of linux systems have no need of policy based routing features, they use the
conventional routing technique of longest prefix match. While this meets the needs of a large subset of
linux networking needs, there are unrealized policy routing features in a machine operating in this
fashion.

The Whole Story
With the prevalence of low cost bandwidth, easily configured VPN tunnels, and increasing reliance on
networks, the technique of selecting a route based solely on the destination IP address range no longer
suffices for all situations. The discussion of the common case of route selection under linux neglects one
of the most powerful features in the linux IP stack. Since kernel 2.2, linux has supported policy based
routing through the use of multiple routing tables and the routing policy database (RPDB). Together, they
allow a network administrator to configure a machine select different routing tables and routes based on a
number of criteria.

Selectors available for use in policy-based routing are attributes of a packet passing through the linux
routing code. The source address of a packet, the ToS flags, an fwmark (a mark carried through the
kernel in the data structure representing the packet), and the interface name on which the packet was
received are attributes which can be used as selectors. By selecting a routing table based on packet
attributes, an administrator can have granular control over the network path of any packet.

With this knowledge of the RPDB and multiple routing tables, let’s revisit in detail the method by which
the kernel selects the proper route for a packet. Understanding the series of steps the kernel takes for

32

Chapter 4. IP Routing

route selection should demystify advanced routing. In fact, advanced routing could more accurately be
called policy-based networking.

When determining the route by which to send a packet, the kernel always consults the routing cache first.
The routing cache is a hash table used for quick access to recently used routes. If the kernel finds an
entry in the routing cache, the corresponding entry will be used. If there is no entry in the routing cache,
the kernel begins the process of route selection. For details on the method of matching a route in the
routing cache, see the Section called Routing Cache.

The kernel begins iterating by priority through the routing policy database. For each matching entry in
the RPDB, the kernel will try to find a matching route to the destination IP address in the specified
routing table using the aforementioned longest prefix match selection algorithm. When a matching
destination is found, the kernel will select the matching route, and forward the packet. If no matching
entry is found in the specified routing table, the kernel will pass to the next rule in the RPDB, until it
finds a match or falls through the end of the RPDB and all consulted routing tables.

Here is a snippet of python-esque pseudocode to illustrate the kernel’s route selection process again.
Each of the lookups below occurs in kernel hash tables which are accessible to the user through the use
of various iproute2 tools.

Example 4-4. Routing Selection Algorithm in Pseudo-code

if packet.routeCacheLookupKey in routeCache :
route = routeCache[packet.routeCacheLookupKey]

else
for rule in rpdb :

if packet.rpdbLookupKey in rule :
routeTable = rule[lookupTable]
if packet.routeLookupKey in routeTable :

route = route_table[packet.routeLookup_key]

This pseudocode provides some explanation of the decisions required to find a route. The final piece of
information required to understand the decision making process is the lookup process for each of the
three hash table lookups. In Table 4-1, each key is listed in order of importance. Optional keys are listed
in italics and represent keys that will be matched if they are present.

Table 4-1. Keys used for hash table lookups during route selection

route cache RPDB route table

destination source destination

source destination ToS

ToS ToS scope

fwmark fwmark oif

iif iif

The route cache (also the forwarding information base) can be displayed using ip route show cache. The
routing policy database (RPDB) can be manipulated with the ip rule utility. Individual route tables can
be manipulated and displayed with the ip route command line tool.

33

Chapter 4. IP Routing

Example 4-5. Listing the Routing Policy Database (RPDB)

[root@isolde]# ip rule show
0: from all lookup local

32766: from all lookup main

32767: from all lookup 253

Observation of the output of ip rule show in Example 4-5 on a box whose RPDB has not been changed
should reveal a high priority rule, rule 0. This rule, created at RPDB initialization, instructs the kernel to
try to find a match for the destination in the local routing table. If there is no match for the packet in the
local routing table, then, per rule 32766, the kernel will perform a route lookup in the main routing table.
Normally, the main routing table will contain a default route if not a more specific route. Failing a route
lookup in the main routing table the final rule (32767) instructs the kernel to perform a route lookup in
table 253.

A common mistake when working with multiple routing tables involves forgetting about the statelessness
of IP routing. This manifests when the user configuring the policy routing machine accounts for
outbound packets (via fwmark, or ip rule selectors), but forgets to account for the return packets.

Summary
For more ideas on how to use policy routing, how to work with multiple routing tables, and how to
troubleshoot, see the Section called Using the Routing Policy Database and Multiple Routing Tables in
Chapter 10.

Yeah. That’s it. So there.

Source Address Selection
The selection of the correct source address is key to correct communication between hosts with multiple
IP addresses. If a host chooses an address from a private network to communicate with a public Internet
host, it is likely that the return half of the communication will never arrive.

The initial source address for an outbound packet is chosen in according to the following series of rules.
The application can request a particular IP 5, the kernel will use the src hint from the chosen route path
6, or, lacking this hint, the kernel will choose the first address configured on the interface which falls in
the same network as the destination address or the nexthop router.

The following list recapitulates the manner by which the kernel determines what the source address of an
outbound packet.

• The application is already using the socket, in which case, the source address has been chosen. Also,
the application can specifically request a particular address (not necessarily a locally hosted IP; see the
Section called Binding to Non-local Addresses in Chapter 9) using the bind call.

• The kernel performs a route lookup and finds an outbound route for the destination. If the route
contains the src parameter, the kernel selects this IP address for the outbound packet.

34

Chapter 4. IP Routing

•

Also refer to this excerpt (http://linux-ip.net/gl/ip-cref/node155.html) from the iproute2 command
reference.

Routing Cache
The routing cache is also known as the forwarding information base (FIB). This term may be familiar to
users of other routing systems.

The routing cache stores recently used routing entries in a fast and convenient hash lookup table, and is
consulted before the routing tables. If the kernel finds a matching entry during route cache lookup, it will
forward the packet immediately and stop traversing the routing tables.

Because the routing cache is maintained by the kernel separately from the routing tables, manipulating
the routing tables may not have an immediate effect on the kernel’s choice of path for a given packet. To
avoid a non-deterministic lag between the time that a new route is entered into the kernel routing tables
and the time that a new lookup in those route tables is performed, use ip route flush cache. Once the
route cache has been emptied, new route lookups (if not by a packet, then manually with ip route get)
will result in a new lookup to the kernel routing tables.

The following is a listing of the hash lookup keys in the routing cache and a description of each key.
Compare this list with the elements identified in Table 4-1.

dst
Destination Address

The destination IP address of the packet. This is the destination address on the packet at the time of
the route lookup. The address is a host address. All 32 bits are significant during this lookup.

src
Source Address

The source IP address of the packet. This is the source address on the packet at the time of the route
lookup. The address is a host address. All 32 bits are significant during this lookup.

tos
Type of Service

The ToS marking on the packet. If there is no ToS marking on the packet (tos == 0), this lookup key
is unused. If there is a ToS marking, the kernel will search for a match with this ToS value. If no
matching (dst, src, tos) is found, the kernel will continue the search for a route by traversing the
RPDB.

35

Chapter 4. IP Routing

fwmark

The mark on a packet added administratively by the packet filtering engine (ipchains or iptables).
This mark is not part of the physical IP packet, and only exists as part of the data structure held in
memory on the routing device to represent the IP packet. If there is no fwmark on the packet, this
lookup key is unused. When present, the kernel will search for a matching (dst, src, tos?, fwmark)
entry. If no matching entry is found, the kernel will continue the search for a route by traversing the
RPDB.

iif
inbound interface

The name of the interface on which the packet arrived.

The following attributes may be stored for each entry in the routing cache.

cwnd
FIXME Window

FIXME. A) I don’t know what it is. B) I don’t know how to describe it.

advmss
Advertised Maximum Segment Size

src
(Preferred Local) Source Address

mtu
Maximum Transmission Unit

36

Chapter 4. IP Routing

rtt
Round Trip Time

rttvar
Round Trip Time Variation

FIXME. Gotta find some references to this, too.

age

users

used

Collectively the hash keys uniquely identify routes in the forwarding information base (routing cache)
and each entry provides attributes of the route.

Routing Tables
Linux kernel 2.2 and 2.4 support multiple routing tables 7. Beyond the two commonly used routing tables
(the local and main routing tables), the kernel supports up to 252 additional routing tables.

The multiple routing table system provides a flexible infrastructure on top of which to implement policy
routing. By allowing multiple traditional routing tables (keyed primarily to destination address) to be
combined with the routing policy database (RPDB) (keyed primarily to source address), the kernel
supports a well-known and well-understood interface while simultaneously expanding and extending its
routing capabilities. Each routing table still operates in the traditional and expected fashion. Linux
simply allows you to choose from a number of routing tables, and to traverse routing tables in a
user-definable sequence until a matching route is found.

Any given routing table can contain an arbitrary number of entries, each of which is keyed on the
following characteristics (cf. Table 4-1)

37

Chapter 4. IP Routing

• destination address; a network or host address (primary key)

• tos; Type of Service

• scope

• output interface

For practical purposes, this means that (even) a single routing table can contain multiple routes to the
same destination if the ToS differs on each route or if the route applies to a different interface 8.

Kernels supporting multiple routing tables refer to routing tables by unique integer slots between 0 and
255 9. The two routing tables normally employed are table 255, the local routing table, and table 254,
the main routing table. For examples of using multiple routing tables, see Chapter 9, in particular,
Example 10-1, Example 10-3 and Example 10-4. Also be sure to read the Section called Using the
Routing Policy Database and Multiple Routing Tables in Chapter 10 and the Section called Routing
Policy Database (RPDB).

The ip route and ip rule commands have built in support for the special tables main and local. Any
other routing tables can be referred to by number or an administratively maintained mapping file,
/etc/iproute2/rt_tables.

The format of this file is extraordinarily simple. Each line represents one mapping of an arbitrary string
to an integer. Comments are allowed.

Example 4-6. Typical content of /etc/iproute2/rt_tables

#

reserved values

#

255 local ➊

254 main ➋

253 default ➌

0 unspec ➍

#

local

#

1 inr.ruhep ➎

➊ The local table is a special routing table maintained by the kernel. Users can remove entries from
the local routing table at their own risk. Users cannot add entries to the local routing table. The file
/etc/iproute2/rt_tables need not exist, as the iproute2 tools have a hard-coded entry for the
local table.

➋ The main routing table is the table operated upon by route and, when not otherwise specified, by ip
route. The file /etc/iproute2/rt_tables need not exist, as the iproute2 tools have a
hard-coded entry for the main table.

➌ The default routing table is another special routing table, but WHY is it special!?!

➍ Operating on the unspec routing table appears to operate on all routing tables simultaneously. Is
this true!? What does that imply?

38

Chapter 4. IP Routing

➎ This is an example indicating that table 1 is known by the name inr.ruhep. Any references to table
inr.ruhep in an ip rule or ip route will substitue the value 1 for the word inr.ruhep.

The routing table manipulated by the conventional route command is the main routing table.
Additionally, the use of both ip address and ifconfig will cause the kernel to alter the local routing table
(and usually the main routing table). For further documentation on how to manipulate the other routing
tables, see the command description of ip route.

Routing Table Entries (Routes)
Each routing table can contain an arbitrary number of route entries. Aside from the local routing table,
which is maintained by the kernel, and the main routing table which is partially maintained by the kernel,
all routing tables are controlled by the administrator or routing software. All routes on a machine can be
changed or removed 10.

Each of the following route types is available for use with the ip route command. Each route type causes
a particular sort of behaviour, which is identified in the textual description. Compare the route types
described below with the rule types available for use in the RPDB.

unicast

A unicast route is the most common route in routing tables. This is a typical route to a destination
network address, which describes the path to the destination. Even complex routes, such as nexthop
routes are considered unicast routes. If no route type is specified on the command line, the route is
assumed to be a unicast route.

Example 4-7. unicast route types

ip route add unicast 192.168.0.0/24 via 192.168.100.5
ip route add default via 193.7.255.1
ip route add unicast default via 206.59.29.193
ip route add 10.40.0.0/16 via 10.72.75.254

broadcast

This route type is used for link layer devices (such as Ethernet cards) which support the notion of a
broadcast address. This route type is used only in the local routing table 11 and is typically handled
by the kernel.

39

Chapter 4. IP Routing

Example 4-8. broadcast route types

ip route add table local broadcast 10.10.20.255 dev eth0 proto kernel scope link src 10.10.20.67
ip route add table local broadcast 192.168.43.31 dev eth4 proto kernel scope link src 192.168.43.14

local

The kernel will add entries into the local routing table when IP addresses are added to an interface.
This means that the IPs are locally hosted IPs 12.

Example 4-9. local route types

ip route add table local local 10.10.20.64 dev eth0 proto kernel scope host src 10.10.20.67
ip route add table local local 192.168.43.12 dev eth4 proto kernel scope host src 192.168.43.14

nat

This route entry is added by the kernel in the local routing table, when the user attempts to configure
stateless NAT. See the Section called Stateless NAT with iproute2 in Chapter 5 for a fuller
discussion of network address translation in general. 13.

Example 4-10. nat route types

ip route add nat 193.7.255.184 via 172.16.82.184
ip route add nat 10.40.0.0/16 via 172.40.0.0

unreachable

When a request for a routing decision returns a destination with an unreachable route type, an ICMP
unreachable is generated and returned to the source address.

Example 4-11. unreachable route types

ip route add unreachable 172.16.82.184
ip route add unreachable 192.168.14.0/26
ip route add unreachable 209.10.26.51

40

Chapter 4. IP Routing

prohibit

When a request for a routing decision returns a destination with a prohibit route type, the kernel
generates an ICMP prohibited to return to the source address.

Example 4-12. prohibit route types

ip route add prohibit 10.21.82.157
ip route add prohibit 172.28.113.0/28
ip route add prohibit 209.10.26.51

blackhole

A packet matching a route with the route type blackhole is discarded. No ICMP is sent and no
packet is forwarded.

Example 4-13. blackhole route types

ip route add blackhole default
ip route add blackhole 202.143.170.0/24
ip route add blackhole 64.65.64.0/18

throw

The throw route type is a convenient route type which causes a route lookup in a routing table to
fail, returning the routing selection process to the RPDB. This is useful when there are additional
routing tables. Note that there is an implicit throw if no default route exists in a routing table, so the
route created by the first command in the example is superfluous, although legal.

Example 4-14. throw route types

ip route add throw default
ip route add throw 10.79.0.0/16
ip route add throw 172.16.0.0/12

The power of these route types when combined with the routing policy database can hardly be
understated. All of these route types can be used without the RPDB, although the throw route doesn’t
make much sense outside of a multiple routing table installation.

41

Chapter 4. IP Routing

The Local Routing Table
The local routing table is maintained by the kernel. Normally, the local routing table should not be
manipulated, but it is available for viewing. In Example D-12, you’ll see two of the common uses of the
local routing table. The first common use is the specification of broadcast address, necessary only for
link layers which support broadcast addressing. The second common type of entry in a local routing
table is a route to a locally hosted IP.

The route types found in the local routing table are local, nat and broadcast. These route types are
not relevant in other routing tables, and other route types cannot be used in the local routing table.

If the the machine has several IP addresses on one Ethernet interface, there will be a route to each locally
hosted IP in the local routing table. This is a normal side effect of bringing up an IP address on an
interface under linux. Maintenance of the broadcast and local routes in the local routing table can only be
done by the kernel.

Example 4-15. Kernel maintenance of the local routing table

[root@real-server]# ip address show dev eth1
6: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:e8:1e:fc brd ff:ff:ff:ff:ff:ff

inet 10.10.20.89/24 brd 10.10.20.255 scope global eth1

[root@real-server]# ip route show dev eth1
10.10.20.0/24 proto kernel scope link src 10.10.20.89

[root@real-server]# ip route show dev eth1 table local
broadcast 10.10.20.0 proto kernel scope link src 10.10.20.89

broadcast 10.10.20.255 proto kernel scope link src 10.10.20.89

local 10.10.20.89 proto kernel scope host src 10.10.20.89

[root@real-server]# ip address add 192.168.254.254/24 brd + dev eth1
[root@real-server]# ip address show dev eth1
6: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:e8:1e:fc brd ff:ff:ff:ff:ff:ff

inet 10.10.20.89/24 brd 10.10.20.255 scope global eth1

inet 192.168.254.254/24 brd 192.168.254.255 scope global eth1

[root@real-server]# ip route show dev eth1
10.10.20.0/24 proto kernel scope link src 10.10.20.89

192.168.254.0/24 proto kernel scope link src 192.168.254.254

[root@real-server]# ip route show dev eth1 table local
broadcast 10.10.20.0 proto kernel scope link src 10.10.20.89

broadcast 192.168.254.0 proto kernel scope link src 192.168.254.254

broadcast 10.10.20.255 proto kernel scope link src 10.10.20.89

local 192.168.254.254 proto kernel scope host src 192.168.254.254

local 10.10.20.89 proto kernel scope host src 10.10.20.89

broadcast 192.168.254.255 proto kernel scope link src 192.168.254.254

Note in Example 4-15, that the kernel adds not only the route for the locally connected network in the
main routing table, but also the three required special addresses in the local routing table. Any IP
addresses which are locally hosted on the box will have local entries in the local table. The network
address and broadcast address are both entered as broadcast type addresses on the interface to which
they have been bound. Conceptually, there is significance to the distinction between a network and

42

Chapter 4. IP Routing

broadcast address, but practically, they are treated analogously, by other networking gear as well as the
linux kernel.

There is one other type of route which commonly ends up in the local routing table. When using
iproute2 NAT, there will be entries in the local routing table for each network address translation. Refer
to Example D-21 and Example D-22 for example output.

The Main Routing Table
The main routing table is the routing table most people think of when considering a linux routing table.
When no table is specified to an ip route command, the kernel assumes the main routing table. The
route command only manipulates the main routing table.

Similarly to the local table, the main table is populated automatically by the kernel when new
interfaces are brought up with IP addresses. Consult the main routing table before and after ip
address add 192.168.254.254/24 brd + dev eth1 in Example 4-15 for a concrete
example of this kernel behaviour. Also, visit this summary of side effects of interface definition and
activation with ifconfig or ip address.

Routing Policy Database (RPDB)
The routing policy database (RPDB) controls the order in which the kernel searches through the routing
tables. Each rule has a priority, and rules are examined sequentially from rule 0 through rule 32767.

When a new packet arrives for routing (assuming the routing cache is empty), the kernel begins at the
highest priority rule in the RPDB--rule 0. The kernel iterates over each rule in turn until the packet to be
routed matches a rule. When this happens the kernel follows the instructions in that rule. Typically, this
causes the kernel to perform a route lookup in a specified routing table. If a matching route is found in
the routing table, the kernel uses that route. If no such route is found, the kernel returns to traverse the
RPDB again, until every option has been exhausted.

The priority-based rule system provides a flexible way to define routes while taking advantage of the
traditional routing table concept. For a complete picture of the entire route selection process including
the RPDB, see the section on routing selection.

There are a number of different rule types available for use in the routing policy database. These rule
types have a striking similarity to the route types available for route entries.

unicast

A unicast rule entry is the most common rule type. This rule type simple causes the kernel to refer
to the specified routing table in the search for a route. If no rule type is specified on the command
line, the rule is assumed to be a unicast rule.

43

Chapter 4. IP Routing

Example 4-16. unicast rule type

ip rule add unicast from 192.168.100.17 table 5
ip rule add unicast iif eth7 table 5
ip rule add unicast fwmark 4 table 4

nat

The nat rule type is required for correct operation of stateless NAT. This rule is typically coupled
with a corresponding nat route entry. The RPDB nat entry causes the kernel to rewrite the source
address of an outbound packet. See the Section called Stateless NAT with iproute2 in Chapter 5 for
a fuller discussion of network address translation in general.

Example 4-17. nat rule type

ip rule add nat 193.7.255.184 from 172.16.82.184
ip rule add nat 10.40.0.0 from 172.40.0.0/16

unreachable

Any route lookup matching a rule entry with an unreachable rule type will cause the kernel to
generate an ICMP unreachable to the source address of the packet.

Example 4-18. unreachable rule type

ip rule add unreachable iif eth2 tos 0xc0
ip rule add unreachable iif wan0 fwmark 5
ip rule add unreachable from 192.168.7.0/25

prohibit

Any route lookup matching a rule entry with a prohibit rule type will cause the kernel to generate an
ICMP prohibited to the source address of the packet.

Example 4-19. prohibit rule type

ip rule add prohibit from 209.10.26.51
ip rule add prohibit to 64.65.64.0/18
ip rule add prohibit fwmark 7

44

Chapter 4. IP Routing

blackhole

While traversing the RPDB, any route lookup which matches a rule with the blackhole rule type
will cause the packet to be dropped. No ICMP will be sent and no packet will be forwarded.

Example 4-20. blackhole rule type

ip rule add blackhole from 209.10.26.51
ip rule add blackhole from 172.19.40.0/24
ip rule add blackhole to 10.182.17.64/28

The routing policy database provides the core of functionality around which the policy routing and
advanced routing features can be built.

ICMP and Routing
ICMP is a very important part of the communication between hosts on IP networks. Used by routers and
endpoints (clients and servers) ICMP communicates error conditions in networks and provides a means
for endpoints to receive information about a network path or requested connection.

One of the commonest uses of ICMP by the administrator of a network is the use of ping to detect the
state of a machine in the network. There are other types of ICMP which are used for other inter-computer
communication. One other common type of ICMP is the ICMP returned by a router or host which is not
accepting connections. Essentially, the host returns the ICMP as a polite method of saying “Go away.”.

MTU, MSS, and ICMP
One important use of ICMP, which is completely transparent to most users (and indeed many admins), is
the use of ICMP to discover the Path Maximum Transmission Unit (PMTU). By discovering the Path
MTU and transmitting packets with this the MTU, a host can minimize the delay of traffic due to
fragmentation, and (theoretically) attain a more even rate of data transmission. Because each destination
may have a different MTU due to different network paths, the MTU is a per route attribute stored in the
routing cache.

Path MTU can be quite easily broken if any single hop along the way blocks all ICMP. Be sure to allow
ICMP unreachable/fragmentation needed packets into and out of your network. This will prevent you
from being one of the unclueful network admins who cause PMTU problems.

45

Chapter 4. IP Routing

ICMP Redirects and Routing
An ICMP redirect is a router’s way of communicating that there is a better path out of this network or
into another one than the one the host had chosen. In the example network, tristan has a route to the
world through masq-gw and a route to 192.168.98.0/24 through isdn-router. If tristan sends a packet for
192.168.98.0/24 to masq-gw, the optimal outcome is for masq-gw to suggest with an ICMP redirect that
tristan send such packets via isdn-router instead.

By this method, hosts can learn what networks are reachable through which routers on the local network
segment. ICMP redirect messages, however, are easy to forge, and were (at one time) used to subvert
poorly configured machines. While this is infrequently a problem on the Internet today, it’s still good
practice to ignore ICMP redirect messages from public networks. Create static routes where necessary on
private and public networks to prevent ICMP redirect messages from being generated on your network.

To examine an example of ICMP redirect in action, we simply need to send a packet directly from tristan
to morgan. We assume that masq-gw has a route to 192.168.98.0/24 via 192.168.99.1 (isdn-router), that
tristan has no such route.

Example 4-21. ICMP Redirect on the Wire 14

[root@tristan]# echo test | nc 192.168.98.82 22
[root@tristan]# tcpdump -nneqti eth0
0:80:c8:f8:4a:51 0:80:c8:f8:5c:71 74: 192.168.99.35.54510 > 192.168.98.82.22: tcp 0 (DF)

0:80:c8:f8:5c:71 0:80:c8:f8:4a:51 102: 192.168.99.254 > 192.168.99.35: icmp: redirect 192.168.98.82 to host 192.168.99.1 [tos 0xc0]

0:80:c8:f8:5c:71 0:c0:7b:45:6a:39 74: 192.168.99.35.54510 > 192.168.98.82.22: tcp 0 (DF)

There’s a great deal of information above, so let’s examine the important parts. We have the first three
packets which passed by our NIC as a result of this attempt to establish a session. First, we see a packet
from tristan bound for morgan with tristan’s source MAC and masq-gw’s destination MAC. Because
masq-gw is tristan’s default gateway, tristan will send all packets there.

The next packet is the ICMP redirect, informing tristan of a better route. It includes several pieces of
information. Implicitly, the source IP indicates what router is suggesting the alternate route, and the
contents specify what the intended destination was, and what the better route is. Note that masq-gw
suggests using 192.168.99.1 (isdn-router) as the gateway for this destination.

The final packet is part of the intended session, but has the MAC address of masq-gw on it. masq-gw has
(courteously) informed us that we should not use it as a route for the intended destination, but has also
(courteously) forwarded the packet as we had requested. In this small network, it is acceptable to allow
ICMP redirect messages, although these should always be dropped at network borders, both inbound and
outbound.

So, in summary, ICMP redirect messages are not intrinsically dangerous or problematic, but they
shouldn’t exist in well-maintained networks. If you happen to see them growing in the shadows of your
network, some careful observation should show you what hosts are affected and which routing tables
could use some attention.

Notes
1. The route -n output can also be produced with netstat -rn and is commonly used by admininstrators

46

Chapter 4. IP Routing

who rely on platform independent behaviour across heterogeneous Unix and Unix-like systems. This
traditional routing table output uses conventional netmask notation to denote network size.

2. Refer to the ip route section for a fuller discussion of this linux specific tool. The routing table
output from ip route uses exclusively CIDR notation.

3. This document could stand to allude to MPLS implementations under linux, for those who want to
look at traffic engineering and packet tagging on backbones. This is certainly not in the scope of this
chapter, and should be in a separate chapter, which covers developing technologies.

4. Refer to RFC 3222 (http://www.isi.edu/in-notes/rfc3222.txt) for further details.

5. Many networking applications accept a command line option to prefer a particular source address.
The call to select a particular IP is known as bind(), so the command line option frequently
contains the word bind, e.g., --bind-address. Examples of command line tools allowing
specification of the source address are nc -s $BINDADDR $DEST $PORT or socat -
TCP4:$REMOTEHOST:$REMOTEPORT,bind=$BINDADDR.

6. In this case, the route has already been selected (see the Section called Route Selection) and the
chosen route entry includes a hint for preferred source address on outbound packets specifically for
this purpose. For examples on configuring the routing tables to include this parameter, see Example
D-19.

7. The kernel must be compiled with the option CONFIG_IP_MULTIPLE_TABLES=y. This is common
in vendor and stock kernels, both 2.2 and 2.4.

8. If somebody has used scope or oif as additional keys in a routing table, and has an example, I’d love
to see it, for possible inclusion in this documentation.

9. Can anybody describe to me what is in table 0? It looks almost like an aggregation of the routing
entries in routing tables 254 and 255.

10. Once again, I recommend caution when altering the local routing table. Removing local route types
from the local routing table can break networking in strange and wonderful ways.

11. OK, I’m not absolutely sure you can’t use the broadcast route in other routing tables, but I believe
you can’t. Testing forthcoming...

12. Ibid. I’m not sure that local route types can be used in any routing table other than the local routing
table. Testing forthcoming...

13. Ibid. nat route types might be ineffectual outside the local routing table. Testing forthcoming...

14. Consult Table A-2 for details on the IP and MAC addresses of the hosts referred to in this example.

47

Chapter 5. Network Address Translation (NAT)
Network Address Translation (NAT) is a deceptively simple concept. NAT is the technique of rewriting
addresses on a packet as it passes through a routing device. There are far reaching ramifications on
network design and protocol compatibility wherever NAT is used.

This chapter will introduce two types of NAT available under linux. One, full NAT or stateless NAT, is
available under kernel 2.2 and kernel 2.4 via the iproute2 userspace interface. Available only under
kernel 2.4, destination NAT (DNAT) is an important derivative of full NAT. DNAT configuration from
userspace is accomplished via the iptables utility. The experienced network administrator is probably
puzzling about absent references to source NAT (SNAT) and masquerading. These prominent and
prevalent uses of NAT are covered in Chapter 6, although many concepts involved in the special purpose
SNAT and masquerading will be introduced in this chapter.

Network address translation is known by a number of names in the networking world: full NAT,
one-to-one NAT and inbound NAT. As used in this chapter and throughout this documentation, NAT,
when unqualified, will refer to full network address translation or one-to-one NAT. NAT techniques
derived from full NAT, such as destination or source NAT, will be described as DNAT (destination NAT)
and SNAT (source NAT).

Michael Hasenstein’s seminal paper on network address translation is available courtesy of SuSe Linux
AG here (http://www.suse.de/~mha/linux-ip-nat/diplom/nat.html).

Rationale for and Introduction to NAT
Network address translation (NAT) is a technique of transparently mapping an IP address or range to
another IP address or range. Any routing device situated between two endpoints can perform this
transformation of the packet. Network designers must however take one key element under consideration
when laying out a network with NAT in mind. The router(s) performing NAT must have an opportunity
to rewrite the packet upon entry to the network and upon exit from the network 1.

Because network address translation manipulates the addressing of a packet, the NAT transformation
becomes a passive but critical part of the conversation between hosts exchanging packets. NAT is by
necessity transparent to the application layer endpoints and operates on any type of IP packet. There are
some application and even network layer protocols which will break as a result of this rewriting. Consult
the Section called Application Layer Protocols with Embedded Network Information for a discussion of
these cases.

Here are a few common reasons to consider NAT along with potential NAT solution candidates shown in
parentheses.

• Publicly accessible services need to be provided on registered Internet IPs which change or might
change. NAT allows the separation of internal IP addressing schemes from the public IP space, easing
the burden of changing internal addressing or external IPs. (NAT, DNAT, PAT with DNAT PAT from
userspace)

• An application requires inbound and outbound connections. In this case SNAT/masquerading will not
suffice. See also the Section called Where Masquerading and SNAT Break in Chapter 6. (NAT, SNAT
and application-aware connection tracking)

48

Chapter 5. Network Address Translation (NAT)

• The network numbering scheme is changing. Clever use of NAT allows reachability of services on
both IP addresses or IP address ranges during the network numbering migration. (NAT, DNAT)

• Two networks share the same IP addressing space and need to exchange packets. Using network
address translation to publish NAT network spaces with different numbering schemes would allow
each network to retain the addressing scheme while accessing the other network. (NAT, DNAT, SNAT)

These are the commonest reasons to consider and implement NAT. Other niche applications of NAT,
notably as part of load balancing systems, exist although this chapter will concentrate on the use of NAT
to hide, isolate or renumber networks. It will also cover inbound connections, leaving the discussion of
many-to-one NAT, SNAT and masquerading for Chapter 6.

One motivator for deploying NAT in a network is the benefit of virtualizing the network. By isolating
services provided in one network from changes in other networks, the effects of such changes can be
minimized. The disadvantage of virtualizing the network in this way is the increased reliance on the NAT
device.

Providing inbound services via NAT can be accomplished in several different ways. Two common
techniques are to use iproute2 NAT and netfilter DNAT. Less common (and possibly less desirable) one
can use port redirection tools. Depending on which tool is employed, different characteristics of a packet
can trigger the address transformation.

The simplest form of NAT under linux is iproute2 NAT. This type of NAT requires two matching
commands, one to cause the kernel to rewrite the inbound packets (ip route add nat $NATIP
via $REAL) and one to rewrite the outbound packets (ip rule add from $REAL nat
$NATIP). The router configured in this fashion will retain no state for connections. It will simply
transform any packets passing through. By contrast, netfilter is capable of retaining state on connections
passing through the router and selecting packets more granularly than is possible with only iproute2
tools.

Before the advent of the netfilter engine in the linux kernel, there were several tools available to
administer NAT, DNAT and PAT. These tools were not included in many distributions and weren’t
adopted broadly in the community. Although you may find references to ipmasqadm, ipnatadm and
ipportfw across the Internet in older documentation, these tools have been superseded in functionality
and widespread deployment by the netfilter engine and its userspace partner, iptables.

The netfilter engine provides a more flexible language for selection of packets to be transformed than
that provided by the iproute2 suite and kernel routing functionality. Additionally, any NAT services
provided by the netfilter engine come with the labor-saving and resource-consuming connection tracking
mechanism. DNAT translates the address on an inbound packet and creates an entry in the connection
tracking state table. For even modest machines, the connection tracking resource consumption should not
be problematic.

Netfilter DNAT allows the user to select packets based on characteristics such as destination port. This
blurs the distinction between network address translation and port address translation. NAT always
transforms the layer 3 contents of a packet. Port redirection operates at layer 4. From a practical
perspective, there is little difference between a port redirection and a netfilter DNAT which has selected a
single port. The manner in which the packet and contents are retransmitted, however, is tremendously
different.

One other less common technique for furnishing inbound services is the use of port redirection.
Although there are higher layer tools which can perform transparent application layer proxying (e.g.
Squid (http://www.squid-cache.org/)), these are outside the scope of this documentation.

49

Chapter 5. Network Address Translation (NAT)

There are a number of IP addresses involved in any NAT transformations or connection states. The
following list identifies these names and the convention used to describe each IP address. Beware that the
prevalance of NAT to publish services on the Internet via public IP addresses has lead to the server/client
lingo common in discussions of NAT.

server NAT IP
NAT IP

The IP address to which packets are addressed. This is the address on the packet before the device
performing NAT manipulates it. This is frequently also described as the public IP, although any
given application of NAT knows no distinction between public and private address ranges.

real IP
server IP
hidden IP
private IP
internal IP

The IP address after the NAT device has performed its transformation. Frequently, this is described
as the private IP, although any given application of NAT knows no distinction between public and
private address ranges.

client IP

The source address of the initial packet. The client IP in a NAT transformation does not change; this
IP is the source IP address on any inbound packets both before and after the translation. It is also the
destination address on the outbound packet.

The above terms will be used below and in general discussions of NAT.

Application Layer Protocols with Embedded Network
Information

Network address translation is beautifully invisible when it works, but has adverse effects on some
protocols. Some network applications, e.g., FTP, SNMP, H323, LDAP, IRC, make use of embedded IP
information in the application layer protocol or data stream. Since the 2.0.x kernel series (which is not
covered here), linux has supported modules which inspect and manipulate packet contents on particular
types of packets when used with NAT or masquerading.

FTP is the classic example. Within the FTP control channel (usually established to destination port
tcp/21) the client and the server exchange IP address and port information. If the network address
translation device doesn’t manipulate this data, the FTP server will not be able to contact the client to
provide the data.

Passive mode FTP provides the possibility for a network layer which requires only outbound TCP
connections. This results in a more NAT friendly and firewall friendly protocol, because the connections
are initiated from the client.

Not only are there network applications which break when NAT is involved but also network layer
protocols. IPSec is a standards-based network-layer security protocol commonly used in VPNs and IPv6

50

Chapter 5. Network Address Translation (NAT)

networks. There are many different ways to use IPSec, but, when used in AH (Authentication Header)
mode, NAT will break IPSec functionality.

This underscores the importance of determining if NAT is the best solution for the problem. There are
kernel modules to help handle many (though not all) of the application layer protocol when using NAT,
but some protocols, such as IPSec in AH mode simply cannot be used with NAT.

Stateless NAT with iproute2
Stateless NAT, occasionally maligned as dumb NAT 2, is the simplest form of NAT. It involves rewriting
addresses passing through a routing device: inbound packets will undergo destination address rewriting
and outbound packets will undergo source address rewriting. The iproute2 suite of tools provides the
two commands required to configure the kernel to perform stateless NAT. This section will cover only
stateless NAT, which can only be accomplished under linux with the iproute2 tools, although it can be
simulated with netfilter.

Creating an iproute2 NAT mapping has the side effect of causing the kernel to answer ARP requests for
the NAT IP. For more detail on ARP filtering, suppression and conditional ARP, see Chapter 2. This can
be considered, alternatively, a benefit or a misfeature of the kernel support for NAT. The nat entry in the
local routing table causes the kernel to reply for ARP requests to the NAT IP. Conversely, netfilter DNAT
makes no ARP entry or provision for neighbor advertisement.

Whether or not it is using a packet filter, a linux machine can perform NAT using the iproute2 suite of
tools. This chapter will document the use of iproute2 tools for NAT with a simple example and an
explanation of the required commands, then an example of using NAT with the RPDB and using NAT
with a packet filter.

NAT with iproute2 can be used in conjunction with the routing policy database (cf. RPDB) to support
conditional NAT, e.g. only perform NAT if the source IP falls within a certain range. See the Section
called Conditional Stateless NAT.

Stateless NAT Packet Capture and Introduction
Assume that example company in example network wants to provide SMTP service on a public IP
(205.254.211.0/24) but plans to move to a different IP addressing space in the near future. Network
address translation can assist example company prepare for the move. The administrator will select an IP
on the internal network (192.168.100.0/24) and configure the router to accept and translate packets for
the publicly reachable IP into the private IP.

Example 5-1. Stateless NAT Packet Capture 3

[root@masq-gw]# tcpdump -qnn
19:30:17.824853 eth1 < 64.70.12.210.35131 > 205.254.211.17.25: tcp 0 (DF) ➊

19:30:17.824976 eth0 > 64.70.12.210.35131 > 192.168.100.17.25: tcp 0 (DF) ➋

19:30:17.825400 eth0 < 192.168.100.17.25 > 64.70.12.210.35131: tcp 0 (DF) ➌

19:30:17.825568 eth1 > 205.254.211.17.25 > 64.70.12.210.35131: tcp 0 (DF) ➍

51

Chapter 5. Network Address Translation (NAT)

➊ The first packet comes in on eth1, masq-gw’s outside interface. The packet is addressed to the NAT
IP, 205.254.211.17 on tcp/25. This is the IP/port pair on which which our service runs. This is a
snapshot of the packet before it has been handled by the NAT code.

➋ The next line is the "same" packet leaving eth0, masq-gw’s inside interface, bound for the internal
network. The NAT code has substituted the real IP of the server, 192.168.100.17. This rewriting is
handled by the nat entry in the local routing table (ip route). See also Example 5-2.

➌ The SMTP server then sends a return packet which arrives on eth0. This is the packet before the
NAT code on masq-gw has rewritten the outbound packet. This rewriting is handled by the RPDB
entry (ip rule). See also Example 5-2.

➍ Finally, the return packet is transmitted on eth1 after having been rewritten. The source IP address
on the packet is now the public IP on which the service is published.

Stateless NAT Practicum
There are only a few commands which are required to enable stateless NAT on a linux routing device.
The commands below will configure the host masq-gw (see the Section called Example Network Map
and General Notes in Appendix A and the Section called Example Network Addressing Charts in
Appendix A) as shown above in Example 5-1.

Example 5-2. Basic commands to create a stateless NAT

[root@masq-gw]# ip route add nat 205.254.211.17 via 192.168.100.17 ➊

[root@masq-gw]# ip rule add nat 205.254.211.17 from 192.168.100.17 ➋

[root@masq-gw]# ip route flush cache ➌

[root@masq-gw]# ip route show table all | grep ^nat ➍

nat 205.254.211.17 via 192.168.100.17 table local scope host

[root@masq-gw]# ip rule show ➎

0: from all lookup local

32765: from 192.168.100.17 lookup main map-to 205.254.211.17

32766: from all lookup main

32767: from all lookup 253

➊ This command tells the kernel to perform network address translation on any packet bound for
205.254.211.17. The parameter via tells the NAT code to rewrite the packet bound for
205.254.211.17 with the new destination address 192.168.100.17. Note, that this only handles
inbound packets; that is, packets whose destination address contains 205.254.211.17.

➋ This command enters the corresponding rule for the outbound traffic into the RPDB (kernel 2.2 and
up). This rule will cause the kernel rewrite any packet from 192.168.100.17 with the specified source
address (205.254.211.17). Any packet originating from 192.168.100.17 which passes through this
router will trigger this rule. In short, this command rewrites the source address of outbound packets
so that they appear to originate from the NAT IP.

➌ The kernel maintains a routing cache to handle routing decisions more quickly (the Section called
Routing Cache in Chapter 4). After making changes to the routing tables on a system, it is good

52

Chapter 5. Network Address Translation (NAT)

practice to empty the routing cache with ip route flush cache. Once the cache is empty, the
kernel is guaranteed to consult the routing tables again instead of the routing cache.

➍➎ These two commands allow the user to inspect the routing policy database and the local routing
table to determine if the NAT routes and rules were added correctly.

Conditional Stateless NAT
NAT introduces a complexity to the network in which it is used because a service is reachable on a public
and a private IP. Usually, this is a reasonable tradeoff or else stateless NAT would fail in the selection
process. In the case that the linux routing device is connected to a public network and more than one
private network, there is more work to do.

Though the service is available to the public network on a public (NAT) IP, internal users may need to
connect to the private or internal IP.

This is accomplished by use of the routing policy database (RPDB), which allows conditional routing
based on packet characteristics. For a more complete explanation of the RPDB, see the Section called
Routing Policy Database (RPDB) in Chapter 4. The routing policy database can be manipulated with the
ip rule command. In order to successfully configure NAT, familiarity with the ip rule command is
required.

Example 5-3. Conditional Stateless NAT (not performing NAT for a specified destination network)

[root@masq-gw]# ip rule add to 192.168.99.0/24 from 192.168.100.17
[root@masq-gw]# ip route flush cache
[root@masq-gw]# ip rule show
0: from all lookup local

32764: from 192.168.100.17 to 192.168.99.0/24 lookup main

32765: from 192.168.100.17 lookup main map-to 205.254.211.17

32766: from all lookup main

32767: from all lookup 253

Note that we now have an entry of higher priority in the RPDB for any packets returning from
192.168.100.17 bound for 192.168.99.0/24. The rule tells the kernel to find the route for 192.168.99.0/24
(from 192.168.100.17) in the main routing table. This exception to the NAT mapping of our public IP to
our internal server will allow the hosts in our second internal network to reach the host named isolde on
its private IP address.

If tristan were to initiate a connection to isolde now, the packet would return from IP 192.168.100.17
instead of being rewritten from 205.254.211.17.

Now we have had success creating a NAT mapping with the iproute2 tools and we have successfully
made an exception for another internal network which is connected to our linux router. Now, supposing
we learn that we will be losing our IP space next week, we are prepared to change our NAT rules without
readdressing our server network.

53

Chapter 5. Network Address Translation (NAT)

Naturally, you may not wish to create these rules manually every time you want to use NAT on every
device. A standard SysV initialization script and configuration file can ease the burden of managing a
number of NAT IPs on your system.

Stateless NAT and Packet Filtering
Because NAT rewrites the packet as it passes through the IP stack, packet filtering can become complex.
With attentiveness to the addressing of the packet at each stage in its journey through the packet filtering
code, you can ease the burden of writing a packet filter.

All of the below requirements can be deduced from an understanding of NAT and the path a packet takes
through the kernel. Consult also the ipchains packet path
(http://www.tldp.org/HOWTO/IPCHAINS-HOWTO-4.html#ss4.1) as illustrated in the ipchains
HOWTO (http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html) to understand the packet path when
using ipchains. Keep in mind when viewing the ASCII diagram that stateless NAT will always occur in
the routing stage. Also consult the kernel packet traveling diagram
(http://docum.org/stef.coene/qos/kptd/) for a good picture of a 2.4 kernel packet path.

Table 5-1 identifies the IP addresses on a packet traversing each of the input, forward and output chains
in an ipchains installation.

Table 5-1. Filtering an iproute2 NAT packet with ipchains

Inbound to the NAT IP

Chain Source IP Destination IP

input 64.70.12.210 205.254.211.17

Routing Stage

forward 64.70.12.210 192.168.100.17

output 64.70.12.210 192.168.100.17

Outbound from the real IP

Chain Source IP Destination IP

input 192.168.100.17 64.70.12.210

Routing Stage

forward 205.254.211.17 64.70.12.210

output 205.254.211.17 64.70.12.210

A firewall implementing a tight policy (deny all, selectively allow) will require a large number of
individual rules to allow the NAT packets to traverse the firewall packet filter. Assuming the configuration
detailed in Example 5-1, the following set of chains is required and will restrict access to only port 25 4.

Example 5-4. Using an ipchains packet filter with stateless NAT

[root@masq-gw]# ipchains -I input -i eth1 -p tcp -l -y -s 0/0 1024:65535 -d 205.254.211.17 25 -
j ACCEPT

54

Chapter 5. Network Address Translation (NAT)

[root@masq-gw]# ipchains -I input -i eth1 -p tcp ! -y -s 0/0 1024:65535 -d 205.254.211.17 25 -
j ACCEPT
[root@masq-gw]# ipchains -I forward -p tcp -s 0/0 1024:65535 -d 192.168.100.17 25 -
j ACCEPT
[root@masq-gw]# ipchains -I output -i eth0 -p tcp -s 0/0 1024:65535 -d 192.168.100.17 25 -
j ACCEPT
[root@masq-gw]# ipchains -I input -i eth0 -p tcp ! -y -s 192.168.100.17 25 -d 0/0 1024:65535 -
j ACCEPT
[root@masq-gw]# ipchains -I forward -p tcp -s 205.254.211.17 25 -d 0/0 1024:65535 -
j ACCEPT
[root@masq-gw]# ipchains -I output -i eth1 -p tcp -s 205.254.211.17 25 -d 0/0 1024:65535 -
j ACCEPT
[root@masq-gw]# for icmptype in \
> destination-unreachable source-quench time-exceeded parameter-problem; do
> ipchains -I input -i eth1 -p icmp -s 0/0 $icmptype -d 205.254.211.17 -
j ACCEPT
> ipchains -I forward -p icmp -s 0/0 $icmptype -d 192.168.100.17 -
j ACCEPT
> ipchains -I output -i eth0 -p icmp -s 0/0 $icmptype -d 192.168.100.17 -
j ACCEPT
> ipchains -I input -i eth0 -p icmp -s 192.168.100.17 $icmptype -d 0/0 -
j ACCEPT
> ipchains -I forward -p icmp -s 205.254.211.17 $icmptype -d 0/0 -
j ACCEPT
> ipchains -I output -i eth1 -p icmp -s 205.254.211.17 $icmptype -d 0/0 -
j ACCEPT
> done

Please note that the formatting of the commands is simply for display purposes, and to allow for easier
reading of a complex set of commands. The above set of rules is 31 individual chains. This is most
certainly a complex set of rules. For further details on how to use ipchains please see the ipchains
HOWTO (http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html). The salient detail you should
notice from the above set of rules is the difference between the IPs used in the input and forward chains.
Since packets are rewritten by the stateless NAT code in the routing stage, the transformation of the
packet will by complete before the forward chain is traversed.

The first two lines cover all inbound TCP packets, the first line as a special case of the second, indicating
(-l) that we want to log the packet. After successfully traversing the input chain, the packet is routed, at
which point the destination address of the packet has changed. Now, we need to forward the packet from
the public source address to the private (or real) internal IP address. Finally, we need to allow the packet
out on the internal interface.

The next set of rules handles all of the TCP return packets. On the input rule, we are careful to match
only non-SYN packets from our internal server bound for the world. Once again, the packet is rewritten
during the routing stage. Now in the forward chain, the packet’s source IP is the public IP of the service.
Finally, we need to let the packet out on our external interface.

The next series of lines are required ICMP rules to prevent network traffic from breaking terribly. These
types of ICMP, particularly destination unreachable (ICMP 3) and source quench (ICMP 4) help to
ensure that TCP sessions run with optimized characteristics.

55

Chapter 5. Network Address Translation (NAT)

These rules are the minimum set of ipchains rules needed to support a NAT’d TCP service. This
concludes our discussion of publishing a service to the world with iproute2 based NAT and protecting
the service with ipchains. As you can see, the complexity of supporting NAT with iproute2 can be
substantial, which is why we’ll examine the benefits of inbound NAT (DNAT) with netfilter in the next
section.

Destination NAT with netfilter (DNAT)
Destination NAT with netfilter is commonly used to publish a service from an internal RFC 1918
network to a publicly accessible IP. To enable DNAT, at least one iptables command is required. The
connection tracking mechanism of netfilter will ensure that subsequent packets exchanged in either
direction (which can be identified as part of the existing DNAT connection) are also transformed.

In a devilishly subtle difference, netfilter DNAT does not cause the kernel to answer ARP requests for the
NAT IP, where iproute2 NAT automatically begins answering ARP requests for the NAT IP.

Example 5-5. Using DNAT for all protocols (and ports) on one IP

[root@real-server]# iptables -t nat -A PREROUTING -d 10.10.20.99 -j DNAT --to-destination 10.10.14.2

In this example, all packets arriving on the router with a destination of 10.10.20.99 will depart from the
router with a destination of 10.10.14.2.

Example 5-6. Using DNAT for a single port

[root@real-server]# iptables -t nat -A PREROUTING -p tcp -d 10.10.20.99 --dport 80 -
j DNAT --to-destination 10.10.14.2

Full network address translation, as performed with iproute2 can be simulated with both netfilter SNAT
and DNAT, with the potential benefit (and attendent resource consumption) of connection tracking.

Example 5-7. Simulating full NAT with SNAT and DNAT

[root@real-server]# iptables -t nat -A PREROUTING -d 205.254.211.17 -j DNAT --to-
destination 192.168.100.17
[root@real-server]# iptables -t nat -A POSTROUTING -s 192.168.100.17 -j SNAT --to-
destination 205.254.211.17

56

Chapter 5. Network Address Translation (NAT)

Port Address Translation with DNAT

Port Address Translation (PAT) from Userspace
Port address translation (hereafter PAT) provides a similar functionality to NAT, but is a more specific
tool. PAT forwards requests for a particular IP and port pair to another IP port pair. This feature is
commonly used on publicly connected hosts to make an internal service available to a larger network.

PAT will break in strange and wonderful ways if there is an alternate route between the two hosts
connected by the port address translation.

PAT has one important benefit over NAT (with the iproute2 tools). Let’s assume that you have only five
public IP addresses for which you have paid dearly. Additionally, let’s assume that you want to run
services on standard ports. You had hoped to connect four SMTP servers, two SSH servers and five
HTTP servers. If you had wanted to accomplish this with NAT, you’d need more IP space.

Transparent PAT from Userspace

Notes
1. If using stateless NAT, the inbound and outbound translations can occur on more than one device,

provided that all of the devices are performing the same translation.

2. In the kernel code tree, stateless NAT, iproute2 NAT can be located in the file
net/ipv4/ip_nat_dumb.c. Even in the kernel, it has this reputation.

3. If you are having some difficulty understanding the output of tcpdump, please see the section on
tcpdump.

4. I assume here that the user has a restrictive default policy on the firewalling device. I suggest a policy
of DENY on each of the built in ipchains chains.

57

Chapter 6. Masquerading and Source Network
Address Translation

Masquerading for connections or traffic initiated from inside a network. Consider reading Chapter 5 for
details on handling inbound traffic or connections.

Masquerading has been supported under the linux kernel since before kernel 2.0. The technique of
masquerading

Concepts of Source NAT

Differences Between SNAT and Masquerading
Though SNAT and masquerading perform the same fundamental function, mapping one address space
into another one, the details differ slighly. Most noticeably, masquerading chooses the source IP address
for the outbound packet from the IP bound to the interface through which the packet will exit.

Double SNAT/Masquerading

Issues with SNAT/Masquerading and Inbound Traffic

Where Masquerading and SNAT Break

58

Chapter 7. Packet Filtering
It is not an uncommon story today to hear how people were first exposed to linux. Many people found
linux an excellent and reliable masquerading firewall in the mid-1990s and slowly became more and
more accustomed to working with linux as a result of the low total cost of ownership.

The capabilities of packet filtering tools available under linux today dwarfs that of early linux (ipfwadm,
anybody?) yet retains the reliability and expressive flexibility of the older tools.

For networks and machines directly connected to the Internet, packet filtering is no longer an option, but
a need. This chapter will introduce the packet filtering tools available under kernels 2.2 and 2.4. Since
there is much available documentation on packet filtering, host protection and masquerading with a
packet filter, this chapter will refer liberally to external resources.

This chapter begins with an introduction to and the history of packet filtering with linux. After covering
some of the weaknesses of packet filtering, it will cover the netfilter architecture, and then delve into
using iptables. An introduction to the use of ipchains will follow along with introductions to host and
network protection. The chapter will close with an overview of further resources.

Rationale for and Introduction to Packet Filtering
Packet filtering refers to the technique of conditionally allowing or denying packets entering or exiting a
network or host based on the characteristics of that packet. There are two fundamental types of packet
filters. A static packet filter is a set of rules against which every packet is checked, and allowed or denied.

A dynamic packet filter keeps track of the connections currently passing the firewall. This is usually
described as a stateful or dynamic packet filtering engine. Netfilter provides the capability for linux
(2.4+) to operate as a stateful packet filtering device.

The network layer portion of a firewall solution, packet filtering is one part of a good security stance. As
the embodiment and manifestation of an organizational security policy for network layer traffic, the
packet filter restricts traffic flows between networks and hosts. There is tremendous value from a security
perspective in enforcing these traffic flows, instead of allowing arbitrary traffic flow.

The use of packet filtering to enforce these traffic flows is not restricted to routers and firewalls alone.
Standalone servers and workstations can use these very same tools to protect themselves. There are a
couple of common approaches to packet filtering. Generally, network security professionals subscribe to
the notion that the filtering policy should deny or drop all traffic and selectively allow desired traffic. An
alternate, more open, policy suggests allowing everything, selectively blocking undesirable traffic.

The languages used in most packet filtering tools for describing IP packets allow for a great deal of
specifity when identifying traffic. This specifity enables an administrator a great deal of flexibility for
protecting resources and limiting traffic flows.

History of Linux Packet Filter Support
Packet filtering under linux has a long history, punctuated by major alterations in the packet filtering
systems included in the kernel. In the mid- and late-1990s, ipfwadm exposed the three packet filtering

59

Chapter 7. Packet Filtering

chains of kernel 2.0 to the user: in, forward, and out. Individual entries added to these chains would be
traversed in order in the ruleset. The first matching rule in each chain would be used, and every packet
passing through a router would traverse each of these chains.

With the advent of linux 2.2, users could create their own chains and chain structures. The kernel
architecture was different, but from the user’s perspective, the manner in which the rules were written
was only slightly different. Rule chains, traversed rather like subroutines and manipulated with ipchains,
could be arbitrarily complex and nested. The built-in packet filtering chains are input, output and
forward. The first matching rule in any chain called from one of the built-in chains would be used. Every
packet passing through a router would traverse (at least) the three built-in rule chains. There is backward
compatible support for ipfwadm syntax via a wrapper shell script which converts the command to an
ipchains syntax.

In kernel 2.4, the netfilter architecture which provides functionality other than packet filtering, allows
users to create the arbitrary chains and chain structures similar to those supported by linux 2.2. The built
in chains are INPUT, FORWARD, and OUTPUT. A major difference in the use of chains was introduced
in linux 2.4; packets passing through a router will traverse the FORWARD chain only. User-defined
iptables chains resemble branches rather than subroutines. Under linux 2.4, ipchains compatibility is
maintained with a kernel module. For ipfwadm compatibility, the kernel module and the aforementioned
wrapper shell script function adequately.

The packet filtering support under linux has grown increasingly complex and mature with successive
kernels and development efforts on the user space tools. The netfilter architecture of linux 2.4
represented a tremendous step forward in the packet filtering capabilities of linux with support for
stateful packet filtering.

Limits of the Usefulness of Packet Filtering
Although the functionality offered by linux kernels for protecting network resources with packet filtering
allows tremendously specific network layer access control and auditing capability, it alone cannot
successfully and completely protect network resources. There are limits to the usefulness of packet
filters.

In cases where a packet filter restricts access to a resource based on the source IP address attempting to
access that resource, the packet filter cannot verify whether the packets originate from the real device or
from a host or router spoofing this source address. A transparent proxy illustrates this problem perfectly.
A transparent proxy frequently runs on a masquerading or NAT host which is connected to the Internet.
This machine intercepts outbound connections for a particular protocol (e.g, HTTP), and simulates the
real server to the client. The client may have a packet filter limiting outbound connections to a single IP
and port pair, but the transparent proxy will still operate on the outbound connection.

This is an innocuous example, indeed. A potentially more threatening example is an ssh server which
accepts connections only from an IP range. Any router between the two endpoints which can spoof IP
packets will be able to pass the packet filter, whether it is a stateful or a static packet filter. This should
underscore the importance of solid application layer security in addition to the need for judiciously
employed packet filtering.

A packet filter makes no effort to validate the contents of a data stream, so data passed over a packet filter
may be bogus, invalid or otherwise incorrect. The packet filter only verifies that the network layer
datagrams are correctly addressed and well-formed 1. Many security devices, such as firewalls, include

60

Chapter 7. Packet Filtering

support for proxies, which are application aware. These are security mechanisms which can validate data
streams. Proxies are often integrated with packet filters for a tight network layer and application layer
firewall.

Another area of network security which is not addressed by packet filtering is encryption. Encryption can
be used at a number of different layers in a networked environment. Compare IPSec, encrypted packets,
with Secure Sockets Layer (SSL), which encrypts a single application layer session. IPSec operates at
layer 3, while SSL operates above layer 4. Packet filtering does not directly address the issue of
encryption in any way.

There are a few good starting place for users wishing for some guidelines on securing machines. First,
the Security Quickstart HOWTO (http://tldp.org/HOWTO/Security-Quickstart-HOWTO/index.html) is a
good place to begin. There is also the Security HOWTO (http://tldp.org/HOWTO/Security-HOWTO/).
These and several other good general security resources are also available via linuxsecurity.com’s
documentation area (http://www.linuxsecurity.com/docs/).

Much of the previous discussion applies to packet filtering in general, and linux suffers from the same
limitations of packet filtering. It is folly to assume that a good packet filter makes a network immune
from security issues.

Weaknesses of Packet Filtering
Stateless packet filters. (cf. iptables connection tracking), cf. state vs. stateless discussion.

Use of ICMP, when to block ICMP; tunneling through lax packet filters with ICMP (trinoo, ICMPchat).

spoofed source addresses, xref binding non-local addresses

confounded application layer protocols like FTP, H323

DoS on connection tracking packet filters

DoS on rate limiters ?

Complex Network Layer Stateless Packet Filters

General Packet Filter Requirements
minimum ICMP required to meet the networking needs; xref PMTU discussion

source quench

parameter problem

inbound destination unreachable

outbound destination unreachable fragmentation needed

optional: echo request and echo reply

61

Chapter 7. Packet Filtering

optional: outbound destination unreachable

optional: time exceeded

The Netfilter Architecture
packet filtering engine in kernel 2.2 (skip history, adequately documented elsewhere)

packet filtering engine as part of netfilter in kernel 2.4, backwards compatible support for ipchains

differences between the packet traversal in ipchains and iptables. link to Stef Coene’s KPTD (kernel 2.4).
Anybody know of a link to a KPTD for kernel 2.2?

Packet Filtering with iptables
selecting on interface

different chains, INPUT, OUTPUT, FORWARD

big picture; how chains are traversed

selecting on interface -i -o

targets; ACCEPT, DROP, REJECT....

Packet Filtering with ipchains
the three builtin chains, input, output, forward

policy per chain, see targets

jumping from chain to chain, -j $TARGET; wher TARGET=chain

the big picture; how chains are traversed

targets (other than chains) ACCEPT, DENY, REJECT....

selecting on interface

Packet Mangling with ipchains

62

Chapter 7. Packet Filtering

Protecting a Host
Host protection in the past was typically performed with application layer checks on the originating IP or
hostname. This was (and still is) frequently accomplished with libwrap, which verifies whether or not to
allow a connection based on the contents of the system wide configuration files /etc/hosts.allow
and /etc/hosts.deny.

Host protection is one part of protecting a host, by preventing inbound packets from reaching higher
layers. This is no substitute for tight application layer security. Strong network and host-level packet
filters mitigate a host’s exposure when it is connected to a network.

Example 7-1. Blocking a destination and using the REJECT target, cf. Example D-17

[root@masq-gw]# iptables -I FORWARD -p tcp -d 209.10.26.51 --dport 22 -j REJECT
[root@tristan]# ssh 209.10.26.51
ssh: connect to address 209.10.26.51 port 22: Connection refused

[root@masq-gw]# tcpdump -nnq -i eth2
tcpdump: listening on eth2

22:16:59.111947 192.168.99.35.51991 > 209.10.26.51.22: tcp 0 (DF)

22:16:59.112270 192.168.99.254 > 192.168.99.35: icmp: 209.10.26.51 tcp port 22 unreach-

able (DF) [tos 0xc0]

Protecting a Network

Further Resources
The use of linux packet filtering features is mature and well-documented in many places throughout the
Internet. One of the most thorough introductions to the use of iptables has been collected by Oskar
Andreasson at his Iptables tutorial (http://iptables-tutorial.frozentux.net/). For further reference material
on the use of iptables consult this resource.

For those continuing to use ipchains the ipchains HOWTO
(http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html) courtesy of TLDP provides an introduction to
the world of ipchains.

For kernel 2.4, understanding the sequence of packet mangling, filtering and network address translation
is key. The kernel packet traveling diagram (http://www.docum.org/stef.coene/qos/kptd/) provides a
visual representation of the path a packet takes through the kernel. Here you will see the netfilter hooks,
traffic control, and routing stages. A similar picture of kernel 2.4’s packet path is available in a single
page PDF entitled Linux Kernel 2.4 Packet handling
(http://open-source.arkoon.net/kernel/kernel_net.png).

See also the Section called ipchains Resources in Appendix I and the Section called Netfilter Resources
in Appendix I in the appendices for a more complete set of references and links.

63

Chapter 7. Packet Filtering

Notes
1. In truth, there is some examination of data inside the network layer datagram. Almost all packet

filtering engines allow the user to distinguish between the different IP protocol types, such as GRE,
TCP, UDP, ICMP, and even attributes of these datagrams and segments. The important thing to
realize is that a packet filter makes no effort to examine the data stream.

64

Chapter 8. Statefulness and Statelessness

Statelessness of IP Routing

Netfilter Connection Tracking

65

II. Cookbook
The content in this part is intended as a practical, hands-on guide to users wanting real, tested solutions.

The remainder of this documentation is written in a less formal style, and is heavy on examples. It should
be viewed as practical explication of the above chapters.

Chapter 9. Advanced IP Management
In many of the previous chapters, we have covered the many of the key elements required to understand
basic networking with linux. In this chapter, we will introduce a few new concepts, but will endeavor to
put some of the ideas together to solve practical networking problems.

Multiple IPs and the ARP Problem
ARP flux. /proc/sys/net/ipv4/conf/all/hiddenNothing here for now. Refer to the Section
called The ARP Flux Problem in Chapter 2.

Multiple IP Networks on one Ethernet Segment
Media share; IP overlay; compare VLANS; consider bridging; consider migrating from one IP space to
another (vrrpd, anybody?).

Breaking a network in two with proxy ARP
Proxy ARP is a technique for splitting an IP network into two separate segments. Hosts on one segment
can only reach hosts in the other segment through the router performing proxy ARP. If a router sits
between two parts of an IP network and is not running bridging software, then routes to hosts in each
segment and proxy ARP are required on the router to allow each half of the network to communicate
with the other half.

Occasionally, this technique is incorrectly called proxy ARP bridging. An Ethernet bridge operates on
frames and a router operates on packets. The proxy ARP router should have routes to all hosts on both
segments. Once the router can reach all locally connected destinations via the correct interfaces, you can
begin to configure the proxy ARP functionality.

Although proxy ARP complicates a network, a great advantage of proxy ARP technique is the greater
control over IP connections between hosts.

There are two primary proxy ARP techniques. With the 2.4 kernel, it is possible to use the sysctl
net/ipv4/conf/all/proxy_arp to perform proxy ARP. Alternatively, manual population of the
ARP table reaches the same end.

The key part of the correct functioning of proxy ARP in a network is that the host breaking a network
into two parts has correct routes for all destinations in both halves of the network. If the host which has
interfaces in both networks does not have an accurate routing table, IP packets will get dropped on the
routing device.

One common method of breaking a network in two involves making a very small stub subnet at one end
or the other of the IP range. This small subnet (maybe as small as a /30 network, with two usable IPs)
makes an excellent sequestered location for a host which requires more protection or even, a generally
untrusted host which shouldn’t have complete access to the Ethernet to which the other machines
connect.

67

Chapter 9. Advanced IP Management

For a practical example of this, see the relationship between the service-router, masq-gw and isolde in
the network map. isolde and service-router share the same IP network, 192.168.100.0/24. If either has a
packet for the other, it will generate an ARP request which should be answered by masq-gw. Naturally,
masq-gw has its routes configured in such a way that both hosts are reachable from it. Thus, the packet
will successfully pass through masq-gw.

Let’s examine what the sequence of events is by which the packet will reach service-router from isolde.
In this example, isolde will send an echo request packet to service-router. Please also refer to the Section
called arp in Appendix B for examples and command lines to create a proxy ARP configuration.

• the admin on isolde creates an echo request packet for 192.168.100.1 with ping

• isolde sends an ARP request for the owner of 192.168.100.1

• masq-gw replies that isolde should send packets for 192.168.100.1 to its Ethernet address,
00:80:c8:f8:5c:71

• masq-gw receives the packet, unwraps it and selects eth3 as the output interface

• masq-gw sends an ARP request for the owner of 192.168.100.1

• service-router replies that masq-gw should send packets for 192.168.100.1 to its Ethernet address,
00:c0:7b:7d:00:c8

• service-router receives the packet unwraps it and hands it up the IP stack, which generates an echo
reply bound for the source address, 192.168.100.17 (isolde’s IP)

• service-router sends an ARP request for the owner of 192.168.100.17

• masq-gw replies that service-router should send packets for 192.168.100.17 to its Ethernet address,
00:80:c8:f8:5c:74

• masq-gw receives the packet, unwraps it and selects eth0 as the output interface

• masq-gw sends an ARP request for the owner of 192.168.100.17

• isolde replies that masq-gw should send packets for 192.168.100.17 to its Ethernet address,
00:80:c8:e8:4b:8e

• isolde receives the reply, unwraps it and hands it up the IP stack to the awaiting ping command

Where possible, a simplified network is easier to maintain, but occasionally, this sort of trickery is
necessary. This is an excellent way to insert a firewall into the middle of a network. The firewall,
naturally, has to have its routes set properly, and proxy ARP entries will be required for routers.

Now, here’s a short script and configuration file which can be run as a SysVInit style script. This script
provides a great deal of control over the ARP table directly so may be preferable in some cases to an
alternate solution outlined below. This proxy-arp script reads the following configuration file. Each is
commented heavily so it should be clear how to use them.

This chapter discussed how to break a network in twain with proxy ARP techniques. For another
explanation of the same concepts, read the Proxy ARP Subnet mini-HOWTO
(http://www.linuxpowered.com/HOWTO/mini/Proxy-ARP-Subnet/). Available in most (all?) 2.4 kernels
is built-in capability for Proxy ARP. This is documented in deeper detail above. Consider familiarizing
yourself with the methods of suppressing and controling ARP through Julian Anastasov’s work
(http://www.ssi.bg/~ja/).

68

Chapter 9. Advanced IP Management

Multiple IPs on an Interface
Don’t forget to add something here about multiple IPs bound to loopback; and refer to Julian’s work.
FIXME

Multiple connections to the same Ethernet
Assume a machine has multiple connections to the same Ethernet segment, and has individual IPs bound
to each interface. A peculiar feature of linux is its willingness to respond to ARP requests for any IP
bound to any interface. This can lead to ARP flux, a situation where a given IP is sometimes accessed on
one MAC address and sometimes another.

/proc/sys/net/ipv4/conf/all/hidden; consider arp suppression issues.

Multihomed Hosts
Consider ARP suppression issues. Leakage of sensitive (IP addressing) information from other
interfaces.

Binding to Non-local Addresses

FIXME!! Don’t forget to note that iproute2 NAT and binding to non-local IPs do not play well together. I
disagree with this (http://www.cs.helsinki.fi/linux/linux-kernel/2001-22/0813.html). Binding to a
non-local socket, which was possible under kernel 2.2 with when the kernel was compiled with
CONFIG_IP_TRANSPROXY, is available under kernel 2.4 via the /proc IP sysctl interface. If you
wish to be able to bind to non-local sockets:

echo 1 > /proc/sys/net/ipv4/ip_nonlocal_bind

Thanks go to Oskar Andreasson for his IP sysctl tutorial page. If using sysctl to allow binding to
non-local IP doesn’t solve your problem, then see if netfilter NAT can be used to solve this class of
problem. Some people view the technique of binding to non-local IPs as spoofing, and indeed, it can be
used for nefarious purposes, if an attacker controls a machine on the route between a target and a victim.

69

Chapter 10. Advanced IP Routing

Introduction to Policy Routing

Overview of Routing and Packet Filter Interactions
One of the most difficult aspects of working with the advanced routing features of linux is gaining an
understanding the sequence of events as a packet traverses the kernel space. It is, in fact, the key
knowledge needed to grasp the potential of advanced routing scenarios and to troubleshoot successfully
when things don’t go as planned.

If you are reading this for the first time, stop now and go visit and study the kernel packet traveling
diagram (http://docum.org/stef.coene/qos/kptd/) and the kernel packet handling diagram
(http://open-source.arkoon.net/kernel/kernel_net.png) now. These represent two different efforts to
describe the order in which different networking subsystems inside the linux kernel have an opportunity
to inspect, manipulate and redirect a packet. Understanding this sequence of events is key to harnessing
the power of linux networking.

Now, let’s examine some of the different commands you can use to manipulate packets at each of these
stages. The list below describes the sequence of events for a packet bound for a non-local destination.

Packet Traversal; Non-Local Destination

• All of the PREROUTING netfilter hooks are called here. This means that we get our first opportunity
to inspect and drop a packet, we can perform DNAT on the packet to make sure that the destination IP
is rewritten before we make a routing decision (at which time the destination address becomes very
important). We can also set ToS or an fwmark on the packet at this time. If we want to use an IMQ
device for ingress control, we can put our hooks here.

• If we are using ipchains, the input chain is traversed.

• Any traffic control on the real device on which the packet arrived is now performed.

• The input routing stage is traversed by any packet entering the local machine. Here we concern
ourselves only with packets which are routed through this machine to another destination Additionally,
iproute2 NAT occurs here 1.

• The packet enters the FORWARD netfilter hooks. Here, the packet can be mangled with ToS or
fwmark. After the mangle chain is passed, the filter chain will be traversed. For kernel 2.4-based
routing devices this will be the location for packet filtering rules. If we are using ipchains, the forward
chain would be traversed here instead of the netfilter FORWARD hooks.

• The output chain in an ipchains installation would be traversed here.

• The POSTROUTING netfilter hooks are traversed. These include packet mangling, NAT and IMQ for
egress.

• Finally, the packet is transmitted via the outbound device per traffic control configuration on that
outbound device.

70

Chapter 10. Advanced IP Routing

The above describes the sequence of events for packets passing through the linux routing device. Let’s
look at a similar descriptions of the paths that packets bound for local destinations take through the
kernel.

Packet Traversal; Local Destination

• All of the PREROUTING netfilter hooks are called here. This means that we get our first opportunity
to inspect and drop a packet, we can perform DNAT on the packet to make sure that the destination IP
is rewritten before we make a routing decision (at which time the destination address becomes very
important). We can also set ToS or an fwmark on the packet at this time. If we want to use an IMQ
device for ingress control, we can put our hooks here.

• If we are using ipchains, the input chain is traversed.

• Any traffic control on the real device on which the packet arrived is now performed.

• The input routing stage is traversed by any packet entering the local machine. Here we concern
ourselves with packets bound for local destinations only.

• The INPUT netfilter hooks are traversed. Commonly this is filtering for inbound connections, but can
include packet mangling.

• The local destination process receives the connection. If there is no open socket, an error is generated.

Naturally, packets need to go out from the machine as well, so let’s look at the path for outbound packets
which were locally generated.

Packet Traversal; Locally Generated

• The process with the open socket sends data.

• The routing decision is made. This is frequently called output routing because it is only for packets
leaving the system. This routing code is (sometimes?) responsible for selecting the source IP of the
outbound packet.

• The netfilter OUTPUT hooks are traversed. The basic filter, nat, and mangle hooks are available. This
is where SNAT can take place.

• The output chain in an ipchains installation would be traversed here.

• The POSTROUTING netfilter hooks are traversed. These include packet mangling, NAT and IMQ for
egress.

• Finally, the packet is transmitted via the outbound device per traffic control configuration on that
outbound device.

Using the Routing Policy Database and Multiple Routing
Tables

Understanding and practically applying the knowledge of how and when to harness the routing features
of linux is a matter of experience. The below is a set of examples for how to use the RPDB and multiple

71

Chapter 10. Advanced IP Routing

routing tables to solve different types of problems. These are but a few simple examples which allude to
the flexibility and power available with the complex policy routing system under linux.

Using Type of Service Policy Routing
Type of Service (ToS) is a flag in the header of an IP packet which is sometimes honored by upstream
routers. Some routers on the Internet respect the ToS flag and others do not, however, the ToS flag can be
used as part of the decision about where to route a given packet (for a refresher on the keys used for
routing to a destination read the Section called Route Selection in Chapter 4). Because it can be used as
part of the routing decision, ToS can be used to select a route separate from the route chosen for normal
packets (packets not marked with any ToS).

Using fwmark for Policy Routing
FIXME!! Don’t forget to point out that fwmark with ipchains/iptables is a decimal number, but that
iproute2 uses hexadecimal number. Thanks to Jose Luis Domingo Lopez for his post
(http://mailman.ds9a.nl/pipermail/lartc/2002q3/005039.html) to the LARTC list!

Policy Routing and NAT

Multiple Connections to the Internet
The questions summarized in this section should rightly be entered into the FAQ, since they are FAQs on
the LARTC list (http://mailman.ds9a.nl/mailman/listinfo/lartc).

There are many places where a linux based router/masquerading device can assist in managing multiple
Internet connections. We’ll outline here some of the more common setups involving multiple Internet
connections and how to manage them with iptables, ipchains, and iproute2. One of the first distinctions
you can make when planning how to use multiple Internet connections is what inbound services you
expect to host and how you want to split traffic over the multiple links.

In the discussion and examples below, I’ll address the issues involved with two separate uplinks to two
different providers. I assume the following:

• You are not using BGP, and you do not have your own AS. If you are using BGP and have your own
AS, you have a different set of problems than the problems described here 2.

• You have two netblocks from two different ISPs.

• You are funneling your internal network through this routing device, which is performing
masquerading/NAT to the Internet.

72

Chapter 10. Advanced IP Routing

Additionally, I’ll restrict my comments to statically assigned public IP address ranges unless I mention
(in particular) dynamically allocated addresses.

In the following sections we’ll look at the use of multiple Internet connections first in terms of outbound
traffic only, then in terms of inbound traffic only. After that, we’ll look at using multiple Internet
connections for handling both inbound and outbound services.

Outbound traffic Using Multiple Connections to the Internet
There are two main uses for multiple Internet links connected to the same internal network. One
common use is to select an outbound link based on the type of outbound service. The other is to split
traffic arbitrarily across multiple ISPs for reasons like failover and to accommodate greater aggregate
bandwidth than would be available on a single uplink.

If your need is the latter, please consult the documentation on the LARTC site
(http://lartc.org/howto/lartc.rpdb.multiple-links.html), as it does a good job of summarizing the issues
involved and describes how to accomplish this. This type of use of multiple Internet connections means
that (from the perspective of the linux routing device), there is a multipath default route. The LARTC
documentation remarks that Julian Anastasov’s patches "make things nicer to work with." The patches to
which the LARTC documents are referring are Julian’s dead gateway detection patches (at least) which
can help the linux routing device provide Internet service to the internal network when one of the links is
down. See here for Julian’s route work (http://www.ssi.bg/~ja/#routes).

In the remainder of this section, we’ll discuss how to classify traffic for different ISPs, how to handle the
packet filtering for this sort of classification scheme, and how to create routing tables appropriate for the
task at hand. If anything at all seems unclear in this section, you may find a quick re-reading of the
advanced routing overview quite fruitful.

The simplest way to split Internet access into two separate groups is by source IP of the outbound packet.
This can be done most simply with ip rule and a second routing table. We’ll assume that masq-gw in the
example network gets a second, low cost network connection through a DSL vendor.

The DSL IP on masq-gw will be 67.17.28.12 with a gateway of 67.17.28.14. We’ll assume that this is for
outbound connectivity only, and that the IP is active on eth4 of the masq-gw machine. Before beginning
let’s outline the process we are going to follow.

• Copy the main routing table to another routing table and set the alternate default route 3.

• Use iptables/ipchains to mark traffic with fwmark.

• Add a rule to the routing policy database.

• Test!

Here’s a short snippet of shell which you may find handy for copying one routing table to another; see
the full script (scripts/copy-routing-table.sh) for a more generalized example.

Example 10-1. Multiple Outbound Internet links, part I; ip route

[root@masq-gw]# ip route show table main
192.168.100.0/30 dev eth3 scope link

67.17.28.0/28 dev eth4 scope link

73

Chapter 10. Advanced IP Routing

205.254.211.0/24 dev eth1 scope link

192.168.100.0/24 dev eth0 scope link

192.168.99.0/24 dev eth0 scope link

192.168.98.0/24 via 192.168.99.1 dev eth0

10.38.0.0/16 via 192.168.100.1 dev eth3

127.0.0.0/8 dev lo scope link

default via 205.254.211.254 dev eth1

[root@masq-gw]# ip route flush table 4
[root@masq-gw]# ip route show table main | grep -Ev ^default \
> | while read ROUTE ; do
> ip route add table 4 $ROUTE
> done
[root@masq-gw]# ip route add table 4 default via 67.17.28.14
[root@masq-gw]# ip route show table 4
192.168.100.0/30 dev eth3 scope link

67.17.28.0/28 dev eth4 scope link

205.254.211.0/24 dev eth1 scope link

192.168.100.0/24 dev eth0 scope link

192.168.99.0/24 dev eth0 scope link

192.168.98.0/24 via 192.168.99.1 dev eth0

10.38.0.0/16 via 192.168.100.1 dev eth3

127.0.0.0/8 dev lo scope link

default via 67.17.28.14 dev eth4

Now, exactly what have we just done? We have created two routing tables on masq-gw each of which has
a different default gateway. We have successfully accomplished the first part of our preparations.

Now, let’s mark the traffic we would like to route in using conditional logic. We’ll use iptables to select
traffic bound for destination ports 80 and 443 originating in the main office desktop network.

Example 10-2. Multiple Outbound Internet links, part II; iptables

[root@masq-gw]# iptables -t mangle -A PREROUTING -p tcp --dport 80 -s 192.168.99.0/24 -
j MARK --set-mark 4
[root@masq-gw]# iptables -t mangle -A PREROUTING -p tcp --dport 443 -s 192.168.99.0/24 -
j MARK --set-mark 4
[root@masq-gw]# iptables -t mangle -nvL
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

0 0 MARK tcp -- * * 192.168.99.0/24 0.0.0.0/0 tcp dpt:80 MARK set 0x4

0 0 MARK tcp -- * * 192.168.99.0/24 0.0.0.0/0 tcp dpt:443 MARK set 0x4

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

[root@masq-gw]# iptables -t nat -A POSTROUTING -o eth4 -j SNAT --to-source 67.17.28.12
[root@masq-gw]# iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to-source 205.254.211.179
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

0 0 SNAT all -- * eth4 0.0.0.0/0 0.0.0.0/0 to:67.17.28.12

74

Chapter 10. Advanced IP Routing

0 0 SNAT all -- * eth1 0.0.0.0/0 0.0.0.0/0 to:205.254.211.179

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

With these iptables lines we have instructed netfilter to mark packets matching these criteria with the
fwmark and we have prepared the NAT rules so that our outbound packets will originate from the correct
IPs.

Once again, it is important to realize that the fwmark added to a packet is only valid and discernible
while the packet is still on the host running the packet filter. The fwmark is stored in a data structure the
kernel uses to track the packet. Because the fwmark is not a part of the packet itself, the fwmark is lost as
soon as the packet has left the local machine. For more detail on the use of fwmark, see the Section
called Using fwmark for Policy Routing.

iproute2 supports the use of fwmark as a selector for rule lookups, so we can use fwmarks in the routing
policy database to cause packets to be conditionally routed based on that fwmark. This can lead to great
complexity if a machine has multiple routing tables, packet filters, and other fancy networking tools,
such as NAT or proxies. Caveat emptor.

A convention I find sensible is to use the same number for a routing table and fwmark where possible.
This simplifies the maintenance of the systems which are using iproute2 and fwmark, especially if the
table identifier and fwmark are set in a configuration file with the same variable name. Since we are
testing this on the command line, we’ll just make sure that we can add the rules first.

Example 10-3. Multiple Outbound Internet links, part III; ip rule

[root@masq-gw]# ip rule add fwmark 4 table 4
[root@masq-gw]# ip rule show
0: from all lookup local

32765: from all fwmark 4 lookup 4

32766: from all lookup main

32767: from all lookup 253

[root@masq-gw]# ip route flush cache

The last piece is in place. Now, users in the 192.168.99.0/24 subnet who are browsing the Internet should
be using the DSL line instead of the T1 line for connectivity.

In order to verify that traffic is indeed getting marked and routed appropriately, you should use tcpdump
to profile the outbound traffic on each link at the same time as you generate outbound traffic on both
links.

The above is a cookbook example of categorizing traffic, and sending the traffic out across different
providers. To my knowledge, the commonest reason to use this sort of solution is to separate traffic by
importance and use a reliable (and perhaps more costly) link for the more important traffic while
reserving the less costly Internet connection for other connections. In the above illustrative case, we have
simply selected the web traffic for the less reliable (DSL) provider.

Once again, if you would like to split load over multiple links regardless of classification of traffic, then
you really want a multipath default route, which is described and documented very well in the LARTC
HOWTO (http://lartc.org/howto/lartc.rpdb.multiple-links.html).

75

Chapter 10. Advanced IP Routing

Inbound traffic Using Multiple Connections to the Internet
There are many different ways to handle hosting servers to multiple ISPs, and most of them are out of the
scope of this document. If you are in need of this sort of advanced networking, you probably already
know where to research. If not, I’d suggest starting your research in load balancing, global load
balancing, failover, and layer 4-7 switching. These are networking tools which can facilitate the
management of a highly available service.

Publishing the same service on two different ISPs is can be formidable challenge. While this is possible
using some of the advanced networking features under linux, one should understand the greater issues
involved with publishing a service on two public IPs, especially if the idea is to provide service to the
general Internet even if one of the ISPs go down. For a thorough examination of the topics involved with
load balancing of all kinds, see Chandra Kopparapu’s book Load Balancing Servers, Firewalls and
Caches.

If you are aware of the many difficult issues involved in handling inbound connections to a network, and
still want to publish a service on two different ISPs (perhaps before you have a more robust load
balancing/upper layer switching technology in place), you’ll find the recipe below.

Before we examine the recipe, let’s look at a complex scenario to see what the crucial points are. If you
do not have the kernel packet traveling diagram (http://www.docum.org/stef.coene/qos/kptd/)
memorized, you may wish to refer to it in the following discussion. One other item to remember is that
routing decisions are stateless 4.

We’ll assume that the client IP is a fixed IP (64.70.12.210) and we’ll discuss how this client IP would
reach each of the services published on masq-gw’s two public networks. The IPs used for the services
will be 67.17.28.10 and 205.254.211.17. Now, whether you are using NAT with iproute2 or with
iptables, you’ll run across the problem here outlined. Here is the flow of the packet through masq-gw to
the server and back to the client.

Inbound NAT to the same server via two public IPs in two different networks

1. inbound packet from 64.70.12.210 to 67.17.28.10 arrives on eth4

2. packet is accepted, rewritten, and routed; from 64.70.12.210 to 192.168.100.17; if iptables DNAT,
packet is rewritten in PREROUTING chain of nat table, then routed; if iproute2, packet is routed
and rewritten simultaneously

3. rewritten packet is transmitted out eth0

4. isolde receives packet, accepts, responds

5. inbound packet from 192.168.100.17 to 64.70.12.210

6. routing decision is made; default route (via 205.254.211.254) is selected; if iproute2 is used, packet
is also rewritten from 67.17.28.10 to 64.70.12.210

7. if iptables DNAT is used, connection tracking will take care of rewriting this packet from
67.17.28.10 to 64.70.12.210

8. packet is transmitted out eth1

This is the problem! The packet may have the correct source address, but it is leaving via the wrong
interface. Many ISPs filter traffic entering their network and will block traffic from your network with
source IPs outside your allocated range. To an ISP this looks like spoofed traffic.

76

Chapter 10. Advanced IP Routing

The solution is marvelously elegant and simple. Select one IP on the internal server which will be
reachable via one provider and one IP which will be reachable via the other provider. By using two IP
addresses on the internal machine, we can use ip rule on masq-gw to select a routing table with a
different default route based upon the source IP of the response packets to clients. Below, we’ll assume
the same routing tables as in the previous section (cf. the Section called Outbound traffic Using Multiple
Connections to the Internet).

Here we have a server isolde which needs to be accessible via two different public IP addresses. We’ll
add an IP address to isolde so that it is reachable on 192.168.100.10 as well as 192.168.100.17. Then, the
following rules on masq-gw will ensure that packets are rewritten and routed in order to avoid the
problem pointed out above.

Example 10-4. Multiple Internet links, inbound traffic; using iproute2 only 5

[root@masq-gw]# ip route add nat 67.17.28.10 via 192.168.100.10
[root@masq-gw]# ip rule add nat 67.17.28.10 from 192.168.100.10 table 4
[root@masq-gw]# ip route add nat 205.254.211.17 via 192.168.100.17
[root@masq-gw]# ip rule add nat 205.254.211.17 from 192.168.100.17
[root@masq-gw]# ip rule show
0: from all lookup local

32765: from 192.168.100.17 lookup main map-to 205.254.211.17

32765: from 192.168.100.10 lookup 4 map-to 67.17.28.10

32766: from all lookup main

32767: from all lookup 253

[root@masq-gw]# ip route show table local | grep ^nat
nat 205.254.211.17 via 192.168.100.17 scope host

nat 67.17.28.10 via 192.168.100.10 scope host

Using Multiple Connections to the Internet for Inbound and
Outbound Connections

Notes
1. Leonardo calls this "dumb NAT" because the NAT performed by iproute2 at the routing stage is

stateless.

2. Anybody who has any experience with linux as a firewall behind a BGP device? Linux as a
firewall/router running BGP? Thoughts? Things I should include here? Yeah, I know about Zebra
(http://www.zebra.org/), but I haven’t ever used it.

3. Sometimes it may not be quite proper to simply copy the main routing table to another routing table.
You may want a subset of hosts on the internal network to access the alternate link. Anybody have
any sage advice here for the newbie in multiple routing tables?

77

Chapter 10. Advanced IP Routing

4. The following discussion is actually a restatement of Wes Hodges’ posting
(http://lists.netfilter.org/pipermail/netfilter/2001-May/011697.html) on his solution to this problem.

5. This example makes no reference to packet filtering. If you are reading this, I assume you are
competent at determining the packet filtering issues. If you have doubts about what rules to add, see
the Section called Stateless NAT and Packet Filtering in Chapter 5.

78

Chapter 11. Scripts for Managing IP
Here are some scripts which may come in handy for manipulating different features of the linux
networking stack. If you’d like, you can get a tarball (scripts/linux-ip-scripts.tar.gz) of these scripts to
take home with you.

Proxy ARP Scripts
The proxy ARP script was written before the kernel supported proxy ARP natively. If you simply want
proxy ARP to work, then you need only enable it in your 2.4 kernel. If you require more control than
afforded by the kernel proxy ARP functionality and you wish to recompile iproute2 and your kernel,
you can use the iproute2 extension, ip arp. Otherwise, you might try this script.

Example 11-1. Proxy ARP SysV initialization script

Download. (scripts/proxy-arp)

#! /bin/sh -
#
proxy-arp Set proxy-arp settings in arp cache
#
chkconfig: 2345 15 85
description: using the arp command line utility, populate the arp
cache with IP addresses for hosts on different media
which share IP space.
#
Copyright (c)2002 SecurePipe, Inc. - http://www.securepipe.com/
#
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
-- written initially during 1998
2002-08-14; Martin A. Brown <mabrown@securepipe.com>
- cleaned up and commented extensively
- joined the process parsimony bandwagon, and eliminated
many unnecessary calls to ifconfig and awk
#

gripe () { echo "$@" >&2; }

79

Chapter 11. Scripts for Managing IP

abort () { gripe "Fatal: $@"; exit 1; }

CONFIG=${CONFIG:-/etc/proxy-arp.conf}
[-r "$CONFIG"] || abort $CONFIG is not readable

case "$1" in
start)

-- create proxy arp settings according to
table in the config file
#
grep -Ev ’^#|^$’ $CONFIG | {

while read INTERFACE IPADDR ; do
[-z "$INTERFACE" -o -z "$IPADDR"] && continue
arp -s $IPADDR -i $INTERFACE -D $INTERFACE pub

done
}

;;
stop)

-- clear the cache for any entries in the
configuration file
#
grep -Ev ’^#|^$’ /etc/proxy-arp.conf | {

while read INTERFACE IPADDR ; do
[-z "$INTERFACE" -o -z "$IPADDR"] && continue
arp -d $IPADDR -i $INTERFACE

done
}

;;
status)

arp -an | grep -i perm
;;
restart)

$0 stop
$0 start
;;
*)

echo "Usage: proxy-arp {start|stop|restart}"
exit 1

esac

exit 0
#
- end of proxy-arp

80

Chapter 11. Scripts for Managing IP

Example 11-2. Proxy ARP configuration file

Download. (scripts/proxy-arp.conf)

#
Proxy ARP configuration file
#
-- This is the proxy-arp configuration file. A sysV init script
(proxy-arp) reads this configuration file and creates the
required arp table entries.
#
Copyright (c)2002 SecurePipe, Inc. - http://www.securepipe.com/
#
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#
-- file was created during 1998
2002-08-15; Martin A. Brown <mabrown@securepipe.com>
- format unchanged
- added comments
#
-- field descriptions:
field 1 this field contains the ethernet interface on which
to advertise reachability of an IP.
field 2 this field contains the IP address for which to advertise
#
-- notes
#
- white space, lines beginning with a comment and blank lines are ignored
#
-- examples
#
- each example is commented with an English description of the
resulting configuration
- followed by a pseudo shellcode description of how to understand
what will happen
#
-- example #1; advertise for 10.10.15.175 on eth1
#
eth1 10.10.15.175
#
for any arp request on eth1; do

81

Chapter 11. Scripts for Managing IP

if requested address is 10.10.15.175; then
answer arp request with our ethernet address from eth1 (so
that the reqeustor sends IP packets to us)
fi
done
#
-- example #1; advertise for 172.30.48.10 on eth0
#
eth0 172.30.48.10
#
for any arp request on eth1; do
if requested address is 10.10.15.175; then
answer arp request with our ethernet address from eth1 (so
that the reqeustor sends IP packets to us)
fi
done
#
-- add your own configuration here

-- end /etc/proxy-arp.conf
#

NAT Scripts
The script will remove all NAT route entries and then all RPDB entries, other than the three default
entries and anything saying "iif lo". It will then populate the RPDB and create NAT route entries
according to the configuration file. Use this script with caution if you have customized your RPDB.

Example 11-3. Static NAT SysV initialization script

Download. (scripts/nat)

#! /bin/sh -
#
nat; start and stop network address translations using iproute2 tools
#
chkconfig: 345 45 55
description: iproute2 tools allow for sophisticated routing, network
address translation, and policy based routing. This script
generalizes static NAT mappings and exceptions.
#
Copyright (c)2002 SecurePipe, Inc. - http://www.securepipe.com/
#
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

82

Chapter 11. Scripts for Managing IP

#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#
-- written initially, 2002-03-02; -MAB
2002-08-14; Martin A. Brown <mabrown@securepipe.com>
- cleaned up and commented the code a bit
- altered the script to provide support for NAT from user-specified
networks instead of assuming that anything from 0/0 should be
translated
2002-08-30; Martin A. Brown <mabrown@securepipe.com>
- add configuration setting to flush all NAT rules and routes before
installing new rules and routes
- add a ./nat flush option
2003-01-31; Matthew Callaway <matt@securepipe.com>
- add validation routines
2003-02-05; Martin A. Brown <mabrown@securepipe.com>
- oversight identified by Shawn Balestracci; not all NAT rules
were flushed--we were looking only for map-to, not the exclude
rules as well

gripe () { echo "$@" >&2; }
abort () { gripe "Fatal: $@"; exit 1; }

CONFIG=${CONFIG:-/etc/sysconfig/static-nat}
[-r "$CONFIG"] || abort $CONFIG is not readable

function isIP () {
-- this function validates a variable as a valid IP address or CIDR network
#
VAR=$1

echo ${VAR} | grep -Eq \
"[[:digit:]]{1,3}\.[[:digit:]]{1,3}\.[[:digit:]]{1,3}\.[[:digit:]]{1,3}(|[[:digit:]]{1,2})"

[$? -eq 0] && return 0
return 1

}

function isINT () {
-- this function validates a variable as a valid integer
#
VAR=$1

echo ${VAR} | grep -Eq \
"[[:digit:]]{1,}"

83

Chapter 11. Scripts for Managing IP

[$? -eq 0] && return 0
return 1

}

function validate () {
grep -Ev ’^#|^$’ $CONFIG | while read NET NAT REAL NPRIO RPRIO EXCLUDE ; do

Fields 5 and 6 are optional
if [-z "$NET" -o -z "$NAT" -o -z "$REAL" -o -z "$NPRIO"]; then

echo Syntax error: Missing field: $NET $NAT $REAL $NPRIO $RPRIO $EXCLUDE
exit 1

fi
if [-n "$RPRIO" -a -z "$EXCLUDE"]; then

echo Syntax error: $NET $NAT $REAL $NPRIO $RPRIO $EXCLUDE
echo Field 6 must be used with field 5
exit 1

fi
for ITEM in $NET $NAT $REAL $EXCLUDE ; do
isIP $ITEM
if [$? -ne 0]; then

echo "In line:"
echo $NET $NAT $REAL $NPRIO $RPRIO $EXCLUDE
echo $ITEM is not a valid IP or CIDR block
exit 1

fi
done
for ITEM in $NPRIO $RPRIO; do
isINT $ITEM
if [$? -ne 0]; then

echo "In line:"
echo $NET $NAT $REAL $NPRIO $RPRIO $EXCLUDE
echo $ITEM is not an integer
exit 1

fi
done

done
}

function flush () {
-- this function should remove all NAT rules and routes
#
-- remove all of the rules, except the three builtins and any IPSec
rule; -MAB;
#
ip rule show | grep -Ev ’^(0|32766|32767):|iif lo’ \

| while read PRIO NATRULE; do
ip rule del prio ${PRIO%%:*} $(echo $NATRULE | sed ’s|all|0/0|’)

done
-- remove all of the rules
#
ip route show table local | grep ^nat | while read NATROUTE; do

ip route del $NATROUTE
done

84

Chapter 11. Scripts for Managing IP

ip route flush cache;
}

function nat () {
grep -Ev ’^#|^$’ $CONFIG | while read NET NAT REAL NPRIO RPRIO EXCLUDE ; do

<-- set up the route for the NAT IP to turn it into the real IP
#
ip route add from $NET nat $NAT via ${REAL%%/*}
["$?" -eq "0"] || \
gripe cmd failed: ip route add nat $NAT via ${REAL%%/*}

<-- establish the minimum routing policy database;
this is required so that the outbound packet gets
rewritten to be from the IP which sent us the packet
#
ip rule add to $NET nat ${NAT%%/*} from $REAL prio $NPRIO
["$?" -eq "0"] || \
gripe cmd failed: ip rule add nat ${NAT%%/*} from $REAL prio $NPRIO

<-- determine if the user has supplied networks or address to be
excluded from the $NETwork address above
#
[! -z "$RPRIO"] && [! -z "$EXCLUDE"] && {
for NETWORK in $EXCLUDE ; do

ip rule add from $REAL to $NETWORK prio $RPRIO
["$?" -eq "0"] || \

gripe cmd failed: ip rule add from $REAL to $NETWORK prio $RPRIO
done;

}
done;
<-- We don’t want to forget to flush the cache, or the user will
sit around wondering for the next few minutes why the NAT rules
aren’t working. After flushing the cache, the NAT rules will
work right away.
#
ip route flush cache;

}

see how we were called
case "$1" in

start) validate && nat
;;

stop) flush
;;

restart) $0 stop; $0 start
;;

status) ip route show table local | grep ^nat
ip rule show | grep map-to
;;

*) echo "usage: nat {start|stop|restart|status}"
;;

esac

85

Chapter 11. Scripts for Managing IP

#
- end of nat

Example 11-4. Static NAT configuration file

Download. (scripts/static-nat)

#
NAT configuration file
#
-- This file is used to configure NAT routes and rules
via the iproute2 package. A sysV init script (nat)
uses this file to set up the routes/rules.
#
#
Copyright (c)2002 SecurePipe, Inc. - http://www.securepipe.com/
#
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#
-- file created by Matt Callaway <matt@securepipe.com>
2002-03-01; Martin A. Brown <mabrown@securepipe.com>
- first major revision; added comments
2002-08-14; Martin A. Brown <mabrown@securepipe.com>
- cleaned up the file; added copious commenting and examples
- provided support for NAT only from specified networks (backwards
incompatibility added here; benefit is huge flexibility gain)
2003-02-10; Martin A. Brown <mabrown@securepipe.com>
- example #6 added. Thanks for identification and description of
this scenario, and the example in the format of the other
examples go to Shawn Balestracci <shawnb@securepipe.com>
#
-- field descriptions:
field 1 this field contains a network address. Any packets from
this network will be translated according to fields two and
three, with the exception of any networks specified in fields
6 and higher
field 2 contains the NAT IP, the IP that only exists as a publicly

86

Chapter 11. Scripts for Managing IP

reachable IP for an internal host
field 3 contains the real IP of the machine, usually an internal IP
field 4 contains the priority for the NAT rule itself in the RPDB
field 5 contains the priority for the routing rule in the RPDB. In
order for the internal networks to reach the real IP of the
server/host, this priority must be higher than the priority
for the NAT rule. **lower numbers == higher priority**
field 6+ contains a whitespace separated list of networks which
should be able to reach the real IP (field 2) directly.
The entries into the rule policy database (RPDB) for these
networks will prevent packets from real-IP to dest-network
from being rewritten with the NAT IP as the source IP.
Networks specified here should be subnets of the network
specified in field 1.
#
-- notes
#
- white space, lines beginning with a comment and blank lines are ignored
- field 5 should always be a lower number (higher priority) than field 4
- fields 5 and 6+ are optional
- fields 5 and 6+ must be used together, if used at all
#
-- examples
#
- each example is commented with an English description of the network
address translation which will occur
- followed by a pseudo shellcode description of how to understand
exactly what the NAT will look like
#
-- example #1; NAT a single IP from anywhere
#
0/0 10.10.0.14 172.31.254.1 1000
#
for packets from any address (0/0);
if destination_address is 10.10.0.14 ; then
rewrite destination address from 10.10.0.14 to 172.31.254.1
fi
done
#
-- example #2; NAT an entire network (from anywhere)
#
0/0 10.13.0.0/16 172.17.0.0/16 1000
#
for packets from any address (0/0); do
if destination_address is in 10.13.0.0/16 ; then
rewrite destination address from 10.13.x.x to 172.17.x.x
fi
done
#
-- example #3; NAT an entire network, but only from a specified nework
#
10.10.0.0/16 10.15.0.0/24 192.168.0.0/24 1000
#

87

Chapter 11. Scripts for Managing IP

if packet is from 10.10.0.0/16 ; then
if destination_address is in 10.15.0.0/24 ; then
rewrite destination address from 10.15.0.x to 192.168.0.x
fi
fi
#
-- example #4; NAT an entire network, but only from a specified nework;
make an exception for certain IP ranges
#
10.10.0.0/16 10.15.2.0/24 192.168.2.0/24 1000 990 10.10.38.0/24
#
if packet is from 10.10.0.0/16 and not from 10.10.38.0/24 ; then
if destination_address is in 10.15.2.0/24 ; then
rewrite destination address from 10.15.2.x to 192.168.2.x
fi
fi
#
-- example #5; NAT a single IP from anywhere; don’t NAT if from specified
IP ranges
#
0/0 10.74.1.8 192.168.73.15 1000 990 192.168.71.0/24 192.168.70.0/24
#
for packets from any address except 192.168.71.0/24 and 192.168.70.0/24; do
if destination_address is 10.74.1.8 ; then
rewrite destination address from 10.74.1.8 to 192.168.73.15
fi
done
#
-- example #6; NAT to the same IP differently based on the source
network IP ranges
#
0/0 10.74.1.8 192.168.73.15 1000
192.168.71.0/24 192.168.71.15 192.168.73.15 400
192.168.70.0/24 192.168.71.15 192.168.73.15 400
#
N.B., the RPDB must traverse lines two and three first, hence the higher
priority. If the source network is not 192.168.{71,70}.0/24 then
the we’ll meet the next entry, 1000.
N.B., the third entry in this example will cause an RTNETLINK: file
exists error, because there is already an entry in the local
routing table for 192.168.71.15 --NAT--> 192.168.73.15. Known bug.
#
for packets from 192.168.71.0/24 or 192.168.70.0/24; do
if destination_address is 192.168.71.15 ; then
rewrite destination address from 192.168.71.15 to 192.168.73.15
fi
done
#
for packets from any address except 192.168.71.0/24 and 192.168.70.0/24; do
if destination_address is 10.74.1.8 ; then
rewrite destination address from 10.74.1.8 to 192.168.73.15
fi
done

88

Chapter 11. Scripts for Managing IP

#
-- add your own configuration here

-- end /etc/sysconfig/static-nat
#

89

Chapter 12. Troubleshooting
Invariably, troubles and misconfigurations creep into networks. New devices get connected and added to
a network. Old devices are removed, and something seemingly unrelated breaks. Troubleshooting is
really a test in discerning patterns.

My favored method for solving problems is to start with the simplest elements, verifying correct
operation and proceeding to the next layer or element until I have isolated the problem element. If you
are lucky, you’ll know from a symptom where the problem is likely to be, but more often, you’ll have to
start at the bottom of the networking hierarchy, and verify each other layer.

Introduction to Troubleshooting
The first thing to consider whenever somebody reports a strange networking problem is any recent
change. What has changed recently in the network? Have any new machines been added? Is the user
using a service which was recently decommissioned? Did a machine (firewall, mail server, DNS
resolver) recently reboot? Did all of the services restart?

Troubleshooting at the Ethernet Layer

Troubleshooting at the IP Layer

Handling and Diagnosing Routing Problems

Identifying Problems with TCP Sessions

DNS Troubleshooting

90

III. Appendices and Reference
The content in this part is intended to function as supporting reference material for the above chapters.
Following you will find a reference for many common linux command line utilities as well as the
example network map and network description. A set of links to external resources, and a
troubleshooting guide round out the content in this part of the document.

Appendix A. An Example Network and
Description

Example Network Map and General Notes
The below network map is a fictional network. This network should provide examples of several of the
common functions of a linux box in networking situations. The hostnames used in the documentation are
taken from this network map. Where practical, I have tried to simulate real-world situations throughout
the documentation, to ease the practical application of the concepts.

branch−router

morgan hub/switch

hub/switch

isdn−router

tristan

eth0

eth0

ISDN

192.168.99.0/24

192.168.98.0/24

service−router

To Vendor

hub/switchwan−gw masq−gw

wan0
eth1eth0

To ISP

205.254.211.0/24
eth2 eth3 eth0

hub/switch

isolde

eth0

192.168.100.0/24

isolde

rj45 patch cable

WAN link (ISDN,DSL,T1)

linux machine

network interfaceeth0

192.168.98.82
192.168.99.35
192.168.100.17

tristan (eth0)

wan−gw (eth0)
masq−gw (eth1)

masq−gw (eth2)
masq−gw (eth3)

masq−gw (eth0)
morgan (eth0)

isolde (eth0)

205.254.211.254
205.254.211.179
192.168.100.2
192.168.99.254
192.168.100.254

IP A
ddresses

Example Network Map

L
egend

Because this guide focusses on linux networking, I have omitted discussion of the ISDN routers and
unless relevant, the layer 2 devices (hubs and switches). The remaining hosts on the example network
can be broken into three main categories: single-homed hosts (servers and workstations), masquerading
(cf. NAT) routers, and public routers. For those viewing the above netmap from a security perspective,
wan-gw and masq-gw would both run packet filters (at least), which turns the network into a traditional
screened-subnet firewall.

The LAN shown above is a common leaf-network scenario for business offices. Frequently, there are one
or two machines on a public network segment, a masquerading firewall, and one or more networks
behind the masquerading firewall. Please do not consider this example network the only way to
interconnect devices. The above is one method of designing a network--there are many practical issues to
weigh in network design. I am deliberately skirting the issue of network design here and proposing an
example network similar to or a superset of a commonly found network design.

It is rare for a business which is not an ISP to own a class C sized network today, but I have nonetheless
chosen a class C sized public network as our fictitious company’s network.

Example Network Addressing Charts
In addition to the network map above, you may find the following network address and host address
information handy as you read through the various examples and documentation based on this fictional
network.

Table A-1. Example Network; Network Addressing

network address function

205.254.211.0/24 public ISP-allocated network

92

Appendix A. An Example Network and Description

network address function

192.168.100.0/24 internal server network

192.168.99.0/24 main office desktop network

192.168.98.0/24 branch office desktop network

Host addressing information is summarized in this table. follows.

Table A-2. Example Network; Host Addressing

hostname interface IP address MAC address

isolde eth0 192.168.100.17/24 00:80:c8:e8:4b:8e

tristan eth0 192.168.99.35/24 00:80:c8:f8:4a:51

morgan eth0 192.168.98.82/24 00:80:c8:f8:4a:53

masq-gw eth0 192.168.100.254/24 00:80:c8:f8:5c:71

masq-gw eth1 205.254.211.179/24 00:80:c8:f8:5c:72

masq-gw eth2 192.168.99.254/24 00:80:c8:f8:5c:73

masq-gw eth3 192.168.100.2/30 00:80:c8:f8:5c:74

wan-gw eth0 205.254.211.254/24 [unknown]

wan-gw wan0 205.254.209.73/30 [n/a]

isdn-router (Ethernet) 192.168.99.1/24 00:c0:7b:45:6a:39

branch-router (Ethernet) 192.168.98.254/24 00:c0:7b:37:af:91

service-router (Ethernet) 192.168.100.1/24 00:c0:7b:7d:00:c8

I have referred liberally to this example network throughout this documentation. Any example
commands in the documentation assume the network configuration as shown on this network map.

Additionally, hosts which are not part of this (fictional) network but appear in the documentation will
appear under the names real-server and real-client. This convention exists simply to disambiguate
real-world examples from the machines in the fictional network.

93

Appendix B. Ethernet Layer Tools
The section here will cover tools which manipulate, display characteristics of or probe Ethernet devices.
Because Ethernet is one of the most available and widely spread networking media in use today, we’ll
concentrate on Ethernet rather than other link layer protocols.

As with any networking stack, the lower layers must be functioning properly in order for the higher layer
protocols to operate. The tools covered in this section will provide the resources you need to verify the
proper operation of your linux machine in an Ethernet environment.

You probably knew before reading this that you can look at the link light on your Ethernet switch/hub
and the link light on your Ethernet card to verify a good connection. Now you can use mii-tool to ask the
Ethernet driver if it agrees. Once you have verified a good media connection, you may want to set other
link layer characteristics on your Ethernet device. For this, ip link is the perfect tool.

To see if anybody is using an IP address already on the Ethernet to which you are connecting, you can
use arping and if you want to play with the arp tables, the arp command is there to help you accomplish
your objective.

arp
An often overlooked tool, arp is used to view and manipulate the entries in the arp table. See the Section
called The ARP cache in Chapter 2 for a fuller discussion of the arp table.

The most common uses for arp are to add an address for which to proxy arp, delete an address from the
arp table or view the arp table itself.

In the simplest invocation, you simply want to see the current state of the arp table. Invoking arp with no
options will provide you exactly the information you need. Typically, you may not trust DNS (or may not
wish to wait for the DNS lookups), and you may wish to specify the arp table on a particular interface.

Example B-1. Displaying the arp table with arp

[root@masq-gw]# arp -n -i eth3
Address HWtype HWaddress Flags Mask Iface

192.168.100.1 ether 00:C0:7B:7D:00:C8 C eth3

[root@masq-gw]# arp -n -i eth0
Address HWtype HWaddress Flags Mask Iface

192.168.100.17 ether 00:80:C8:E8:4B:8E C eth0

[root@masq-gw]# arp -a -n -i eth0
? (192.168.100.17) at 00:80:C8:E8:4B:8E [ether] on eth0

The MAC address in the third column is always a six part hexadecimal number. In practice, the MAC
address (also known as the hardware address or the Ethernet address) is not normally needed for the
majority of troubleshooting problems, however knowing how to retrieve the MAC address can help when
tracking down problems in a network 1.

The arp command can also force a permament entry into the arp table. Let’s look at an unusual
networking need. Infrequently, a need arises to split a network into two parts, each part with the same
network address and netmask. The router which joins the two networks is connected to both sets of

94

Appendix B. Ethernet Layer Tools

media. See the Section called Breaking a network in two with proxy ARP in Chapter 9 for more detail on
when and how to do this.

The command to add arp table entries makes a static entry in the arp table. This is not recommended
practice, and is probably only necessary in strange, experimental, hybrid, or pseudo-bridging situations.

Example B-2. Adding arp table entries with arp

[root@masq-gw]# arp -s 192.168.100.17 -i eth3 -D eth3 pub
[root@masq-gw]# arp -n -i eth3
Address HWtype HWaddress Flags Mask Iface

192.168.100.1 ether 00:C0:7B:7D:00:C8 C eth3

192.168.100.17 * * MP eth3

After inserting an entry into the arp table on eth3, we will now respond for ARP requests on eth3 for the
IP 192.168.100.17. If the service-router has a packet bound for 192.168.100.17, it will generate an ARP
request to which we will respond with the Ethernet address of our eth3 interface.

Moments after you have added this arp table entry, you realize that you really do not wish service-router
and isolde to exchange any IP packets. There is no reason for the isolde to initiate a telnet session with
service-router and correspondingly, there are no services on isolde which should be accessible from the
router.

Fortunately, it’s quite easy to remove the entry.

Example B-3. Deleting arp table entries with arp

[root@masq-gw]# arp -i eth3 -d 192.168.100.17
[root@masq-gw]# arp -n -i eth3
Address HWtype HWaddress Flags Mask Iface

192.168.100.1 ether 00:C0:7B:7D:00:C8 C eth3

arp is a small utility, but one which can prove extremely handy. One minor annoyance with the arp
utility is option handling. Options seem to be handled differently based on order. If in doubt, try
specifying the action as the first option.

arping
An almost unknown command (mostly because it is not frequently necessary), the arping utility
performs an action similar to ping, but at the Ethernet layer. Where ping tests the reachability of an IP
address, arping reports the reachability and round-trip time of an IP address hosted on the local network.

There are several modes of operation for this utility. Under normal operation, arping displays the
Ethernet and IP address of the target as well as the time elapsed between the arp request and the arp reply.

95

Appendix B. Ethernet Layer Tools

Example B-4. Displaying reachability of an IP on the local Ethernet with arping

[root@masq-gw]# arping -I eth0 -c 2 192.168.100.17
ARPING 192.168.100.17 from 192.168.100.254 eth0

Unicast reply from 192.168.100.17 [00:80:C8:E8:4B:8E] 8.419ms

Unicast reply from 192.168.100.17 [00:80:C8:E8:4B:8E] 2.095ms

Sent 2 probes (1 broadcast(s))

Received 2 response(s)

Other options to the arping utility include the ability to send a broadcast arp using the -U option and the
ability to send a gratuitous reply using the -A option. A kernel with support for non-local bind can be
used with arping for the nefarious purpose of wreaking havoc on an otherwise properly configured
Ethernet. By performing gratuitous arp and broadcasting incorrect arp information, arp tables in poorly
designed IP stacks can become quite confused.

arping can detect if an IP address is currently in use on an Ethernet. Called duplicate address detection,
this use of arping is increasingly common in networking scripts.

For a practical example, let’s assume a laptop named dietrich is normally connected to a home network
with the same IP address as tristan of our main office network. In the boot scripts, dietrich might make
good use of arping by testing reachability of the IP it wants to use before bringing up the IP layer.

Example B-5. Duplicate Address Detection with arping

[root@dietrich]# arping -D -q -I eth0 -c 2 192.168.99.35
[root@dietrich]# echo $?
1

[root@dietrich]# arping -D -q -I eth0 -c 2 192.168.99.36
[root@dietrich]# echo $?
0

First, dietrich tests reachability of its preferred IP (192.168.99.35). Because the IP address is in use by
tristan, dietrich receives a response. Any response by a device on the Ethernet indicating that an IP
address is in use will cause the arping command to exit with a non-zero exit code (specifically, exit code
1).

Note, that the Ethernet device must already be in an UP state (see the Section called ip link). If the
Ethernet device has not been brought up, the arping utility will exit with a non-zero exit code
(specifically, exit code 2).

ip link
Part of the iproute2 suite, ip link provides the ability to display link layer information, activate an
interface, deactivate an interface, change link layer state flags, change MTU, the name of the interface,
and even the hardware and Ethernet broadcast address.

The ip link tool provides the following two verbs: ip link show and ip link set.

96

Appendix B. Ethernet Layer Tools

Displaying link layer characteristics with ip link show
To display link layer information, ip link show will fetch characteristics of the link layer devices
currently available. Any networking device which has a driver loaded can be classified as an available
device. It is immaterial to ip link whether the device is in use by any higher layer protocols (e.g., IP).
You can specify which device you want to know more about with the dev <interface> option.

Example B-6. Using ip link show

[root@tristan]# ip link show
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

Here we see that the only devices with drivers loaded on tristan are lo and eth0. Note, as with ip address
show, the ip utility will sequentially number the output. These numbers are dynamically calcualted, so
should not be used to refer to the interfaces. It is far better (and more intuitive) to refer to the interfaces
by name.

For each device, two lines will summarize the link state and characteristics. If you are familiar with
ifconfig output, you should notice that these two lines are a terse summary of lines 1 and 3 of each
ifconfig device entry.

The flags here are the same flags reported by ifconfig, although by contrast to ifconfig, ip link show
seems to report the state of the device flags accurately.

Let’s take a brief tour of the ip link show output. Line one summarizes the current name of the device,
the flags set on the device, the maximum transmission unit (MTU) the active queueing mechanism (if
any), and the queue size if there is a queue present. The second line will always indicate the type of link
layer in use on the device, and link layer specific information. For Ethernet, the common case, the
current hardware address and Ethernet broadcast address will be displayed.

Changing link layer characteristics with ip link set
Frankly, with the exception of ip link set up and ip link set down I have not found need to use the ip
link set command with any of the toggle flags Regardless, here’s an example of the proper operation of
the utility. Paranoid network administrators or those who wish to map Ethernet addresses manually
should take special note of the ip link set arp off command.

Example B-7. Using ip link set to change device flags

[root@tristan]# ip link set dev eth0 promisc on
[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root@tristan]# ip link set dev eth0 multicast off promisc off
[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

97

Appendix B. Ethernet Layer Tools

[root@tristan]# ip link set arp off
Not enough of information: "dev" argument is required.

[root@tristan]# ip link set arp off dev eth0
[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,NOARP,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root@enclitic root]# ip link set dev eth0 arp on
[root@tristan root]# ip link show dev eth0
2: eth0: <BROADCAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

Any of the below flags are valid on any device.

Table B-1. ip link link layer device states

Flag Possible States

arp on | off

promisc on | off

allmulti on | off

multicast on | off

dynamic on | off

Users who would like more information about flags on link layer devices and their meanings should refer
to Alexey Kuznetsov’s excellent iproute2 reference. See the the Section called iproute2 documentation
in Appendix I for further links.

Deactivating a device with ip link set
In the same way that using the tool ifconfig <interface> down can summarily stop networking, ip link
set dev <interface> down will have a number of side effects for higher networking layers which are
bound to this device.

Let’s look at the side effects of using ip link to bring an interface down.

Example B-8. Deactivating a link layer device with ip link set

[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root@tristan]# ip route show
192.168.99.0/24 dev eth0 proto kernel scope link src 192.168.99.35

127.0.0.0/8 dev lo scope link

default via 192.168.99.254 dev eth0

[root@tristan]# ip link set dev eth0 down
[root@tristan]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.35/24 brd 192.168.99.255 scope global eth0

98

Appendix B. Ethernet Layer Tools

[root@tristan]# ip route show
127.0.0.0/8 dev lo scope link

In our first command, we are able to determine that the eth0 is in an UP state. Naturally, ip link will not
tell us if there is an IP bound to the device (use ip address to answer this question). Let’s assume that
tristan was operating normally on 192.168.199.35. If so, the routing table will appear exactly is it appears
in Example B-8.

Now when we down the link layer on eth0, we’ll see that there is now no longer a flag UP in the link
layer output of ip address. More interesting, though, all of our IP routes to destinations via eth0 are now
missing.

Activating a device with ip link set
Before an interface can be bound to a device, the kernel needs to support the physical networking device
(beyond the scope of this document) either as a module or as part of the monolithic kernel. If ip link
show lists the device, then this condition has been satisfied, and ip link set dev <interface> can be used
to activate the interface.

Example B-9. Activating a link layer device with ip link set

[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root@tristan]# arping -D -I eth0 192.168.99.35
Interface "eth0" is down

[root@tristan]# ip link set dev eth0 up
[root@tristan]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.35/24 brd 192.168.99.255 scope global eth0

[root@tristan]# ip route show
192.168.99.0/24 dev eth0 proto kernel scope link src 192.168.99.35

127.0.0.0/8 dev lo scope link

Once the device itself has been activated, operations which require the ability to read data from the
device or write data to the device will succeed. Refer to Example B-5 for a clear example of a network
operation which does not require a functional IP layer but need access to a functioning link layer.

I’ll suggest that the reader consider what other common networking device might not want to have a
functional IP layer, but would need a functioning link layer. FIXME -- Why in the world does tcpdump
work even though the link layer is down? -- FIXME

In Example B-9, we are bringing up a device which already has IP address information bound to the
device. Notice that as soon as the link layer is brought up, the network route to the local network is
entered into the main routing table. By comparing Example B-9 and Example B-8, we notice that when
the link layer is brought up the default route is not returned! This is the most significant side effect of
bringing down an interface through which other networks are reachable. There are several ways to repair

99

Appendix B. Ethernet Layer Tools

the frightful missing default route condition: you can use ip route add, route add, or you can run the
networking startup scripts again.

Using ip link set to change the MTU
Changing the MTU on an interface is a classical example of an operation which, prior to the arrival of
iproute2 one could only accomplish with the ifconfig command. Since iproute2 has separate utilities for
managing the link layer, addressing, routing, and other IP-related objects, it becomes clear even with the
command-line utilities that the MTU is really a function of the link layer protocol.

Example B-10. Using ip link set to change device flags

[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root@tristan]# # ip link set dev eth0 mtu 1412
[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,UP> mtu 1412 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

This simple example demonstrates exactly how to change the MTU. For a broader discussion of MTU,
please consult the Section called MTU, MSS, and ICMP in Chapter 4. The remaining options to the ip
link command cannot be used while the interface is in an UP state.

Changing the device name with ip link set
For the occasional need to rename an interface from one name to another, the command ip link set
provides the desired functionality. Though this command must be used when the device is not in an UP
state, the command itself is quite simple. Let’s name the interface inside0.

Example B-11. Changing the device name with ip link set

[root@tristan]# ip link set dev eth0 mtu 1500
[root@tristan]# ip link set dev eth0 name inside
[root@tristan]# ip link show dev inside
2: inside: <BROADCAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

The convenience of being able to rename devices can be substantial when you are managing many
machines and want to use the same name on many different machines, which may have different
hardware. Of course, by changing the name of the device, you may foil any scripts which assume
conventional device names (eth0, eth1, ppp0).

100

Appendix B. Ethernet Layer Tools

Changing hardware or Ethernet broadcast address with ip
link set
This command changes the hardware or broadcast address of a device as used on the media to which it is
connected. Supposedly there can be name clashes between two different Ethernet cards sharing the same
hardware address. I have yet to see this problem, so I suspect that changing the hardware address is more
commonly used in vulnerabliity testing or even more nefarious purposes.

Alternatively, one can set the broadcast address to a different value, which as Alexey remarks as an aside
in the iproute2 manual will "break networking." Changing the Ethernet broadcast address implies that
no conventionally configured host will answer broadcast ARP frames transmitted onto the Ethernet.
Since conventional ARP requests are sent to the Ethernet broadcast of ff:ff:ff:ff:ff:ff, broadcast
frames sent after changing the link layer broadcast address will not be received by other hosts on the
segment. To echo Alexey’s sentiments: if you are not sure what you are doing, don’t change this. You’ll
break networking terribly.

Example B-12. Changing broadcast and hardware addresses with ip link set

[root@tristan]# ip link set dev inside name eth0
[root@tristan]# ip link set dev eth0 address 00:80:c8:f8:be:ef
[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:be:ef brd ff:ff:ff:ff:ff:ff

[root@tristan]# ip link set dev eth0 broadcast ff:ff:88:ff:ff:88
[root@tristan]# ip link show dev eth0
2: eth0: <BROADCAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:be:ef brd ff:ff:88:ff:ff:88

[root@tristan]# ping -c 1 -n 192.168.99.254 >/dev/null 2>&1 &
[root@tristan]# tcpdump -nnqtei eth0
tcpdump: listening on eth0

0:80:c8:f8:be:ef ff:ff:88:ff:ff:88 42: arp who-has 192.168.99.254 tell 192.168.99.35

0:80:c8:f8:be:ef ff:ff:88:ff:ff:88 42: arp who-has 192.168.99.254 tell 192.168.99.35

This practical example demonstrates setting the hardware address and the broadcast address. Changing
the hardware address, also known as the media access control (MAC) address, is not usually necessary. It
is a simple operation without detrimental side effects, provided there is no address clash with an existing
device.

Note, however, in the tcpdump output, the effect of changing the Ethernet broadcast address. As
discussed in the paragraph above, changing the broadcast is probably not a good idea 2.

As you can see, the ip link utility is a treasure trove of information and allows a great deal of control
over the devices on a linux system.

ip neighbor
Part of the iproute2 command suite, ip neighbor provides a command line interface to display the
neighbor table (ARP cache), insert permanent entries, remove specific entries and remove a large number

101

Appendix B. Ethernet Layer Tools

of entries. For peculiarities and commonalities of the iproute2 tools, refer to the Section called Some
general remarks about iproute2 tools in Appendix H.

The more commonly used analog to ip neighbor show, arp -n displays the ARP cache in a possibly
more recognizable format.

Example B-13. Displaying the ARP cache with ip neighbor show

[root@tristan]# ip neighbor show
192.168.99.254 dev eth0 lladdr 00:80:c8:f8:5c:73 nud reachable

On routers and other machines with large ARP caches, you may find you wish to look at the ARP cache
only on a particular interface. By specifying the interface on which you wish to see the neighbor table,
you can limit the output.

Example B-14. Displaying the ARP cache on an interface with ip neighbor show

[root@wan-gw]# ip neighbor show dev eth0
205.254.211.39 lladdr 00:02:b3:a1:b8:df nud delay

205.254.211.54 lladdr 00:d0:b7:80:ce:ce nud delay

205.254.211.179 lladdr 00:80:c8:f8:5c:72 nud reachable

Another way to limit the output is to specify the subnet in which you are interested. Simply append the
subnet specification to the command.

Example B-15. Displaying the ARP cache for a particular network with ip neighbor show

[root@masq-gw]# ip neighbor show 192.168.100.0/24
192.168.100.1 dev eth3 lladdr 00:c0:7b:7d:00:c8 nud stale

192.168.100.17 dev eth0 lladdr 00:80:c8:e8:4b:8e nud reachable

Note that in the case of masq-gw, there are neighbor table entries for IPs on more than one interface,
because masq-gw breaks the 192.168.100.0/24 network into two parts. This is an advanced technique
described in fuller detail in the Section called Breaking a network in two with proxy ARP in Chapter 9.

In addition to displaying the neighbor table, it is possible to make static mappings. For paranoid systems
administrators, who do not want to enable ARP on their networks or on particular links, the ip neighbor
add command may prove useful. Refer to the Section called ARP filtering in Chapter 2 for a discussion
of the ramifications of disabling ARP.

In Example B-16, let’s assume that the service router is incapable of correctly answering ARP requests.
The administrator of masq-gw could make a permanent entry in the ARP cache mapping 192.168.100.1
to the link layer address of service-router.

Example B-16. Entering a permanent entry into the ARP cache with ip neighbor add

[root@masq-gw]# ip neighbor add 192.168.100.1 lladdr 00:c0:7b:7d:00:c8 dev eth3 nud permanent

102

Appendix B. Ethernet Layer Tools

This creates an entry in the neighbor table which maps 192.168.100.1 to link layer address
00:c0:7b:7d:00:c8. Subsequent IP packets bound for 192.168.100.1 will be encapsulated in Ethernet
frames with 00:c0:7b:7d:00:c8 in the destination bytes. This permanent mapping cannot be overridden
by ARP. It would need to be removed with ip neighbor delete.

For those who insist on such a thing, there is support for creating and deleting proxy ARP entries with ip
neighbor, although this has been deprecated. For a long discussion of this topic, see this discussion on
the kernel mailing list (http://www.uwsg.iu.edu/hypermail/linux/kernel/0110.2/index.html#523). Other
tools should be used to create proxy ARP entries. Refer to the Section called arp, the Section called
Breaking a network in two with proxy ARP in Chapter 9 and the Section called Proxy ARP in Chapter 2.

Example B-17. Entering a proxy ARP entry with ip neighbor add proxy

-- this is deprecated; use arp or kernel proxy_arp instead --#

[root@masq-gw]# ip neighbor add proxy 192.168.100.1 dev eth0
-- this is deprecated; use arp or kernel proxy_arp instead --#

Strangely, the ip neighbor show command does not display any entries added and deleted with ip
neighbor add proxy, so arp is required to view these entries. In short, don’t use ip neighbor add proxy.

Entries can also be modified at any time. This allows learned entries to be replaced with static entries if
there’s already an entry in the ARP cache for a specified IP.

Example B-18. Altering an entry in the ARP cache with ip neighbor change

[root@tristan]# ip neighbor add 192.168.99.254 lladdr 00:80:c8:27:69:2d dev eth3
RTNETLINK answers: File exists

[root@tristan]# ip neighbor show 192.168.99.254
192.168.99.254 dev eth0 lladdr 00:80:c8:f8:5c:73 nud reachable

[root@tristan]# ip neighbor change 192.168.99.254 lladdr 00:80:c8:27:69:2d dev eth3
[root@tristan]# ip neighbor show 192.168.99.254
192.168.99.254 dev eth0 lladdr 00:80:c8:27:69:2d nud permanent

To remove the entry we added above in Example B-16, we could run the following command. This
invalidates the entry forcing the NUD of the entry into failed state.

Example B-19. Removing an entry from the ARP cache with ip neighbor del

[root@masq-gw]# ip neighbor del 192.168.100.1 dev eth3
[root@masq-gw]# ip neighbor show dev eth3
192.168.100.1 nud failed

Subsequent attempts to reach the IP address 192.168.100.1 will require the generation of a new ARP
request, which (you hope!) returns the new or currently available link layer address.

While I have never found a good use for the ip neighbor flush command, it is provided, and accepts a
destination network address as an argument. Without a destination network address, an interface
specification is required.

103

Appendix B. Ethernet Layer Tools

Example B-20. Removing learned entries from the ARP cache with ip neighbor flush

[root@tristan]# ip neighbor flush dev eth3

Although it is not commonly required, the ip neighbor tool is a convenient tool for displaying and
altering the ARP cache (neighbor table).

mii-tool
A key tool for determining if you are connected to the Ethernet, and if so, at what speed. The mii-tool
program does not support all Ethernet devices, as some Ethernet devices have their own vendor-supplied
tools to report the same information. The mii-tool source code is based on a tool called mii-diag which
provides slightly more information but is less user friendly.

The information reported by mii-tool is quite terse. The following table should clarify the meaning of the
speeds you’ll encounter in output from mii-tool 3.

Table B-2. Ethernet Port Speed Abbreviations

Port Speed Description

10baseT-HD 10 megabit half duplex

10baseT-FD 10 megabit full duplex

100baseTx-HD 100 megabit half duplex

100baseTx-FD 100 megabit full duplex

The raw number indicates the number of bits which can be exchanged between two Ethernet devices
over the wire. So 10 megabit Ethernet can support the transmission of ten million bits per second. The
suffix to each identifier indicates whether both hosts can send and receive simultaneously or not. Half
duplex means that each device can either send or receive in the same instant. Full duplex means that both
devices can send and receive simultaneously.

The simplest use of mii-tool reports the link status of all Ethernet devices on a system. Any argument to
mii-tool is interpreted as an interface name to query for link status.

Example B-21. Detecting link layer status with mii-tool

[root@tristan]# mii-tool
eth0: negotiated 100baseTx-FD, link ok

[root@tristan]# mii-tool -v
eth0: negotiated 100baseTx-FD, link ok

product info: vendor 08:00:17, model 1 rev 0

basic mode: autonegotiation enabled

basic status: autonegotiation complete, link ok

capabilities: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD

advertising: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD

link partner: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD flow-control

104

Appendix B. Ethernet Layer Tools

In the above example, we can infer that tristan has only one Ethernet device (or no Ethernet drivers
loaded for any other present Ethernet devices). The first Ethernet device has successfully negotiated a
100 megabit full duplex connection with the device to which it is connected.

Although a great rarity, you may have occasion to dictate to the Ethernet interface the speed at which it
should talk to the switch or hub. mii-tool supports a mode of operation under which you indicate
supported modes for autonegotiation. Normally, two connected devices will negotiate the fastest possible
commonly shared speed. You can select what speeds you want to support on an Ethernet interface by
using mii-tool.

Example B-22. Specifying Ethernet port speeds with mii-tool --advertise

[root@tristan]# mii-tool mii-tool --advertise 10baseT-HD,10baseT-FD
restarting autonegotiation...

[root@tristan]# mii-tool
eth0: negotiated 10baseT-FD, link ok

After we specified that we wished only to support 10baseT-HD and 10baseT-FD as acceptable speeds,
mii-tool caused the Ethernet driver to renegotiate port speed with the attached device. Here we selected
10baseT-FD.

Example B-23. Forcing Ethernet port speed with mii-tool --force

[root@tristan]# mii-tool --force 10baseT-FD
[root@tristan]# mii-tool
eth0: 10 Mbit, full duplex, link ok

[root@tristan]# mii-tool --restart
restarting autonegotiation...

[root@tristan]# mii-tool
eth0: negotiated 100baseTx-FD, link ok

After manipulating the speed at which the Ethernet driver would communicate with the connected device
on tristan, we chose to restart the autonegotiation process without forcing a particular speed or
advertising a particular speed.

So, if you must know at what speed your linux machine is connected to another device, mii-tool comes
to your rescue.

Notes
1. I know of one instance where some devices which used DHCP to join the network were suddenly

and apparently inexplicably receiving addresses in an unexpected netblock. After some
head-scratching and judicious use of tcpdump to record the Ethernet address of the DHCP server
giving out the bogus IP information, the administrator was able to track down a device through the
switch to a port on the LAN. It turned out to be a tiny (4-port) hub with an embedded DHCP server
which was intended for home use! The knowledge of the Ethernet address of the rogue DHCP server
was the key to physically locating the device.

2. I refer the reader to an adage: Just because it can be done doesn’t mean it should be done.

105

Appendix B. Ethernet Layer Tools

3. There is a standard speed/Ethernet transmission style supported by mii-tool to which I have not
referred. That is 100BaseT4. 100BaseT4 provides support for 100 megabit Ethernet networking over
Category 3 rated cable. This is probably not a concern for most recently upgraded network
infrastructure. The standard networking cable pulled in new construction and renovation is now
Category 5 cable which supports 100Base-Tx-FD and possibly gigabit Ethernet. So, let’s relegate
100BaseT4 to this footnote, and resume.

106

Appendix C. IP Address Management
A machine which can access Internet resources has an IP address, whether that IP address is a public
address or a private address hidden behind an SNAT router 1. With the increasingly common use of linux
machines as servers, desktops, and embedded devices and with changing network topologies and
re-addressing, the need to be able to determine the current IP address of a machine and modify that
address has consequently become a common need.

I assume in this chapter that the reader has some familiarity with CIDR addressing and netmasks. If any
of these concepts are unfamiliar, or the reader would like to brush up, I suggest a visit to some of the
links which can be found in the Section called General IP Networking Resources in Appendix I.

We’ll begin our tour of the utilities for observing, changing, removing, and adding IP addresses to
network devices with ifconfig, the traditional utility for IP management. We will also examine the newer
and more flexible ip address, a key part of the iproute2 package.

ifconfig
The venerable ifconfig is available on almost every unix I have encountered. In addition to reporting the
IP addressing and usage statistics of an optionally specified interface, ifconfig can modify an interface’s
MTU and other flags and interface characteristics, bring up an interface and bring down an interface.
This tool is the primary tool for manipulation of IP addressing on many linux distributions.

Displaying interface information with ifconfig
In its simplest use, ifconfig merely reports the IP interface and relevant statistics. For Ethernet devices,
the hardware address, IP address, broadcast, netmask, IP interface states, and some other additional
information is presented. For other interfaces, different information may be presented to the user, but the
basic summary of IP addressing information will always be available. Be sure to read the Section called
Reading ifconfig output also.

Example C-1. Viewing interface information with ifconfig

[root@tristan]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:190312 errors:0 dropped:0 overruns:0 frame:0

TX packets:86955 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:30701229 (29.2 Mb) TX bytes:7878951 (7.5 Mb)

Interrupt:9 Base address:0x5000

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:306 errors:0 dropped:0 overruns:0 frame:0

TX packets:306 errors:0 dropped:0 overruns:0 carrier:0

107

Appendix C. IP Address Management

collisions:0 txqueuelen:0

RX bytes:29504 (28.8 Kb) TX bytes:29504 (28.8 Kb)

It is fairly common to specify the name of an interface as an argument to ifconfig, which will restrict the
output to the named interface. This is the only way to retrieve information from ifconfig about link layer
devices which are available, but not in an UP state. See also the Section called ip link in Appendix B and
the Section called ip address.

There are many other options available to the ifconfig command to control addressing and interface state.
Contrary to the behaviour of most other standard unix command line utilities which operate on
arguments and options, ifconfig operates on a grammar after the specified interface. Subsequent
examples will demonstrate how this differs from conventional modern unix tools.

Bringing down an interface with ifconfig
Let’s look at some simple operations you can perform with ifconfig. Occasionally, you will need to bring
down a network interface. For an introduction to this and its side effects, see Example 1-6 and the list of
side effects.

Example C-2. Bringing down an interface with ifconfig

[root@tristan]# ifconfig eth0 down
[root@tristan]# ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:306 errors:0 dropped:0 overruns:0 frame:0

TX packets:306 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:29504 (28.8 Kb) TX bytes:29504 (28.8 Kb)

Naturally, when we view the active interfaces after downing the first Ethernet interface, we see that eth0
is no longer present. This is exactly what we had intended. Now to bring up the interface, we’ll need the
IP address and netmask information.

Bringing up an interface with ifconfig
Bringing up an interface is slightly more complex than bringing an interface down because you need to
have the IP addressing information handy in order to bring the interface back. For an introduction to the
side effects of bringing up an IP address on an interface, see Example 1-7 and the list of side effects.

Example C-3. Bringing up an interface with ifconfig

[root@tristan]# ifconfig eth0 192.168.99.35 netmask 255.255.255.0 up
[root@tristan]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0

108

Appendix C. IP Address Management

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:190312 errors:0 dropped:0 overruns:0 frame:0

TX packets:86955 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:30701229 (29.2 Mb) TX bytes:7878951 (7.5 Mb)

Interrupt:9 Base address:0x5000

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:306 errors:0 dropped:0 overruns:0 frame:0

TX packets:306 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:29504 (28.8 Kb) TX bytes:29504 (28.8 Kb)

Reading ifconfig output
The above operations are the simple operations one can perform with ifconfig. Let’s examine the output
a bit more closely now, with an eye toward the other flags and settings we can manually twiddle.

The first line of each interface definition represents data which cannot be altered with ifconfig. If we
consider only Ethernet interfaces, the link encapsulation will always say "Ethernet", and the hardware
address cannot be altered with ifconfig 2. Below this, one line summarizes the IP information associated
with this logical interface.

The third line indicates the current states of the interface, maximum transmission unit, and the metric for
this interface. Possible state options are itemized in the table below. The maximimum transmission unit
is routinely set to 1500 bytes for Ethernet and promptly forgotten. MTU suddenly becomes important
when IP packets are forwarded across a link layer which requires a smaller MTU. Thus ifconfig provides
a method to set the MTU on an interface. For more on MTU, see the Section called MTU, MSS, and
ICMP in Chapter 4. The remaining lines of output are taken from the Ethernet driver. See further
discussion of these statistics below.

Changing MTU with ifconfig
It is a rare occasion on which the MTU needs to be changed, but when it needs to be changed, nothing
else will suffice. Here’s an example of setting the MTU on an interface to 1412 bytes.

Example C-4. Changing MTU with ifconfig

[root@tristan]# ifconfig eth0 mtu 1412
[root@tristan]# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1412 Metric:1

RX packets:190312 errors:0 dropped:0 overruns:0 frame:0

TX packets:86955 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

109

Appendix C. IP Address Management

RX bytes:30701229 (29.2 Mb) TX bytes:7878951 (7.5 Mb)

Interrupt:9 Base address:0x5000

Changing device flags with ifconfig
Every device on a system has flags which indicate the state the device may be in. These flags can be
altered by the ifconfig utility.

Table C-1. Interface Flags

Flag Description

UP device is functioning

BROADCAST device can send traffic to all hosts on the link

RUNNING ???

MULTICAST device can perform and receive multicast packets

ALLMULTI device receives all multicast packets on the link

PROMISC device receives all traffic on the link

I cannot confidently recommend believing the flags as reported by ifconfig output. Attestations from
others and experimentation has proven to me that these flags (particularly the PROMISC flag) do not
accurately represent the state of the device as reported in log files (by the kernel) and by the ip link show
utility.

This does not mean, however, that the flags cannot be set with the ifconfig utility. Manipulation of the
flags on an interface operates according to a peculiar grammar. To set the PROMISC flag, one issues a
command with the promisc option from the grammar. If one wishes to remove the PROMISC flag from
an interface, the -promisc option is required.

Example C-5. Setting interface flags with ifconfig

[root@tristan]# ifconfig eth0 promisc
[root@tristan]# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0

UP BROADCAST RUNNING PROMISC MULTICAST MTU:1412 Metric:1

RX packets:190312 errors:0 dropped:0 overruns:0 frame:0

TX packets:86955 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:30701229 (29.2 Mb) TX bytes:7878951 (7.5 Mb)

Interrupt:9 Base address:0x5000

[root@tristan]# ifconfig eth0 -promisc
[root@tristan]# ifconfig eth0 -arp
[root@tristan]# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0

UP BROADCAST RUNNING NOARP MULTICAST MTU:1412 Metric:1

RX packets:190312 errors:0 dropped:0 overruns:0 frame:0

110

Appendix C. IP Address Management

TX packets:86955 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:30701229 (29.2 Mb) TX bytes:7878951 (7.5 Mb)

Interrupt:9 Base address:0x5000

[root@tristan]# ifconfig eth0 arp

General remarks about ifconfig
Since linux 2.0 the kernel has supported multiple IP addresses hosted on the same device. By suffixing
the real interface name with a colon and a non-negative integer, you can bring up additional IP adresses
on the same device. Example alias names are eth0:0 eth0:7. See the Section called Multiple IPs on an
Interface in Chapter 9 for further details.

As you can see, ifconfig is both a powerful and idiosyncratic tool for controlling network interfaces and
devices.

ip address
Part of the iproute2 suite, ip address can list the IP addresses affiliated with interfaces, add IPs, delete
IPs, and remove all IPs on a given device.

Displaying interface information with ip address show
The first thing you’ll want to do is list the IPs on your machine. The ip address tool will display IP (and
terse encapsulation information) when invoked with the show verb. To specify that you wish to see the IP
information for only one interface, you can add dev <device-name>

Example C-6. Displaying IP information with ip address

[root@tristan]# ip address show
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 brd 127.255.255.255 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.35/24 brd 192.168.99.255 scope global eth0

[root@tristan]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.35/24 brd 192.168.99.255 scope global eth0

[root@wan-gw]# ip address show wan0
8: wan0: <POINTOPOINT,NOARP,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ppp 01:f4 peer 00:00

inet 205.254.209.73 peer 205.254.209.74/32 scope global wan0

[root@real-example]# ip address show ppp0

111

Appendix C. IP Address Management

5: ppp0: <POINTOPOINT,MULTICAST,NOARP,UP> mtu 1492 qdisc htb qlen 3

link/ppp

inet 67.38.163.197 peer 67.38.163.254/32 scope global ppp0

You should notice some similarity between the output of ip address and ifconfig. Each device is given
an sequential number as an identifying number. This is merely a convenience, and should not be used to
refer to devices. The second field in an entry is the interface name (which usually corresponds to the
device name). Next, we see the familiar device flags and maximum transmission unit size.

The final fields in the first line of output for each device entry refer to the traffic control queueing
discipline (qdisc) and the Ethernet buffer transmit queue length (qlen). For more on understanding and
using traffic control under linux, see the LARTC documentation (http://lartc.org/howto/).

The second line of output describes the link layer characteristics of the device. For Ethernet devices, this
will always say "link/ether" followed by the hardware address of the device and the media broadcast
address. For more detail on the link layer characteristics of a device see the Section called ip link in
Appendix B.

Subsequent lines of output describe the IP addresses available on each interface. In a typical installation
only one address is used on each interface, although an arbitrary number of addresses can also be used on
each interface.

Each line contains the IP address and netmask in CIDR notation, an optional broadcast address, scope
information and a label. Let’s examine the scope and label first and then discuss IP addressing and
broadcast calculation. The possible values for scope are outlined in the following table.

Table C-2. IP Scope under ip address

Scope Description

global valid everywhere

site valid only within this site (IPv6)

link valid only on this device

host valid only inside this host (machine)

Scope is normally determined by the ip utility without explicit use on the command line. For example, an
IP address in the 127.0.0.0/8 range falls in the range of localhost IPs, so should not be routed out any
device. This explains the presence of the host scope for addresses bound to interface lo. Usually,
addresses on other interfaces are public interfaces, which means that their scope will be global. We will
revisit scope again when we discuss routing with ip route, and there we will also encounter the link
scope.

Now, let’s examine IP addressing with the ip address utility by adding and removing IP addresses from
active interfaces.

Using ip address add to configure IP address information
If you need to host an additional IP address on tristan, here’s how you would accomplish this task.

112

Appendix C. IP Address Management

Example C-7. Adding IP addresses to an interface with ip address

[root@tristan]# ip address add 192.168.99.37/24 brd + dev eth0
[root@tristan]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.35/24 brd 192.168.99.255 scope global eth0

inet 192.168.99.37/24 brd 192.168.99.255 scope global secondary eth0

There are a few items of note. You can use ip address add even if the link layer on the device is down.
This means that you can readdress an interface without bringing it up. When you add an address within
the same CIDR network as another address on the same interface, the second address becomes a
secondary address, meaning that if the first address is removed, the second address will also be purged
from the interface.

In order to support compatibility with ifconfig the ip address command allows the user to specify a label
on every hosted address on a given device. After adding an address to an interface as we did in Example
C-7, ifconfig will not report that the new IP 192.168.99.37 is hosted on the same device as the primary IP
192.168.99.35. In order to prevent this sort of confusion or apparently contradictory output, you should
get in the habit of using the label option to identify each IP hosted on a device. Let’s take a look at how
to remove the 192.168.99.37 IP from eth0 and add it back so that ifconfig will report the presence of
another IP on the eth0 device.

Using ip address del to remove IP addresses from an
interface
There is a difference between IPs considered as primary addresses on an interface and secondary
addresses. If in the output, an address is listed as a secondary address, removing the primary address will
also remove the secondary address.

A workaround is to set the netmask on the second address added to the interface to /32. Unfortunately,
this subterfuge will prevent the kernel from entering the correct corresponding network and broadcast
routes.

Example C-8. Removing IP addresses from interfaces with ip address

[root@tristan]# ip address del 192.168.99.37/24 brd + dev eth0
[root@tristan]# ip address add 192.168.99.37/24 brd + dev eth0 label eth0:0
[root@tristan]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.35/24 brd 192.168.99.255 scope global eth0

inet 192.168.99.37/24 brd 192.168.99.255 scope global secondary eth0:0

[root@tristan]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:190312 errors:0 dropped:0 overruns:0 frame:0

TX packets:86955 errors:0 dropped:0 overruns:0 carrier:0

113

Appendix C. IP Address Management

collisions:0 txqueuelen:100

RX bytes:30701229 (29.2 Mb) TX bytes:7878951 (7.5 Mb)

Interrupt:9 Base address:0x5000

eth0:0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51

inet addr:10.10.20.10 Bcast:10.10.20.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Interrupt:9 Base address:0x1000

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:306 errors:0 dropped:0 overruns:0 frame:0

TX packets:306 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:29504 (28.8 Kb) TX bytes:29504 (28.8 Kb)

Taking the minor precaution of using labels on IP addresses added to an interface will prevent confusion
if there are multiple administrators of a machine, some of whom use ifconfig.

Removing all IP address information from an interface with ip
address flush
Finally, let’s look at the use of ip address flush. If an interface has already had IP addresses assigned to
it, and all of the addresses need to be removed (along with their routes), there is one handy command to
accomplish all of these tasks. ip address flush takes an interface name as an argument. Let’s look at the
output of ip address show just before and just after removing all IPs.

Example C-9. Removing all IPs on an interface with ip address flush

[root@tristan]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.35/24 brd 192.168.99.255 scope global eth0

inet 192.168.99.37/24 brd 192.168.99.255 scope global secondary eth0:0

[root@tristan]# ip address flush
Flush requires arguments.

[root@tristan]# ip address flush dev eth0
[root@tristan]# ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

114

Appendix C. IP Address Management

Conclusion
As you can see, the ip address utility provides a wealth of information and a great deal of control over
the IPs associated with each device. For more detailed information about the iproute2 package and
included tools, see the Section called iproute2 documentation in Appendix I.

Notes
1. I’m sure somebody will be glad to nitpick here and tell me that s/he has a machine connected to the

Internet which uses SNA, DecNET, IPX, or NetBEUI to connect to another host which actually does
speak IP, thus proving that not every host which has access to the Internet is actually directly
speaking IP. Another example is doubtless, wireless devices, such as telephones. Here, I’ll concern
myself with the majority case.

2. If you need to change the hardware address of an Ethernet interface, you have a strange need, but you
can accomplish this using the ip link set address command.

115

Appendix D. IP Route Management
Routing and understanding routing in an IP network is one of the fundamentals you will need to grasp
the flexibility of IP networking, and services which run on IP networks. It is not enough to address the
machines and mix yourself a dirty martini. You’ll need to verify that the machine has a route to any
network with which it needs to exchange IP packets.

One key element to remember when designing networks, viewing routing tables, debugging networking
problems, and viewing network traffic on the wire is that IP routing is stateless 1. This means that every
time a new packet hits the routing stage, the router makes an independent decision about where to send
this packet.

In this section, we’ll look at the tools available to manipulate and view the routing table(s). We’ll start
with the well known route command, and move on to the increasingly used ip route and ip rule tools
which are part of the iproute2 package.

route
In the same way that ifconfig is the venerable utility for IP address management, route is a tremendously
useful command for manipulating and displaying IP routing tables.

Here we’ll look at several tasks you can perform with route. You can display routes, add routes (most
importantly, the default route), remove routes, and examine the routing cache. I will switch between
traditional and CIDR notation for network addressing in this (and subsequent) sections, so the reader
unaware of these notations is encouraged to refer liberally to the links provided in the Section called
General IP Networking Resources in Appendix I.

When using route and ip route on the same machine, it is important to understand that not all routing
table entries can be shown with route. The key distinction is that route only displays information in the
main routing table. NAT routes, and routes in tables other than the main routing table must be managed
and viewed separately with the ip route tool.

Displaying the routing table with route
By far the simplest and most common task one performs with route is viewing the routing table. On a
single-homed desktop like tristan, the routing table will be very simple, probably comprised of only a
few routes. Compare this to a complex routing table on a host with multiple interfaces and static routes to
internal networks, such as masq-gw. It is by using the route command that you can determine where a
packet goes when it leaves your machine.

Example D-1. Viewing a simple routing table with route

[root@tristan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

116

Appendix D. IP Route Management

In the simplest routing tables, as in tristan’s case, you’ll see three separate routes. The route which is
customarily present on all machines (and which I’ll not remark on after this) is the route to the loopback
interface. The loopback interface is an IP interface completely local to the host itself. Most commonly,
loopback is configured as a single IP address in a class A-sized network. This entire network has been set
aside for use on loopback devices. The address used is usually 127.0.0.1/8, and the device name under all
default installations of linux I have seen is lo. It is not at all unheard of for people to host services on
loopback which are intended only for consumption on that machine, e.g., SMTP on tcp/25.

The remaining two lines define how tristan should reach any other IP address anywhere on the Internet.
These two routing table entries divide the world into two different categories: a locally reachable
network (192.168.99.0/24) and everything else. If an address falls within the 192.168.99.0/24 range,
tristan knows it can reach the IP range directly on the wire, so any packets bound for this range will be
pushed out onto the local media.

If the packet falls in any other range tristan will consult its routing table and find no single route that
matches. In this case, the default route functions as a terminal choice. If no other route matches, the
packet will be forwarded to this destination address, which is usually a router to another set of networks
and routers (which eventually lead to the Internet).

Viewing a complex routing table is no more difficult than viewing a simple routing table, although it can
be a bit more diffiult to read, interpret, and sometimes even find the route you wish to examine.

Example D-2. Viewing a complex routing table with route

[root@masq-gw]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.100.0 0.0.0.0 255.255.255.252 U 0 0 0 eth3

205.254.211.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

192.168.100.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2

192.168.98.0 192.168.99.1 255.255.255.0 UG 0 0 0 eth2

10.38.0.0 192.168.100.1 255.255.0.0 UG 0 0 0 eth3

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 205.254.211.254 0.0.0.0 UG 0 0 0 eth1

The above routing table shows a more complex set of static routes than one finds on a single-homed host.
By comparing the network mask of the routes above, we can see that the network mask is listed from the
most specific to the least specific. Refer to the Section called Route Selection in Chapter 4 for more
discussion.

A quick glance down this routing table also provides us with a good deal of knowledge about the
topology of the network. Immediately we can identify four separate Ethernet interfaces, 3 locally
connected class C sized networks, and one tiny subnet (192.168.100.0/30). We can also determine that
there are two networks reachable via static routes behind internal routers.

Now that we have taken a quick glance at the output from the route command, let’s examine a bit more
systematically what it’s reporting to us.

117

Appendix D. IP Route Management

Reading route’s output
For this discussion refer to the network map in the appendix, and also to Example D-2. route is a
venerable command, one which can manipulate routing tables for protocols other than IP. If you wish to
know what other protocols are supported, try route --help at your leisure. Fortunately, route
defaults to inet (IPv4) routes if no other address family is specified.

By combining the values in columns one and three you can determine the destination network or host
address. The first line in masq-gw’s routing table shows 192.168.100.0/255.255.255.252, which is more
conveniently written in CIDR notation as 192.168.100.0/30. This is the smallest possible network
according to RFC 1878 (http://www.isi.edu/in-notes/rfc1878.txt). The only two useable addresses are
192.168.100.1 (service-router) and 192.168.100.2 (masq-gw).

The second column holds the IP address of the gateway to the destination if the destination is not a
locally connected network. If there is a value other than 0.0.0.0 in this field, the kernel will address the
outbound packet for this device (a router of some kind) rather than directly for the destination. The
column after the netmask column (Flags) should always contain a G for destination not locally
connected to the linux machine.

The fields Metric, Ref and Use are not generally used in simple or even moderately complex routing
tables, however, we will discuss the Use column further in the Section called Using route to display the
routing cache.

The final field in the route output contains the name of the interface through which the destination is
reachable. This can be any interface known to the kernel which has an IP address. In Example D-2 we
can learn immediately that 192.168.98.0/24 is reachable through interface eth2.

After this brief examination of the commonest of output from route, let’s look at some of the other
things we can learn from route and also how we can change the routing table.

Using route to display the routing cache
The routing cache is used by the kernel as a lookup table analogous to a quick reference card. It’s faster
for the kernel to refer to the cache (internally implemented as a hash table) for a recently used route than
to lookup the destination address again. Routes existing in the route cache are periodically expired. If you
need to clean out the routing cache entirely, you’ll want to become familiar with ip route flush cache.

At first, it might surprise you to learn that there are no entries for locally connected networks in a routing
cache. After a bit of reflection, you come to realize that there is on need to cache an IP route for a locally
connected network because the machine is connected to the same Ethernet. So, any given destination has
an entry in either the arp table or in the routing cache. For a clearer picture of the differences between
each of the cached routse, I’d suggest adding a -e switch.

Example D-3. Viewing the routing cache with route

[root@tristan]# route -Cen
Kernel IP routing cache

Source Destination Gateway Flags MSS Window irtt Iface

194.52.197.133 192.168.99.35 192.168.99.35 l 40 0 0 lo

192.168.99.35 194.52.197.133 192.168.99.254 1500 0 29 eth0

192.168.99.35 192.168.99.254 192.168.99.254 1500 0 0 eth0

192.168.99.254 192.168.99.35 192.168.99.35 il 40 0 0 lo

118

Appendix D. IP Route Management

192.168.99.35 192.168.99.35 192.168.99.35 l 16436 0 0 lo

192.168.99.35 194.52.197.133 192.168.99.254 1500 0 0 eth0

192.168.99.35 192.168.99.254 192.168.99.254 1500 0 0 eth0

FIXME! I don’t really know why there are three entries in the routing cache for each destination. Here,
for example, we see three entries in the routing cache for 194.52.197.133 (a Swedish destination).

The MSS column tells us what the path MTU discovery has determined for a maximum segment size for
the route to this destination. By discovering the proper segment size for a route and caching this
information, we can make most efficient use of bandwidth to the destination, without incurring the
overhead of packet fragmentation enroute. See the Section called MTU, MSS, and ICMP in Chapter 4 for
a more complete discussion of MSS and MTU.

FIXME! There has to be more we can say about the routing cache here.

Creating a static route with route add
Static routes are explicit routes to non-local destinations through routers or gateways which are not the
default gateway. The case of the routing table on tristan is a classic example of the need for a static route.
There are two routers in the same network, masq-gw and isdn-router. If tristan has packets for the
192.168.98.0/24 network, they should be routed to 192.168.99.1 (isdn-router). Refer also to the Section
called Adding and removing a static route in Chapter 1 for this example.

As with ifconfig, route has a syntax unlike most standard unix command line utilities, mixing options
and arguments with less regularity. Note the mandatory -net or -host options when adding or
removing any route other than the default route.

In order to add a static route to the routing table, you’ll need to gather several pieces of information
about the remote network.

In our example network, masq-gw can only reach 10.38.0.0/16 through service-router. Let’s add a static
route to the masquerading firewall to ensure that 10.38.0.0/16 is reachable. Our intended routing table
will look like the routing table in Example D-2. Let’s also view the output if we mistype the IP address
of the default gateway and specify an address which is not a locally reachable address.

Example D-4. Adding a static route to a network route add

[root@masq-gw]# route add -net 10.38.0.0 netmask 255.255.0.0 gw 192.168.109.1
SIOCADDRT: Network is unreachable

[root@masq-gw]# route add -net 10.38.0.0 netmask 255.255.0.0 gw 192.168.100.1

It should be clear now that the gateway address must be reachable on a locally connected network for a
static route to be useable (or even make sense). In the first line, where we mistyped, the route could not
be added to the routing table because the gateway address was not a reachable address.

Now, instead of sending packets with a destination of 10.38.0.0/16 to the default gateway, wan-gw,
masq-gw will send this traffic to service-router at IP address 192.168.100.1.

119

Appendix D. IP Route Management

The above is a simple example of routing a network to a separate gateway, a gateway other than the
default gateway. This is a common need on networks central to an operation, and less common in branch
offices and remote networks.

Occasionally, however, you’ll have a single machine with an IP address in a different range on the same
Ethernet as some other machines. Or you might have a single machine which is reachable via a router.
Let’s look at these two scenarios to see how we can create static routes to solve this routing need.

Occasionally, you may have a desire to restrict communication from one network to another by not
including routes to the network. In our sample network, tristan may be a workstation of an employee
who doesn’t need to reach any machines in the branch office. Perhaps this employee needs to
periodically access some data or service supplied on 192.168.98.101. We’ll need to add a static route to
allow this machine to access this single host IP in the branch office network 2.

Here’s a summary of the required data for our static route. The destination is 192.168.98.101/32 and the
gateway is 192.168.99.1.

Example D-5. Adding a static route to a host with route add

[root@tristan]# route add -host 192.168.98.101 gw 192.168.99.1
[root@tristan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.98.101 192.168.99.1 255.255.255.255 UG 0 0 0 eth0

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

Now, we have successfully altered the routing table to include a host route for the single machine we
want our employee to be able to reach.

Even rarer, you may encounter a situation where a single Ethernet network is used to host multiple IP
networks. There are reasons people might do this, although I regard this is bad form. If possible, it is
cleaner, more secure, and easier to troubleshoot if you do not share IP networks on the same media
segment. With that said, you can still convince your linux box to be a part of each network 3.

Let’s assume for the sake of this example that NAT is not an option for us, and we need to move the
machine 205.254.211.184 into another network. Though it violates the concept of security partitioning,
we have decided to put the server into the same network as service-router. Naturally, we’ll need to
modify the routing table on masq-gw.

Be sure to refer to the Section called Breaking a network in two with proxy ARP in Chapter 9 for a
complete discussion of this unusual networking scenario.

Example D-6. Adding a static route to a host on the same media with route add

[root@masq-gw]# route add -host 205.254.211.184 dev eth3

I’ll leave as an exercise to the reader’s imagination the question of how to send all traffic to a locally
connected network to an interface. In light of the host route above, it should be a logical step for the
reader to make.

120

Appendix D. IP Route Management

The above are common examples of the usage of the route command.

Creating a default route with route add default
The default route is a special case of a static route. Any machine which is connected to the Internet has a
default route. For the majority of smaller networks which are not running dynamic routing protocols,
each machine on an internal network uses a router or firewall as its default gateway, forwarding all traffic
to that destination. Typically, this router or firewall forwards the traffic to the next router or device via a
static route until the traffic reaches the ISP’s service access router. Many ISPs use dynamic routing
internally to determine the best path out of their networks to remote destinations.

But we are only interested in adding a default route and understanding that packets are reaching the
default gateway. Once the packets have reached the default gateway, we assume that the administrator of
that device is monitoring its correct operation.

With this bit of background about the default route, it is easy to see why a default route is a key part of
any networking device’s configuration. If the machine is to reach machines other than the machines on
the local network, it must know the address of the default gateway.

Because the default gateway is so important, there is particular support for adding a default route
included in the route command. Refer to Example 1-8 for a simple example of adding a default route.
The syntax of the command is as follows:

Example D-7. Setting the default route with route

[root@tristan]# route add default gw 192.168.99.254

This is the commonest method used for setting a default route, although the route can also be specified
by the following command. I find the alternate method more explicit than the common method for setting
default gateway, because the destination address and network mask are treated exactly like any other
network address and netmask.

Example D-8. An alternate method of setting the default route with route

[root@tristan]# route add -net 0.0.0.0 netmask 0.0.0.0 gw 192.168.99.254

The alternate method of setting a default route specifies a network and netmask of 0, which is shorthand
for all destinations. I’ll reiterate that the kernel sees these two methods of setting the default route as
identical. The resulting routing table is exactly the same. You may select whichever of these route
invocations you find more comfortable.

Now that we have covered adding static routes and the special static route, the default route, let’s try our
hand at removing existing routes from routing tables.

121

Appendix D. IP Route Management

Removing routes with route del
Any route can be removed from the routing table as easily as it can be added. The syntax of the
command is exactly the same as the syntax of the route add command.

After we went to all of the trouble above to put our machine 205.254.211.184 into the network with
service-router, we probably realize that from a security partitioning standpoint, it is not only stupid, but
also foolhardy! So now, we conclude that we need to return 205.254.211.184 to its former network (the
DMZ proper). We’ll now remove the special host route for its IP, so the network route for
205.254.211.0/24 will now be used for reaching this host. (If you have questions about why, read the
Section called Route Selection in Chapter 4.)

Example D-9. Removing a static host route with route del

[root@masq-gw]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

205.254.211.184 0.0.0.0 255.255.255.255 U 0 0 0 eth3

192.168.100.0 0.0.0.0 255.255.255.252 U 0 0 0 eth3

205.254.211.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

192.168.100.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2

192.168.98.0 192.168.99.1 255.255.255.0 UG 0 0 0 eth2

10.38.0.0 192.168.100.1 255.255.0.0 UG 0 0 0 eth3

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 205.254.211.254 0.0.0.0 UG 0 0 0 eth1

[root@masq-gw]# route del -host 205.254.211.184 dev eth3

Another possible example might be the prohibition of Internet traffic to a particular user. If a machine
does not have a default route, but instead has a routing table populated only with routes to internal
networks, then that machine can only reach IP addresses in networks to which it has a routing table entry.
Let’s say that you have a user who routinely spends work hours browsing the Internet, fetching mail from
a POP account outside your network, and in short wastes time on the Internet. You can easily prevent this
user from reaching anything except your internal networks. Naturally, this sort of a problem employee
should probably face some sort of administrative sanction to address the real problem, but as a technical
component of the strategy to prevent this user from wasting time on the Internet, you could remove
access to the Internet from this employee’s machine.

In the below example, we’ll use the route command a number of times for different operations, all of
which you should be familiar with by now.

Example D-10. Removing the default route with route del

[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.98.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.98.254 0.0.0.0 UG 0 0 0 eth0

[root@morgan]# route del default gw 192.168.98.254
[root@morgan]# route add -net 192.168.99.0 netmask 255.255.255.0 gw 192.168.98.254

122

Appendix D. IP Route Management

[root@morgan]# route add -net 192.168.100.0 netmask 255.255.255.0 gw 192.168.98.254
[root@morgan]# route add -net 205.254.211.0 netmask 255.255.255.0 gw 192.168.98.254
[root@morgan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

205.254.211.0 192.168.98.254 255.255.255.0 U 0 0 0 eth0

192.168.100.0 192.168.98.254 255.255.255.0 U 0 0 0 eth0

192.168.99.0 192.168.98.254 255.255.255.0 U 0 0 0 eth0

192.168.98.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

Now, the user on morgan can only reach the specified networks. The networks we have entered here are
all of our corporate networks. If the user tries to generate a packet to any other destination, the kernel is
not going to know where to send it, so will return in error code to the application trying to make the
network connection.

While this can be a very effective way to restrict access to an individual machine, it is an ineffective
method of systems administration, since it requires that the user log in to the affected machine and make
changes to the routing table on demand. A better solution would be to use packet filter rules.

ip route
Another part of the iproute2 suite of tools for IP management, ip route provides management tools for
manipulating any of the routing tables. Operations include displaying routes or the routing cache, adding
routes, deleting routes, modifying existing routes, and fetching a route and clearing an entire routing
table or the routing cache.

One thing to keep in mind when using the ip route is that you can operate on any of the 255 routing
tables with this command. Where the route command operated only on the main routing table (table
254), the ip route command operates by default on the main routing table, but can be easily coaxed into
using other tables with the table parameter.

Fortunately, as mentioned earlier, the iproute2 suite of tools does not rely on DNS for any operation so,
the ubiquitous -n switch in previous examples will not be required in any example here.

All operations with the ip route command are atomic, so each command will return either RTNETLINK
answers: No such process in the case of an error, or nothing in the face of success. The -s switch
which provides additional statistical information when reporting link layer information will only provide
additional information when reporting on the state of the routing cache or fetching a specific route..

The ip route utility when used in conjunction with the ip rule utility can create stateless NAT tables. It
can even manipulate the local routing table, a routing table used for traffic bound for broadcast addresses
and IP addresses hosted on the machine itself.

In order to understand the context in which this tool runs, you need to understand some of the basics of
IP routing, so if you have read the above introduction to the ip route tool, and are confused, you may
want to read Chapter 4 and grasp some of the concepts of IP routing (with linux) before continuing here.

123

Appendix D. IP Route Management

Displaying a routing table with ip route show
In its simplest form, ip route can be used to display the main routing table output. The output of this
command is significantly different from the output of the route. For comparison, let’s look at the output
of both route -n and ip route show.

Example D-11. Viewing the main routing table with ip route show

[root@tristan]# route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 eth0

[root@tristan]# ip route show
192.168.99.0/24 dev eth0 scope link

127.0.0.0/8 dev lo scope link

default via 192.168.99.254 dev eth0

If you are accustomed to the route output format, the ip route output can seem terse. The same basic
information is displayed, however. As with our former example, let’s ignore the 127.0.0.0/8 loopback
route for the moment. This is a required route for any IPs hosted on the loopback interface. We are far
more interested in the other two routes.

The network 192.168.99.0/24 is available on eth0 with a scope of link, which means that the network is
valid and reachable through this device (eth0). Refer to Table C-2 for definitions of possible scopes. As
long as link remains good on that device, we should be able to reach any IP address inside of
192.168.99.0/24 through the eth0 interface.

Finally, our all-important default route is expressed in the routing table with the word default. Note that
any destination which is reachable through a gateway appears in the routing table output with the
keyword via. This final line matches semantically with the final line of output from route -n above.

Now, let’s have a look at the local routing table, which we can’t see with route. To be fair, it is usually
completely unnecessary to view and/or manipulate the local routing table, which is why route provides
no way to access this information.

Example D-12. Viewing the local routing table with ip route show table local

[root@tristan]# ip route show table local
local 192.168.99.35 dev eth0 proto kernel scope host src 192.168.99.35

broadcast 127.255.255.255 dev lo proto kernel scope link src 127.0.0.1

broadcast 192.168.99.255 dev eth0 proto kernel scope link src 192.168.99.35

broadcast 127.0.0.0 dev lo proto kernel scope link src 127.0.0.1

local 127.0.0.1 dev lo proto kernel scope host src 127.0.0.1

local 127.0.0.0/8 dev lo proto kernel scope host src 127.0.0.1

This gives us a good deal of information about the IP networks to which the machine is directly
connected, and an inside look into the way that the routing tables treat special addresses like broadcast
addresses and locally configured addresses.

124

Appendix D. IP Route Management

The first field in this output tells us whether the route is for a broadcast address or an IP address or range
locally hosted on this machine. Subsequent fields inform us through which device the destination is
reachable, and notably (in this table) that the kernel has added these routes as part of bringing up the IP
layer interfaces.

For each IP hosted on the machine, it makes sense that the machine should restrict accessiblity to that IP
or IP range to itself only. This explains why, in Example D-12, 192.168.99.35 has a host scope. Because
tristan hosts this IP, there’s no reason for the packet to be routed off the box. Similarly, a destination of
localhost (127.0.0.1) does not need to be forwarded off this machine. In each of these cases, the scope
has been set to host.

For broadcast addresses, which are intended for any listeners who happen to share the IP network, the
destination only makes sense as for a scope of devices connected to the same link layer 4.

The final characteristic available to us in each line of the local routing table output is the src keyword.
This is treated as a hint to the kernel about what IP address to select for a source address on outgoing
packets on this interface. Naturally, this is most commonly used (and abused) on multi-homed hosts,
although almost every machine out there uses this hint for connections to localhost 5.

Now that we have inspected the main routing table and the local routing table, let’s see how easy it is to
look at any one of the other routing tables. This is as simple as specifying the table by its name in
/etc/iproute2/rt_tables or by number. There are a few reserved table identifiers in this file, but
the other table numbers between 1 and 252 are available for the user. Please note that this example is for
demonstration only and has no intrinsic value other than showing the use of the table parameter.

Example D-13. Viewing a routing table with ip route show table

[root@tristan]# ip route show table special
Error: argument "special" is wrong: table id value is invalid

[root@tristan]# echo 7 special >> /etc/iproute2/rt_tables
[root@tristan]# ip route show table special
[root@tristan]# ip route add table special default via 192.168.99.254
[root@tristan]# ip route show table special
default via 192.168.99.254 dev eth0

In the above example you get a first glance at how to add a route to a table other than the main routing
table, but what we are really interested in is the final command and output. In Example D-13, we have
identified table 7 by the name "special" and have added a route to this table. The command ip route
show table special shows us routing table number 7 from the kernel.

ip route consults /etc/iproute2/rt_tables for a table identifier. If it finds no identifier, it
complains that it cannot find a reference to such a table. If a table identifier is found, then the
corresponding routing table is displayed.

The use of multiple routing tables can make a router very complex, very quickly. Using names instead of
numbers for these tables can assist in the management of this complexity. For further discussion on
managing multiple routing tables and some issues of handling them see the Section called Using the
Routing Policy Database and Multiple Routing Tables in Chapter 10.

125

Appendix D. IP Route Management

Displaying the routing cache with ip route show cache
The routing cache is used by the kernel as a lookup table analogous to a quick reference card. It’s faster
for the kernel to refer to the cache (internally implemented as a hash table) for a recently used route than
to lookup the destination address again. Routes existing in the route cache are periodically expired.

The routing cache can be displayed in all its glory with ip route show cache, which provides a detailed
view of recent destination IP addresses and salient characteristics about those destinations. On routers,
masquerading boxen and firewalls, the routing cache can become very large. Instead of viewing the
entire routing cache even on a workstation, we’ll select a particular destination from the routing cache to
examine.

Example D-14. Displaying the routing cache with ip route show cache

[root@tristan]# ip route show cache 192.168.100.17
192.168.100.17 from 192.168.99.35 via 192.168.99.254 dev eth0

cache mtu 1500 rtt 18ms rttvar 15ms cwnd 15 advmss 1460

192.168.100.17 via 192.168.99.254 dev eth0 src 192.168.99.35

cache mtu 1500 advmss 1460

FIXME! I don’t know how to explain rtt, rttvar, and cwnd, even after reading Alexey’s comments in the
iproute2 documentation! Not only that, I’m not sure why there are two entries!

The output in Example D-14 summarizes the reachability of the destination 192.168.100.17 from
192.168.99.35. The first line of each entry provides some important information for us: the destination
IP, the source IP, the gateway through which the destination is reachable, and the interface through which
packets were routed. Together, these data identify a route entry in the cache.

Characteristics of that route are summarized in the second line of each entry. For the route between
tristan and isolde, we see that Path MTU discovery has identified 1500 bytes as the maximum packet size
from end to end. The maximum segment size (MSS) of data is 1460 bytes. Although this is not usually of
any but the most casual of interest, it can be helpful diagnostic information.

If you are a die-hard fan of statistics, and can’t get enough information about the routing on your
machine, you can always throw the -s switch.

Example D-15. Displaying statistics from the routing cache with ip -s route show cache

[root@tristan]# ip -s route show cache 192.168.100.17
192.168.100.17 from 192.168.99.35 via 192.168.99.254 dev eth0

cache users 1 used 326 age 12sec mtu 1500 rtt 72ms rttvar 22ms cwnd 2 advmss 1460

192.168.100.17 via 192.168.99.254 dev eth0 src 192.168.99.35

cache users 1 used 326 age 12sec mtu 1500 advmss 1460

With this output, you’ll get just a bit more information about the routes. The most interesting datum is
usually the "used" field, which indicates the number of times this route has been accessed in the routing
cache. This can give you a very good idea of how many times a particular route has been used. The age
field is used by the kernel to decide when to expire a cache entry. The age is reset every time the route is
accessed 6.

126

Appendix D. IP Route Management

In sum, you can use the routing cache to learn a good deal about remote IP destinations and some of the
characteristics of the network path to those destinations.

Using ip route add to populate a routing table
ip route add is a used to populate a routing table. Although you can use route add to do the same thing,
ip route add offers a large number of options that are not possible with the venerable route command.
After we have looked at some simple examples, we’ll discuss more complex routes with ip route.

In the Section called route, we used two classic examples of adding a network route (to our service
provider’s network from) and a host route. Let’s look at the difference in syntax with the ip route
command.

Example D-16. Adding a static route to a network with route add, cf. Example D-4

[root@masq-gw]# ip route add 10.38.0.0/16 via 192.168.100.1

This is one of the simplest examples of the syntax of the ip route. As you may recall, you can only add a
route to a destination network through a gateway that is itself already reachable. In this case, masq-gw
already knows a route to 192.168.100.1 (service-router). Now any packets bound for 10.38.0.0/16 will be
forwarded to 192.168.100.1.

Other interesting examples of this command involve the use of prohibit and from. Use of the
prohibit will cause the router to report that the requested destination is unreachable. If you know a
netblock that hosts a service you are not interested in allowing your users to access, this is an effective
way to block the outbound connection attempts.

Let’s look at an example of tcpdump output which shows the prohibit route in action.

Example D-17. Adding a prohibit route with route add

[root@masq-gw]# ip route add prohibit 209.10.26.51
[root@tristan]# ssh 209.10.26.51
ssh: connect to address 209.10.26.51 port 22: No route to host

[root@masq-gw]# tcpdump -nnq -i eth2
tcpdump: listening on eth2

22:13:13.740406 192.168.99.35.51973 > 209.10.26.51.22: tcp 0 (DF)

22:13:13.740714 192.168.99.254 > 192.168.99.35: icmp: host 209.10.26.51 unreachable - ad-

min prohibited filter [tos 0xc0]

Compare the ICMP packet returned to the sender in this case with the ICMP packet returned if you used
iptables and the REJECT target 7. Although the net effect is identical (the user is unable to reach the
intended destinatioan), the user gets two different error messages. With an iptables REJECT, the user
sees Connection refused, where the user sees No route to host with the use of prohibit.
These are but two of the options for controlling outbound access from your network.

Supposing you don’t want to block access to this particular host for all of your users, the from option
comes to your aid.

127

Appendix D. IP Route Management

Example D-18. Using from in a routing command with route add

[root@masq-gw]# ip route add prohibit 209.10.26.51 from 192.168.99.35

Now, you have effectively blocked the source IP 192.168.99.35 from reaching 209.10.26.51. Any packets
matching this source and destination address will match this route. In this case, masq-gw will generate an
ICMP error message indicating that the destination is administratively unreachable.

If you are still following along here, you can see that the options for identifying particular routes are
many and multi-faceted. The src option provides a hint to the kernel for source address selection. When
you are working with multiple routing tables and different classes of traffic, you can ease your
administrative burden, by hosting several different IPs on your linux machine and setting the source
address differently, depending on the type of traffic.

In the example below, let’s assume that our masquerading host also runs a DNS resolver for the internal
network and we have selected all of the outbound DNS packets to be routed according to table 7 8. Now,
any packet which originates on this box (or is masqueraded through this table) will have its source IP set
to 205.254.211.198.

Example D-19. Using src in a routing command with route add

[root@masq-gw]# ip route add default via 205.254.211.254 src 205.254.211.198 ta-
ble 7

FIXME!! I have nothing to say about nexthop yet, because I have never used it, this goes for equalize
and onlink as well. If anybody has some examples s/he would like to contribute, I’d love to hear.

There are other options to the ip route add documented in Alexey’s thorough iproute2 documentation.
For further research, I’d suggested acquiring and reading this manual.

Adding a default route with ip route add default
Naturally, one of the most important routes on a machine is its default route. Adding a default route is
one of the simplest operations with ip route.

We need exactly one piece of information in order to set the default route on a machine. This is the IP
address of the gateway. The syntax of the command is extremely simple and aside from the use of the
via instead of gw, it is almost the same command as the equivalent route -n.

Example D-20. Setting the default route with ip route add default

[root@tristan]# ip route add default via 192.168.99.254

128

Appendix D. IP Route Management

Setting up NAT with ip route add nat
Be sure to see Chapter 5 for a full treatment of the issues involved in network address translation (NAT).
If you are here to learn a bit more about how to set up NAT in your network, then you should know that
the ip route add nat is only half of the solution. You must understand that performing NAT with
iproute2 involves one component to rewrite the inbound packet (ip route add nat), and another
command to rewrite the outbound packet (ip rule add nat). If you only get half of the system in place,
your NAT will only work halfway--or not at all, depending on how you define "work".

Alexey documents clearly in the appendix to the iproute2 manual that the NAT provided by the iproute2
suite is stateless. This is distinctly unlike NAT with netfilter. Refer to the Section called Destination NAT
with netfilter (DNAT) in Chapter 5 and the Section called Netfilter Connection Tracking in Chapter 8 for
a better look at the connection tracking and network address translation support available under netfilter.

The ip route add nat command is used to rewrite the destination address of a packet from one IP or
range to another IP or range. The iproute2 tools can only operate on the entire IP packet. There is no
provision directly within the iproute2 suite to support conditional rewriting based on the destination port
of a UDP datagram or TCP segment. It’s the whole packet, every packet, and nothing but the packet 9.

Example D-21. Creating a NAT route for a single IP with ip route add nat

[root@masq-gw]# ip route add nat 205.254.211.17 via 192.168.100.17
[root@masq-gw]# ip route show table local | grep ^nat
nat 205.254.211.17 via 192.168.100.17 scope host

The route entry we have just made tells the kernel to rewrite any inbound packet bound for
205.254.211.17 to 192.168.100.17. The actual rewriting of the packet occurs at the routing stage of the
packets trip through the kernel. This is an important detail, illuminated more fully in the Section called
Stateless NAT and Packet Filtering in Chapter 5.

Not only can iproute2 support network address translation for single IPs, but also for entire network
ranges. The syntax is substantially similar to the syntax above, but uses a CIDR network address instead
of a single IP.

Example D-22. Creating a NAT route for an entire network with ip route add nat

[root@masq-gw]# ip route add nat 205.254.211.32/29 via 192.168.100.32
[root@masq-gw]# ip route show table local | grep ^nat
nat 205.254.211.32/29 via 192.168.100.32 scope host

In this example, we are adding a route for an entire network. Any IP packets which come to us destined
for any address between 205.254.211.32 and 205.254.211.39 will be rewritten to the corresponding
address in the range 192.168.100.32 through 192.168.100.39. This is a shorthand way to specify multiple
translations with CIDR notation.

Again, this is only one half of the story for NAT with iproute2. Please be certain to read the section
below for usage information on ip rule add nat, in addition to Chapter 5 which will provide fuller
documentation for NAT support under linux. Don’t forget to use ip route flush cache after you add NAT
routes and the corresponding NAT rules 10.

129

Appendix D. IP Route Management

Removing routes with ip route del
The ip route del takes exactly the same syntax as the ip route add command, so if you have familiarized
yourself with the syntax, this should be a snap.

It is, in fact, almost trivial to delete routes on the command line with ip route del. You can simply
identify the route you wish to remove with ip route show command and append the output line verbatim
to ip route del.

Example D-23. Removing routes with ip route del 11

[root@masq-gw]# ip route show
192.168.100.0/30 dev eth3 scope link

205.254.211.0/24 dev eth1 scope link

192.168.100.0/24 dev eth0 scope link

192.168.99.0/24 dev eth0 scope link

192.168.98.0/24 via 192.168.99.1 dev eth0

10.38.0.0/16 via 192.168.100.1 dev eth3

127.0.0.0/8 dev lo scope link

default via 205.254.211.254 dev eth1

[root@masq-gw]# ip route del 10.38.0.0/16 via 192.168.100.1 dev eth3

We identified the network route to 10.38.0.0/16 as the route we wished to remove, and simply appended
the description of the route to our ip route del command.

This command can be used to remove routes such as broadcast routes and routes to locally hosted IPs in
addition to manipulation of any of the other routing tables. This means that you can cause some very
strange problems on your machine by inadvertently removing routes, especially routes to locally hosted
IP addresses.

Altering existing routes with ip route change
Occasionally, you’ll want to remove a route and replace it with another one. Fortunately, this can be done
atomically with ip route change.

Let’s change the default route on tristan with this command.

Example D-24. Altering existing routes with ip route change

[root@tristan]# ip route change default via 192.168.99.113 dev eth0
[root@tristan]# ip route show
192.168.99.0/24 dev eth0 scope link

127.0.0.0/8 dev lo scope link

default via 192.168.99.113 dev eth0

If you do use the ip route change command, you should be aware that it does not communicate a routing
table state change to the routing cache, so here is another good place to get in the habit of using ip route
flush cache.

130

Appendix D. IP Route Management

There’s not much more to say about the use of this command. If you don’t want to use an ip route del
immediately followed by an ip route add you can use ip route change.

Programmatically fetching route information with ip route get
When configuring routing tables, it is not always sufficient to search for the destination manually.
Especially with large routing tables, this can become a rather boring and time-consuming endeavor.
Fortunately, ip route get elegantly solves the problem. By simulating a request for the specified
destination, ip route get causes the routing selection algorithm to be run. When this is complete, it prints
out the resulting path to the destination. In one sense, this is almost equivalent to sending an ICMP echo
request packet and then using ip route show cache.

Example D-25. Testing routing tables with ip route get

[root@tristan]# ip -s route get 127.0.0.1/32
ip -s route get 127.0.0.1/32

local 127.0.0.1 dev lo src 127.0.0.1

cache <local> users 1 used 1 mtu 16436 advmss 16396

[root@tristan]# ip -s route get 127.0.0.1/32
local 127.0.0.1 dev lo src 127.0.0.1

cache <local> users 1 used 2 mtu 16436 advmss 16396

For casual use, ip route get is an invaluable tool. An obvious side effect of using ip route get the
increase in the usage count of every touched entry in the routing cache. While this is no problem, it will
alter the count of packets which have used that particular route. If you are using ip to count outbound
packets (people have done it!) you should be cautious with this command.

Clearing routing tables with ip route flush
The flush option, when used with ip route empties a routing table or removes the route for a particular
destination. In Example D-26, we’ll first remove a route for a destination network using ip route flush,
and then we’ll remove all of the routes in the main routing table with one command.

If you do not wish to delete routes by hand, you can quickly empty all of the routes in a table by
specifying a table identifier to the ip route flush command.

Example D-26. Removing a specific route and emptying a routing table with ip route flush

[root@masq-gw]# ip route flush
"ip route flush" requires arguments

[root@masq-gw]# ip route flush 10.38
Nothing to flush.

[root@masq-gw]# ip route flush 10.38.0.0/16
[root@masq-gw]# ip route show
192.168.100.0/30 dev eth3 scope link

205.254.211.0/24 dev eth1 scope link

192.168.100.0/24 dev eth0 scope link

192.168.99.0/24 dev eth0 scope link

131

Appendix D. IP Route Management

192.168.98.0/24 via 192.168.99.1 dev eth0

127.0.0.0/8 dev lo scope link

default via 205.254.211.254 dev eth1

[root@masq-gw]# ip route flush table main
[root@masq-gw]# ip route show
[root@masq-gw]#

Note that you should exercise caution when using ip route flush table because you can easily destroy
your own route to the machine by specifying the main routing table or a routing table that is used to send
packets to your workstation. Naturally, this is not a problem if you are connected to the machine via a
serial, modem, console, or other out of band connection.

ip route flush cache
Above, in the Section called Displaying the routing cache with ip route show cache, we looked at the
contents of the routing cache, a hash table in the kernel which contains recently used routes. To quote
John S. Denker, you should not forget to use ip route flush cache after you have changed the routing
tables; "otherwise changes will take effect only after some maddeningly irreproducible delay." 12

Since the kernel refers to the routing cache before fetching a new route from the routing tables, ip route
flush cache empties the cache of any data. Now when the kernel goes to the routing cache to locate the
best route to a destination, it finds the cache empty. Next, it traverses the routing policy database and
routing tables. When the kernel finds the route, it will enter the newly fetched destination into the routing
cache.

Example D-27. Emptying the routing cache with ip route flush cache

[root@tristan]# ip route show cache
local 127.0.0.1 from 127.0.0.1 tos 0x10 dev lo

cache <local> mtu 16436 advmss 16396

local 127.0.0.1 from 127.0.0.1 dev lo

cache <local> mtu 16436 advmss 16396

192.168.100.17 from 192.168.99.35 via 192.168.99.254 dev eth0

cache mtu 1500 rtt 18ms rttvar 15ms cwnd 15 advmss 1460

192.168.100.17 via 192.168.99.254 dev eth0 src 192.168.99.35

cache mtu 1500 advmss 1460

[root@tristan]# ip route flush cache
[root@tristan]# ip route show cache
[root@tristan]# ip route show cache
local 127.0.0.1 from 127.0.0.1 tos 0x10 dev lo

cache <local> mtu 16436 advmss 16396

local 127.0.0.1 from 127.0.0.1 dev lo

cache <local> mtu 16436 advmss 16396

When making routing changes to a linux box, you can save yourself some troubleshooting time (and
confusion) by getting in the habit of finishing your routing commands with ip route flush cache.

132

Appendix D. IP Route Management

Summary of the use of ip route
With this overview of the use of the ip route utility, you should be ready to step into some advanced
territory to harness multiple routing tables, take advantage of special types of routes, use network address
translation, and gather detailed statistics on the usage of your routing tables.

ip rule
Another part of the iproute2 software package, ip rule is the single tool for manipulating the routing
policy database under linux (RPDB). For a fuller discussion of the RPDB, see the Section called Using
the Routing Policy Database and Multiple Routing Tables in Chapter 10. The RPDB can be displayed
with ip rule show. Particular rules can be added and removed with (predictably, if you have been reading
the sections on the other iproute2 tools) ip rule add command and the ip rule del command. We’ll
make a particular example of the ip rule add nat.

ip rule show
Briefly, the RPDB mediates access to the routing tables. In the overwhelming majority of installations
(most workstations, servers, and even routers), there is no need to take advantage of the RPDB. A single
IP routing table is all that is required for basic connectivity. In more complex networking configurations,
however, the RPDB allows the administrator to programmatically select a routing table based on
characteristics of a packet.

Along with this freedom and flexibility comes the power to break networking in strange and unexpected
ways. I will reiterate: IP routing is stateless. Because IP routing is stateless, the network architect,
planner or administrator needs to be aware of the issues involved with using multiple routing tables.

For a fuller discussion of some of these issues, be sure to read the Section called Using the Routing Policy
Database and Multiple Routing Tables in Chapter 10. Now, let’s look at some of the ways to use ip rule.

Displaying the RPDB with ip rule show
To display the RPDB, use the command ip route show. The output of the command is a list of rules in
the RPDB sorted by order of priority. The rules with the highest priority will be displayed at the top of
the output.

Example D-28. Displaying the RPDB with ip rule show

[root@isolde]# ip rule show
0: from all lookup local

32766: from all lookup main

32767: from all lookup 253

There are some interesting items to observe here. First, these are the three default rules in the RPDB
which will be available on any machine with an RPDB. The first rule specifies that any packet from any

133

Appendix D. IP Route Management

where should first be matched against routes in the local routing table. Remember that the local routing
table is for broadcast addresses on link layers, network address translation, and locally hosted IP
addresses.

If a packet is not bound for any of these three destinations, the kernel will check the next entry in the
RPDB. In the simple case above, on isolde, a packet bound for 205.254.211.182 would first pass through
the local routing table without matching any of the local destinations. The next entry in the RPDB
recommends using the main routing table to select a destination route.

In isolde’s main routing table, it is likely that there is no host nor network match for this destination, thus
the packet will match the default route in the main routing table.

FIXME!! Can anybody (somebody?) explain to me why there is a rule priority 32767 which refers to
table 253? I’m still confused about this.

Adding a rule to the RPDB with ip rule add
Adding a rule to the routing policy database is simple. The syntax of the ip rule add command should be
familiar to those who have read the Section called ip route or have used the ip route to populate routing
tables.

A simple rule selects a packet on the the packet’s characteristics. Some characteristics available as
selection criteria are the source address, the destination, the type of service (ToS), the interface on which
the packet arrived, and an fwmark.

One great way to take advantage of the RPDB is to split different types of traffic to different providers
based on packet characteristics. Let’s assume two network connections on masq-gw, one that is a highly
reliable high cost connection, and a much lower cost less reliable connection. Let’s also assume that we
are using Type of Service flags on IP packets on the internal network.

We might want to prefer a low-latency, highly reliable link for one type of packet. By using tos as a
selection criterion with ip rule we can effectively route these packets via our faster and more reliable
internet connection.

Example D-29. Creating a simple entry in the RPDB with ip rule add 13

[root@masq-gw]# ip route add default via 205.254.211.254 table 8
[root@masq-gw]# ip rule add tos 0x08 table 8
[root@masq-gw]# ip route flush cache
[root@masq-gw]# ip rule show
0: from all lookup local

32765: from all tos 0x08 lookup 8

32766: from all lookup main

32767: from all lookup 253

Note that the rule we inserted was added to the next available higher priority in the RPDB because we
did not specify a priority. If we wished to specify a priority, we could use prio.

Now any packet with an IP ToS field matching 0x08 will be routed according to the instructions in table
8. If no route in table 8 applies to the matched packet (not possible, since we added a default route), the
packet would be routed according to the instructions in table "main".

134

Appendix D. IP Route Management

The selection criteria for matching a packet can be grouped. Let’s look at a more complex example of ip
rule where we use multiple selection criteria.

Example D-30. Creating a complex entry in the RPDB with ip rule add

[root@masq-gw]# ip rule add from 192.168.100.17 tos 0x08 fwmark 4 table 7

Frankly, that’s a very complex rule! I do not know if I could describe a scenario where this particular rule
would be required. The point, though, is that you can have arbitrarily complex selection criteria, and
multiple rules which lookup routes in as many of the 253 routing tables as you wish.

ip rule add, while a powerful tool, can quickly make a routing table or router too complex to easily
understand. It’s important to try to design and implement the simplest configuration to maintain on your
router. If you cannot avoid using multiple routing tables and the RPDB, at least be systematic about it.

ip rule add nat
As discussed more thoroughly in Chapter 5, this is the other half of iproute2 supported network address
translation. The two components are ip route add nat and ip rule add nat.

ip rule add nat is used to rewrite the source IP on packets during the routing stage. Each packet from the
real IP is translated to the NAT IP without altering the destination address of the packet.

NAT is commonly used to publish a service in an internal network on a public IP. Thus packets returning
to the public network need to be readdressed to appear with a source address of the publicly accessibly IP.

Example D-31. Creating a NAT rule with ip rule add nat

[root@masq-gw]# ip rule add nat 205.254.211.17 from 192.168.100.17
[root@masq-gw]# ip rule show
0: from all lookup local

32765: from 192.168.100.17 lookup main map-to 205.254.211.17

32766: from all lookup main

32767: from all lookup 253

In more complex situations, entire subnets can be translated to provide NAT for a range of IPs. The
example below shows how to specify the ip rule add nat to complete the NAT mapping in Example
D-22.

Example D-32. Creating a NAT rule for an entire network with ip rule add nat

[root@masq-gw]# ip rule add nat 205.254.211.32 from 192.168.100.32/29
[root@masq-gw]# ip rule show
0: from all lookup local

32765: from 192.168.100.32/29 lookup main map-to 205.254.211.32

32766: from all lookup main

32767: from all lookup 253

135

Appendix D. IP Route Management

Notice the ip rule synonym for the nat option. It is valid to substitute map-to for nat.

ip rule del
Naturally, no iproute2 tool would be complete without the ability to undo what has been done. With ip
rule del, individual rules can be removed from the RPDB.

It is at first quite confusing that the word all in the ip rule show output needs to be replaced with the
network address 0/0. I do not know why all is not acceptable as a synonym for 0/0, but you’ll save
yourself some headache by getting in the habit of replacing all with 0/0.

By replacing the verb add in any of the command lines above with the verb del, you can remove the
specified entry from the RPDB.

Example D-33. Removing a NAT rule for an entire network with ip rule del nat

[root@masq-gw]# ip rule del nat 205.254.211.32 from 192.168.100.32/29
[root@masq-gw]# ip rule show
0: from all lookup local

32766: from all lookup main

32767: from all lookup 253

The ip rule utility can be a great boon in the manipulation and maintenance of complex routers.

Notes
1. For those who have some doubt, netfilter provides a connection tracking mechanism for packets

passing through a linux router. This connection tracking, however, is independent of routing. It is
important to not conflate the packet filtering connection tracking statefulness with the statelessness
of IP routing. For an example of a complex networking setup where netfilter’s statefulness and the
statelessness of IP routing collide, see the Section called Multiple Connections to the Internet in
Chapter 10.

2. Though tristan does not have a direct route to the 192.168.98.0/24 network, it does have a default
route which knows about this destination network. Therefore, for the purposes of this illustrative
example, we’ll assume that masq-gw is configured to drop or reject all traffic to 192.168.98.0/24
from 192.168.99.0/24 and vice versa. Effectively this means that the only path to reach the branch
office from the main office is via isdn-router.

3. There can potentially be routing problems with multiple IP networks on the same media segment, but
if you can remember that IP routing is essentially stateless, you can plan around these routing
problems and solve these problems. For a fuller discussion of these issues, see the Section called
Multiple IPs on an Interface in Chapter 9 and the Section called Multiple IP Networks on one
Ethernet Segment in Chapter 9.

4. I’m going to specifically neglect a discussion of bridging and broadcast addresses for now. Let’s
assume a simple Ethernet where the entire IP network is on one hub or switch.

136

Appendix D. IP Route Management

5. When a user initiates a connection to localhost (let’s say localhost:25, where a private SMTP server
is listening), the connection could, of course, come from the IP assigned to any of the Ethernet
interfaces. It makes the most sense, however, for the source IP to be set to 127.0.0.1, since the
connection is actually initiated from on the local machine. Some services running on a local machine
rely on the loopback interface and will restrict incoming connections to source addresses of
127.0.0.1. Frankly, I find this quite sensible for services which are not intended for public use.

6. Be wary of using ip route get and ip route show cache because ip route get implicitly causes a
route lookup to be performed, thus increasing the used counter on the route, and resetting the age.
This will alter the statistics reported by ip -s route show cache.

7. Please note that I in the cross-referenced example I have used iptables. The same behaviour should
be expected with ipchains. (Anybody have any proof?)

8. If you wonder how this kind of magic is accomplished, you’ll want to read the Section called Using
fwmark for Policy Routing in Chapter 10.

9. This should not lead you into believing it cannot be done. This is linux after all! By routing via
fwmark, and using the --mark option to ipchains or the MARK target and --set-mark option in
iptables, you can perform conditional routing based on characteristics and contents of the packet.

10. You can always use my SysV initialization script and configuration file instead of entering your own
commands, however, it is always important to understand the tool you are using.

11. Please note that this is the same routing table as is shown in the Example D-2, which displays the
output from route -n on masq-gw.

12. See this remark in his documentation (http://www.quintillion.com/moat/ipsec+routing/iproute2.html)
of a workaround with FreeS/WAN and iproute2 to approximate more RFC-like SPD behaviour for a
linux IPSec tunnel.

13. Please note that this is an incomplete example. Simply put, I’m not dealing with the issues of
inbound packets or packets destined for locally connected networks in this example. Keep in mind
the instructional nature of this example, and plan your own network accordingly. For a fuller
discussion of the issues involved with handling multiple Internet links, see the Section called
Multiple Connections to the Internet in Chapter 10. Note also, that there is no corresponding network
connection in the example network for this network connection.

137

Appendix E. Tunnels and VPNs
FIXME

Lightweight encrypted tunnel with CIPE
FIXME; Crypto IP Encapsulation. Lightweight, because the carrier protocol is UDP. Visit the main CIPE
page (http://sites.inka.de/sites/bigred/devel/cipe.html).

GRE tunnels with ip tunnel
FIXME; Good way to get a static IP!

All manner of tunnels with ssh
FIXME; abuses of ssh.....ssh -o GatewayPorts=yes and PPP/SSH.

IPSec implementation via FreeS/WAN
FIXME; (get links from Matt)

IPSec implementation in the kernel
FIXME; the development kernel 2.5.46+ contains support for IPSec natively. This has been documented
at LARTC by bert hubert (http://lartc.org/howto/lartc.ipsec.html). It won’t be here for quite some time.

PPTP
FIXME; ugh...you don’t really want to do PPTP (I don’t think), but, if you do PoPToP
(http://www.poptop.org/) is the software for you.

138

Appendix F. Sockets; Servers and Clients
There is little point to the huge study of routing and network configuration if we can’t move data from
one host to another. This appendix will cover many of the command line tools (and a few daemons)
which can be used to initiate TCP connections, receive TCP connections and send and receive UDP
datagrams. Many of these tools are included with stock installations.

telnet and nc are the most common tools used for quickly creating a TCP connection. The less common
utility tcpclient provides a scriptable method for initiating TCP sessions, equally as well as nc. Finally,
the tool socat includes support for a large number of other types of sockets and files in addition to TCP
and UDP.

Some services expect to run under another utility which will handle the socket operations. We’ll tour the
following utilities: xinetd, tcpserver and the very specifically designed port redirection utility redir.

It’s important to remember that tools like socat and nc are suited equally well to initiate or receive TCP
connections, but may not have the flexibility of administrative control afforded by tools such as xinetd
and tcpserver where this was inherent to the design of the software.

telnet

nc
Quick example of nc (pronounced net-cat) in action.

Example F-1. Simple use of nc

[root@tristan]# nc 192.168.100.17 25
220 isolde ESMTP

quit
221 isolde

nc is one of a large number of tools for making a simple TCP connection.

Example F-2. Specifying timeout with nc

[root@tristan]# nc -w 5 192.168.98.82 22

Example F-3. Specifying source address with nc

[root@masq-gw]# nc -s 192.168.99.254 192.168.47.3 25

139

Appendix F. Sockets; Servers and Clients

Example F-4. Using nc as a server

[root@tristan]# nc -l -p 2048

Example F-5. Delaying a stream with nc

[root@tristan]# nc -l -p 2048

Example F-6. Using nc with UDP

[root@tristan]# nc -u 192.168.100.17 3000

socat

Example F-7. Simple use of socat

Example F-8. Using socat with proxy connect

Example F-9. Using socat perform SSL

Example F-10. Connecting one end of socat to a file descriptor

Example F-11. Connecting socat to a serial line

140

Appendix F. Sockets; Servers and Clients

Example F-12. Using a PTY with socat

Example F-13. Executing a command with socat

Example F-14. Connecting one socat to another one

tcpclient

Example F-15. Simple use of tcpclient

Example F-16. Specifying the local port which tcpclient should request

Example F-17. Specifying the local IP to which tcpclient should bind

xinetd

Example F-18. IP redirection with xinetd

Example F-19. Publishing a service with xinetd

141

Appendix F. Sockets; Servers and Clients

tcpserver

Example F-20. Simple use of tcpserver

Example F-21. Specifying a CDB for tcpserver

Example F-22. Limiting the number of concurrently accept TCP sessions under tcpserver

Example F-23. Specifying a UID for tcpserver’s spawned processes

redir

Example F-24. Redirecting a TCP port with redir

Here we are going to talk about port redirection, so point out the Section called Destination NAT with
netfilter (DNAT) in Chapter 5 and the Section called Port Address Translation (PAT) from Userspace in
Chapter 5.

Example F-25. Running redir in transparent mode

Example F-26. Running redir from another TCP server

Example F-27. Specifying a source address for redir’s client side

142

Appendix G. Diagnostics
Now that we have covered most of the basic tools for management of routes, IP addresses, and a few
Ethernet tools, we come to a set of tools which are used primarily to help you figure out what is wrong in
your network, where a route is broken, or even, simply, whether a host is reachable.

Some of these tools are available on other platforms, but may have different command line switches or
may use different packet signatures than those described here. The concepts in many cases, transfer, but,
of course, the command line options may be different.

We are going to start with one of the first networking tools that many people learn, ping and we’ll move
along to the common traceroute, which maps out a route from one host to another, mtr, which
represents traceroute-type information in a richer format, netstat, for examining sockets (and routes) in
use, and finally, the indispensable tcpdump, which reports on all traffic passing through a device.

By learning both how and when to use these tools, but even more importantly, how to read their output,
you can perform a tremendous amount of reconnaisance on your own network and frequently quickly
isolate problems and identify error conditions. These tools are some of the core tools of any linux
administrator who is responsible for an IP network.

ping
ping is one of the oldest IP utilities around. Simply put, ping asks another host if it is alive, and records
the round-trip time between the request and the reply.

In this section, we’ll look at several examples of the use of ping to test reachability, send a specified
number of packets, suppress all but summary output, stress the network, record the route a packet takes,
set the TTL, specify ToS, and specify the source IP.

The ping utility has a simple and elegant design. When run, it will craft a packet bound for the specified
destination, send the packet, and record the time it took that packet to reach its destination. The
generated packet is an ICMP packet known as an echo-request. If the destination host receives the
packet, it should generate an echo-reply. The success or failure of this very simple operation can provide
some insight into the state of a network or a series of networks.

In most cases, the ICMP echo-request packets and echo-reply packets, upon which ping’s functionality
relies, are allowed through routers and firewalls, however with the advent of trojans and distributed
denial of service tools which transmit information within ICMP packets, some networks and network
administrators block ICMP at their borders. For an example of such a trojan, see this dissection of the
trinoo (http://staff.washington.edu/dittrich/misc/tfn.analysis) distributed denial of service tool. As a
result of these nefarious uses of echo-request and echo-reply packets, some cautious network
administrators block all non-essential ICMP at their border routers. See the Section called ICMP and
Routing in Chapter 4 for a more complete discussion of ICMP.

Thus, we can no longer assume (as perhaps we once could) that simply because a host is not answering
our ping request, this host is down. There may be a device which has been configured to filter out this
traffic.

If a host is reachable and answering our echo-requests, then we may also wish to believe that the
round-trip times recorded by ping are an accurate representation of network conditions. This can be
misleading. Some routers are configured to give ICMP diagnostic messages the lowest priority of any IP

143

Appendix G. Diagnostics

packets travelling through them, in which case that router may contribute significantly to the round trip
time of any echo-request packet passing through it.

With knowledge of these two potential roadblocks to the successful use of ping as a network diagnostic
tool, we can begin to explore how ping is useful. In most internal networks, and many public networks,
there are no filters to block our echo-request packets.

Using ping to test reachability
In its simplest form, ping is used interactively on the command line to test reachability of a remote host.
Again, you’ll see in all of the examples below the use of the -n switch to suppress DNS lookups. Since
the proper functioning of DNS relies on a properly configured network, and ping is one of your tools for
diagnosing network problems, it makes sense to suppress all name lookup until you have verified that the
IP layer is functioning properly.

Let’s see first if the host morgan can reach its default gateway. This example is similar to the test we
performed in Example 1-2 from tristan.

On many systems, ping can be used by non-root users, but there are some options and features to ping
which require the user to have administrative privilege or root-level access to the box. Therefore, all
examples below will be run as the root user. Please be aware, that many diagnostics can be run without
this high a level of privilege.

Example G-1. Using ping to test reachability

[root@morgan]# ping -n 192.168.98.254
PING 192.168.98.254 (192.168.98.254) from 192.168.98.82 : 56(84) bytes of data.

64 bytes from 192.168.98.254: icmp_seq=0 ttl=255 time=231 usec

64 bytes from 192.168.98.254: icmp_seq=1 ttl=255 time=179 usec

64 bytes from 192.168.98.254: icmp_seq=2 ttl=255 time=215 usec

<ctrl-C>

--- 192.168.98.254 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max/mdev = 0.179/0.208/0.231/0.024 ms

We have verified from morgan that its default gateway, branch-router is reachable. The first line of output
tells us what the source and destination addresses (and names, if using DNS) are. Additionally, we learn
the size of the data segment of the ping packet, 56 bytes, and the size of the entire outbound IP packet 84
bytes.

Each subsequent line of output before the summary is a record of the receipt of a reply from the
destination (and what IP address sent the reply). Because ping needs to keep track of the number of bytes
it has sent, and the round-trip time, each time you run ping, it creates a sequence number inside the data
of the ping packet and reports the sequence number on any packets which return. By analyzing the
timestamps on the returned packets, ping can determine the round trip time of the journey and reports
this as the final field in each line of output.

At the end of the run, ping summarizes the number of replies, and performs some calculations on the
round-trip times. As with much data collection, you need a large sample set of data to draw conclusions
about your network. You can usually conclude that something is quite wrong if you cannot reach a

144

Appendix G. Diagnostics

remote host, but you should be cautious when concluding that your Ethernet card is bad simply because
round-trip times to a destination on the LAN is high. It is more likely that there’s another problem.
Collecting ping data from a number of hosts to a number of destinations can help you determine if the
problem is a localized to a single machine.

Frequently, you’ll want to use ping in a script, or you’ll want to specify that ping should only run for a
few cycles. Fortunately, this is trivial (and I’ll use the count option many times further below in this
section). The -c restricts the number of packets which ping will send (or receive). It can be combined
with some of the other options for a variety of diagnostic purposes.

Example G-2. Using ping to specify number of packets to send

[root@morgan]# ping -c 10 -n 192.168.100.17
PING 192.168.100.17 (192.168.100.17) from 192.168.98.82 : 56(84) bytes of data.

64 bytes from 192.168.100.17: icmp_seq=0 ttl=251 time=39.568 msec

64 bytes from 192.168.100.17: icmp_seq=1 ttl=251 time=38.529 msec

64 bytes from 192.168.100.17: icmp_seq=2 ttl=251 time=38.214 msec

64 bytes from 192.168.100.17: icmp_seq=3 ttl=251 time=38.173 msec

64 bytes from 192.168.100.17: icmp_seq=4 ttl=251 time=38.652 msec

64 bytes from 192.168.100.17: icmp_seq=5 ttl=251 time=38.278 msec

64 bytes from 192.168.100.17: icmp_seq=6 ttl=251 time=38.472 msec

64 bytes from 192.168.100.17: icmp_seq=7 ttl=251 time=38.481 msec

64 bytes from 192.168.100.17: icmp_seq=8 ttl=251 time=38.248 msec

64 bytes from 192.168.100.17: icmp_seq=9 ttl=251 time=38.188 msec

--- 192.168.100.17 ping statistics ---

10 packets transmitted, 10 packets received, 0% packet loss

round-trip min/avg/max/mdev = 38.173/38.480/39.568/0.423 ms

In this example, we see a very regular 38 millisecond round trip time between morgan (192.168.98.82)
and isolde (192.168.100.17). After sending 10 echo request packets and receiving the replies, ping
summarizes the data for us and exits.

Occasionally, either in a script, or on the command line, you may not care about the output of each
individual line. In this case, you can suppress everything except the summary data with the -q switch. In
the following example, we are again testing reachability of isolde (192.168.100.17) though we only care
about the summary output.

Example G-3. Using ping to specify number of packets to send

[root@morgan]# ping -q -c 10 -n 192.168.100.17
PING 192.168.100.17 (192.168.100.17) from 192.168.98.82 : 56(84) bytes of data.

--- 192.168.100.17 ping statistics ---

10 packets transmitted, 10 packets received, 0% packet loss

round-trip min/avg/max/mdev = 37.853/38.370/39.320/0.430 ms

Here, we see only the output from ping as it begins to send packets to the destination, and the summary
output when it has completed its run.

145

Appendix G. Diagnostics

These are some simple examples of the use of ping to gather and present statistics on reachability of
destination hosts, packet loss, and round trip times. Some other diagnostics information can be gathered
with ping, too. Let’s look at the use of ping to test reachability as aggressively as possible.

Using ping to stress a network
Occasionally, you’ll want to stress the network to test how many packets you can squeeze through a link,
and how gracefully performance on that link degrades. Fortunately, ping, when run with the -f switch
can perform exactly this kind of test for you.

Example G-4. Using ping to stress a network

[root@morgan]# ping -c 400 -f -n 192.168.99.254
PING 192.168.99.254 (192.168.99.254) from 192.168.98.82 : 56(84) bytes of data.

............

--- 192.168.99.254 ping statistics ---

411 packets transmitted, 400 packets received, 2% packet loss

round-trip min/avg/max/mdev = 37.840/62.234/97.807/12.946 ms

In this example, we have used the default packet size and sent 411 packets, receiving only 400 back from
the remote host for a mere 2% packet loss. By increasing the packet size of the packet we are sending
across the link we can get a sense for how quickly performance degrades on this link. If we use a much
larger packet size (still smaller than Ethernet’s 1500 byte frame), we see even more packet loss. We’ll
specify a packet size of 512 bytes with the -s option.

Example G-5. Using ping to stress a network with large packets

[root@morgan]# ping -s 512 -c 400 -f -n 192.168.99.254
PING 192.168.99.254 (192.168.99.254) from 192.168.98.82 : 512(540) bytes of data.

..

..

--- 192.168.99.254 ping statistics ---

551 packets transmitted, 400 packets received, 27% packet loss

round-trip min/avg/max/mdev = 47.854/295.711/649.595/153.345 ms

Flooding a low bandwidth link, like the ISDN link between morgan and masq-gw can be detrimental to
other traffic on that link, so it is wise to use the -f with restraint. Although ping is a versatile tool for
network diagnostics, it is not intended as a network performance measurement tool. For this sort of task,
try netperf (http://www.netperf.org/) or collect some data with SNMP to analyze with MRTG
(http://people.ee.ethz.ch/~oetiker/webtools/mrtg/).

As you can see, the use of ping floods is a good way to stress the network to which you are connected,
and can be a good diagnostic tool. Be careful to stress the network for short periods of time if possible, or
in a carefully controlled setting. Unless you want to alienate coworkers and anger your network
administrator, you shouldn’t start a ping flood and go home for the night.

146

Appendix G. Diagnostics

Recording a network route with ping
The options we have outlined above are common options to ping, but now, let’s look at some of the less
common options. Occasionally, you may find yourself on a linux box without traceroute or mtr.
Perhaps it’s an embedded linux host, or a minimal installation with ping. There is an almost unknown
option for recording the route a packet takes. By comparison to the more sophisticated tools for tracing
network paths, ping with the record route option (-R) doesn’t convey the information in as visually an
appealing way, but it can get the job done.

Example G-6. Recording a network route with ping

[root@morgan]# ping -c 2 -n -R 192.168.99.35
PING 192.168.99.35 (192.168.99.35) from 192.168.98.82 : 56(124) bytes of data.

64 bytes from 192.168.99.35: icmp_seq=0 ttl=253 time=56.311 msec

RR: 192.168.98.82

192.168.98.254

192.168.99.1

192.168.99.35

192.168.99.35

192.168.99.1

192.168.98.254

192.168.98.82

64 bytes from 192.168.99.35: icmp_seq=1 ttl=253 time=47.893 msec (same route)

--- 192.168.99.35 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/mdev = 47.893/52.102/56.311/4.209 ms

As always, ping summarizes the output after it has completed its run, but let’s examine the new section.
By using the record route option, we are asking all routers along the way to include their IPs in the
header. Although some routers may not observe this courtesy, many do. Unfortunately, there is only
room to record 8 different hops (FIXME--verify this!), so the use of ping -R is mostly useful only in
smaller networks.

The first IP we hit is our own IP on the way out our Ethernet interface, 192.168.98.82. Then it is a
palindromic journey through the network stacks of each of the following hosts in order: branch-router,
isdn-router, tristan, and back again in reverse order.

ping is even nice enough to report to us that a subsequent journey took the same route as the first packet.
If you have a statically routed internal network, any subsequent packets should look exactly like the
second packet. If dynamic routing is in use on your internal network, you may find that the routes change
occasionally.

Setting the TTL on a ping packet
Now, frankly, I’m not sure of a practical use for the following option to ping, however, you can specify
the TTL for an outbound echo requust packet. By setting the TTL you are specifying the maximum
number of hops this packet will travel before it will be dropped. Conventionally, the TTL is set by the

147

Appendix G. Diagnostics

kernel to a reasonable number of hops (like 64). The -t provides us the capability to force the TTL for
our echo requests. Now that we know it takes four hops to get to tristan from morgan we should be able
to test whether setting the TTL makes any difference.

Example G-7. Setting the TTL on a ping packet

[root@morgan]# ping -c 1 -n -t 4 192.168.99.35
tcpdump: listening on eth0

02:02:04.679152 192.168.98.82 > 192.168.99.35: icmp: echo request (DF)

02:02:04.711474 192.168.99.35 > 192.168.98.82: icmp: echo reply

[root@morgan]# ping -c 1 -n -t 3 192.168.99.35
tcpdump: listening on eth0

02:01:50.810567 192.168.98.82 > 192.168.99.35: icmp: echo request (DF)

02:01:50.841917 192.168.99.1 > 192.168.98.82: icmp: time exceeded in-transit

Clearly, we are able to reach tristan if we set the TTL on our echo requests to 4, but as soon as we drop
the TTL to 3, we get a reply from the third hop (isdn-router), telling us that our packet was too old to be
forwarded to its destination. If you are unclear on the rationale for TTL, I’d suggest reviewing some of
the general IP documentation available in the Section called General IP Networking Resources in
Appendix I.

Setting ToS for a diagnostic ping
Type of Service (ToS) is increasingly in use on backbones across the Internet which has brought with it
Service Level Agreements (SLA). If you have an SLA with your provider, you may find the use of ping
-Q to set the IP packet ToS flags will help you to determine if your provider is holding up their end of the
bargain.

In Example G-8 we’ll set the ToS flag and verify with tcpdump that the ToS flag on the outbound packets
have actually been set. Let’s assume that we have an SLA with a backbone provider for our link between
our German office (195.73.22.45) and our North American office (205.254.209.73). We’ll send two test
packets to the remote end, and observe the data on the wire.

Example G-8. Setting ToS for a diagnostic ping

[root@wan-gw]# ping -c 2 -Q 8 -n 195.73.22.45
PING 195.73.22.45 (195.73.22.45) from 205.254.209.73 : 56(84) bytes of data.

64 bytes from 195.73.22.45: icmp_seq=0 ttl=252 time=51.633 msec

64 bytes from 195.73.22.45: icmp_seq=1 ttl=252 time=36.323 msec

--- 195.73.22.45 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/mdev = 36.323/43.978/51.633/7.655 ms

[root@wan-gw]# tcpdump -nni wan0 icmp
tcpdump: listening on wan0

21:55:37.983149 10.10.14.2 > 10.10.22.254: icmp: echo request (DF) [tos 0x8]

21:55:38.034770 10.10.22.254 > 10.10.14.2: icmp: echo reply [tos 0x8]

21:55:38.982277 10.10.14.2 > 10.10.22.254: icmp: echo request (DF) [tos 0x8]

21:55:39.018588 10.10.22.254 > 10.10.14.2: icmp: echo reply [tos 0x8]

148

Appendix G. Diagnostics

Naturally, ping reports to us the round-trip times, the source and destination IPs, and that there was no
packet loss. And our tcpdump output shows that the ToS flags were properly set on the packet. With all
of this information, we can collect data about the reliability of the network between our two offices.

Specifying a source address for ping
Occasionally, you’ll find yourself on a heavily packet filtered host, or a host which employs conditional
routing for packets with certain source addresses. Such packet filtering can prevent or conflict with the
use of ping. Fortunately, ping allows the user to specify the source address of an outbound packet, thus
allowing traversal of packet filters and conditional routing tables.

My classic example of a need for specifying source address on a ping is a VPN connected network. Let’s
assume masq-gw has a CIPEpeer in another city. Let’s assume the internal IP on the peer is
192.168.70.254. If masq-gw sends a packet to the peer with a source address of 205.254.211.179, the
peer might drop the inbound packet on a VPN interface from the public IP of the peer 1. In this case, the
peer should still accept traffic from masq-gw if the originating IP is inside the private network IP range.

In the Example G-9 we’ll use ping to check reachability of the inside interface of the CIPE peer of
masq-gw.

Example G-9. Specifying a source address for ping

[root@masq-gw]# ping -c 2 -n -I 192.168.99.254 192.168.70.254
PING 192.168.70.254 (192.168.70.254) from 192.168.99.254 : 56(84) bytes of data.

64 bytes from 192.168.70.254: icmp_seq=0 ttl=254 time=69.285 msec

64 bytes from 192.168.70.254: icmp_seq=1 ttl=254 time=53.976 msec

--- 192.168.70.254 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/mdev = 53.976/61.630/69.285/7.658 ms

By forcing the echo request packet to use the IP bound to one of our internal interfaces as the source
address with the -I we are able to send traffic through the CIPE tunnel to the other side, and back.

Summary on the use of ping
As you can see, ping is a versatile tool in the network administrator’s toolkit, and can be used for a wide
range of tests beyond the simple reachability test. For a brief and humourous introduction to the program
itself, see The Story of Ping (http://ftp.arl.mil/~mike/ping.html).

Now that we have a good idea of the uses of the ping utility, let’s move on to some other tools which can
provide us other diagnostic data about our networks.

149

Appendix G. Diagnostics

traceroute
traceroute is a utility for identifying the network path a packet will take to a destination. Like ping, it can
be called a number of ways. traceroute takes advantage of a the TTL in an IP packet to determine hop by
hop the reachability and addressing of routers between the traceroute host and the intended destination.

The tool traceroute is available on most Unix-like platforms and even under Windows as tracert. Here,
we will only consider the common traceroute installed on linux systems.

Using traceroute
The default packet type created by traceroute is a UDP packet. The first packet will be addressed to
udp/33435 and each subsequent packet will be addressed to an incremented port number. This allows
traceroute to keep track of which return ICMP packets correspond to which outbound packets.

Example G-10. Simple usage of traceroute

[root@isolde]# traceroute -n 192.168.99.35
[root@isolde]# tcpdump -nn -i eth0 not tcp
tcpdump: listening on eth0
20:13:36.905537 192.168.100.17.32978 > 192.168.99.35.33435: udp 10 [ttl 1]
20:13:36.905668 192.168.100.254 > 192.168.100.17. icmp: time exceeded in-transit [tos 0xc0]
20:13:36.906005 192.168.100.17.32978 > 192.168.99.35.33436: udp 10 [ttl 1]
20:13:36.906112 192.168.100.254 > 192.168.100.17. icmp: time exceeded in-transit [tos 0xc0]
20:13:36.906357 192.168.100.17.32978 > 192.168.99.35.33437: udp 10 [ttl 1]
20:13:36.906457 192.168.100.254 > 192.168.100.17. icmp: time exceeded in-transit [tos 0xc0]
20:13:36.906759 192.168.100.17.32978 > 192.168.99.35.33438: udp 10
20:13:36.907061 192.168.99.35 > 192.168.100.17. icmp: 192.168.99.35 udp port 33438 un-
reachable [tos 0xc0]
20:13:36.907293 192.168.100.17.32978 > 192.168.99.35.33439: udp 10
20:13:36.907543 192.168.99.35 > 192.168.100.17. icmp: 192.168.99.35 udp port 33439 un-
reachable [tos 0xc0]
20:13:36.907753 192.168.100.17.32978 > 192.168.99.35.33440: udp 10
20:13:36.907990 192.168.99.35 > 192.168.100.17. icmp: 192.168.99.35 udp port 33440 un-
reachable [tos 0xc0]

13 packets received by filter
0 packets dropped by kernel

Note in Example G-10 that tcpdump conveniently reports the low TTL on the first packets. Packets
transmitted from a router with a TTL of 1 will expire at the next router they hit. This is the concept and
mechanism by which traceroute is able to detect the path by which packets arrive at their destination.

Each of the first three packets transmitted in the above example receive ICMP time exceeded replies
from the upstream router (masq-gw). The second set of packets have their TTL set to 2, which is not
reported by tcpdump. This allows these packets to reach the intended destination, tristan.

There is a liability of using UDP traceroute on the Internet. Many screening routers, firewalls, and even
hosts will silently drop UDP packets, effectively destroying the usability of traceroute. On internal
networks, or networks known to have no firewalls, conventional traceroute can continue to provide

150

Appendix G. Diagnostics

diagnostic value. In the case that the network is known to have a firewall, traceroute can use ICMP, and
mtr is a good example of a network diagnostic tool which uses ICMP only.

Telling traceroute to use ICMP echo request instead of UDP

Setting ToS with traceroute

Summary on the use of traceroute

mtr
FIXME

netstat
The netstat utility summarizes a variety of characteristics of the networking stack. With netstat you can
learn a number of important things. If no other type of data is requested it will report on the state of all
active sockets. You can however request the routing table, masquerading table, network interface
statistics, and network stack statistics 2.

Displaying socket status with netstat
One of the most common uses of the netstat utility is to determine the state of sockets on a machine.
There are many questions that netstat can answer with the right set of options. Here’s a list of some of
the things different things we can learn.

• which services are listening on which sockets

• what process (and controlling PID) is listening on a given socket

• whether data is waiting to be read on a socket

• what connections are currently established to which sockets

By invoking netstat without any options, you are asking for a list of all currently open connections to
and from the networking stack on the local machine. This means IP network connections, unix domain
sockets, IPX sockets and Appletalk sockets among others. Naturally, we’ll skip over the non-IP sockets
since this is about IP networking with linux.

151

Appendix G. Diagnostics

Assume the --inet switch in all cases below unless we are examining a particular higher layer protocol
(e.g., TCP with the --tcp switch or UDP with --udp switch.

A convenient feature of netstat is its ability to differentiate between two different sorts of name lookup.
Normally the -n specifies no name lookup, but this is ambiguous when there are hostnames, port names,
and user names. Fortunately, netstat offers the following options to differentiate the different forms of
lookup and suppress only the [un-]desired lookup.

• --numeric-hosts

• --numeric-ports

• --numeric-users

The option -n (my favorite), suppress all hostname, port name and username lookup, and is a synonym
for --numeric. I’ll reiterate that hostnames and DNS in particular can be confusing, or worse,
misleading when trying to diagnose or debug a networking related issue, so it is wise to suppress
hostname lookups in these sorts of situations.

In Example G-11 we will look at netstat’s numeric output and then we’ll invoke the same command but
suppress the host lookups. Though the output is almost the same, a particular situation might call for one
or the other invocation.

Example G-11. Displaying IP socket status with netstat

[root@morgan]# netstat --inet -n
Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 192 192.168.98.82:22 192.168.99.35:40991 ESTABLISHED

tcp 0 0 192.168.98.82:42929 192.168.100.17:993 ESTABLISHED

tcp 96 0 127.0.0.1:40863 127.0.0.1:6010 ESTABLISHED

tcp 0 0 127.0.0.1:6010 127.0.0.1:40863 ESTABLISHED

tcp 0 0 127.0.0.1:38502 127.0.0.1:6010 ESTABLISHED

tcp 0 0 127.0.0.1:6010 127.0.0.1:38502 ESTABLISHED

tcp 0 0 192.168.98.82:53733 209.10.26.51:80 SYN_SENT

tcp 0 0 192.168.98.82:44468 192.168.100.17:993 ESTABLISHED

tcp 0 0 192.168.98.82:44320 192.168.100.17:139 TIME_WAIT

[root@morgan]# netstat --inet --numeric-hosts
Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 192.168.98.82:ssh 192.168.99.35:40991 ESTABLISHED

tcp 0 0 192.168.98.82:42929 192.168.100.17:imaps ESTABLISHED

tcp 0 0 127.0.0.1:40863 127.0.0.:x11-ssh-offset ESTABLISHED

tcp 0 0 127.0.0.:x11-ssh-offset 127.0.0.1:40863 ESTABLISHED

tcp 0 0 127.0.0.1:38502 127.0.0.:x11-ssh-offset ESTABLISHED

tcp 0 0 127.0.0.:x11-ssh-offset 127.0.0.1:38502 ESTABLISHED

tcp 0 0 192.168.98.82:53733 209.10.26.51:http SYN_SENT

tcp 0 0 192.168.98.82:44468 192.168.100.17:imaps ESTABLISHED

tcp 0 0 192.168.98.82:44320 192.168.100:netbios-ssn TIME_WAIT

Each line represents a either the sending or receiving half of a connection. In the above output on morgan
it appears that there are no connections other than TCP connections. If you are very familiar with TCP

152

Appendix G. Diagnostics

ports and the service associated with that port, then the first format will suffice in most cases. A possibly
misleading aspect of the latter output is visible in the connections to and from localhost and the final line.
netstat abbreviates the IP endpoint in order to reproduce the entire string retrieved from the port lookup
(in /etc/services). Also interestingly, this line conveys to us (in the first output) that the kernel is
waiting for the remote endpoint to acknowledge the 192 bytes which are still in the Send-Q buffer.

The first line describes a TCP connection to the IP locally hosted on morgan’s Ethernet interface. The
connection was initiated from an ephemeral port (40991) on tristan to a service running on port 22. The
service normally running on this well-known port is sshd, so we can conclude that somebody on tristan
has connected to the morgan’s ssh server. The second line describes a TCP session open to port 993 on
isolde, which probably means that the user on morgan has an open connection to an IMAP over SSL
server.

The third through the sixth lines can be understood in pairs. By examining the source and destination IP
and port pairs, we can see that two different TCP sessions have been established with the source and
destination address of 127.0.0.1. For an administrator to publish services on localhost is not at all
uncommon. This makes the service harder to abuse from the network. In this case, when we allow the
service lookup, the port in question (6010) appears to be used to tunnel forwarded X applications over
ssh.

The next line is the first TCP session in our output which is not in a state of ESTABLISHED. Refer to
Table G-1 for a full list of the possible values of the State field in the netstat output. The state
SYN_SENT means that an application has made arequest for a TCP session, but has not yet received the
return SYN+ACK packet.

The final line of our netstatoutput shows a connection in the TIME_WAIT state, which means that the
TCP sessions have been terminated, but the kernel is waiting for any packets which may still be left on
the network for this session. It is not at all abnormal for sockets to be in a TIME_WAIT state for a short
period of time after a TCP session has ended.

If we needed to know exactly which application owned a particular network connection, we would use
the -p | --program switch which gives us the PID and process name of the owner process. If we want
to see the unix user and the PID and process we’ll add the -e | --extend switch.

Example G-12. Displaying IP socket status details with netstat

[root@masq-gw]# netstat -p -e --inet --numeric-hosts
Proto Recv-Q Send-Q Local Address Foreign Address State User In-

ode PID/Program name

tcp 0 0 192.168.100.254:ssh 192.168.100.17:49796 ESTABLISHED root 25453 6326/sshd

tcp 0 240 192.168.99.254:ssh 192.168.99.35:42948 ESTABLISHED root 171748 31535/sshd

There doesn’t appear to be a large number of connections to and from the masq-gw host. The two
sessions are initiated to the sshd running on port 22, and the process which owns each socket is a root
process.

Table G-1. Possible Session States in netstat output

State Description

153

Appendix G. Diagnostics

State Description

LISTEN accepting connections

ESTABLISHED connection up and passing data

SYN_SENT TCP; session has been requested by us; waiting for
reply from remote endpoint

SYN_RECV TCP; session has been requested by a remote
endpoint for a socket on which we were listening

LAST_ACK TCP; our socket is closed; remote endpoint has
also shut down; we are waiting for a final
acknowledgement

CLOSE_WAIT TCP; remote endpoint has shut down; the kernel is
waiting for the application to close the socket

TIME_WAIT TCP; socket is waiting after closing for any
packets left on the network

CLOSED socket is not being used (FIXME. What does
mean?)

CLOSING TCP; our socket is shut down; remote endpoint is
shut down; not all data has been sent

FIN_WAIT1 TCP; our socket has closed; we are in the process
of tearing down the connection

FIN_WAIT2 TCP; the connection has been closed; our socket is
waiting for the remote endpoint to shut down

Displaying the main routing table with netstat
One of the most common uses of netstat, especially in cross-platform environments is the reporting of
the main routing table. On many platforms, netstat -rn is the preferred method of displaying routing
information, although linux provides at least two alternatives to this: route and ip route show.

Example G-13. Displaying the main routing table with netstat

[root@morgan]# netstat -rn
Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.98.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 40 0 0 lo

0.0.0.0 192.168.98.254 0.0.0.0 UG 40 0 0 eth0

This output should look familiar. The routing cache itself may not be as familiar to most, but can also be
displayed with netstat. The ouput below is exactly the same as the ouput from route -enC. Refer also to
Example D-3.

154

Appendix G. Diagnostics

Example G-14. Displaying the routing cache with netstat

[root@tristan]# netstat -rnC
Kernel IP routing cache

Source Destination Gateway Flags MSS Window irtt Iface

194.52.197.133 192.168.99.35 192.168.99.35 l 40 0 0 lo

192.168.99.35 194.52.197.133 192.168.99.254 1500 0 29 eth0

192.168.99.35 192.168.99.254 192.168.99.254 1500 0 0 eth0

192.168.99.254 192.168.99.35 192.168.99.35 il 40 0 0 lo

192.168.99.35 192.168.99.35 192.168.99.35 l 16436 0 0 lo

192.168.99.35 194.52.197.133 192.168.99.254 1500 0 0 eth0

192.168.99.35 192.168.99.254 192.168.99.254 1500 0 0 eth0

Consult the Section called Displaying the routing table with route in Appendix D for more detail on
reading and interpreting the data in this output. Because this is simply another way of reporting the
routing table information, we’ll skip over any detailed description.

Displaying network interface statistics with netstat
netstat -i summarizes interface statistics in a terse format. This format

OK! This is strange. netstat -ie looks exactly like ifconfig output. That’s weird!

Displaying network stack statistics with netstat

Displaying the masquerading table with netstat
For machines which perform masquerading, typically dual-homed packet-filtering firewalls like
masq-gw a tool to list the current state of the masquerading table is convenient.

Each masqueraded connection can be described by a tuple of six pieces of data: the source IP and source
port, the destination IP and destination port, and the (usually implicit) locally hosted IP and a local port.

Example G-15. Displaying the masquerading table with netstat

[root@masq-gw]# netstat -Mn

FIXME; this command seems to fail on all of the iptables boxen, even if I’m using the -j MASQUERADE

target. I can use it successfully on ipchains boxen. Anybody have any ideas or explanation here?

155

Appendix G. Diagnostics

tcpdump

This is a good time to mention that tcpdump can capture and store packet flows for consumption at a
later date. Frequently, you may find yourself without a top-notch packet analysis utility such as ethereal
(http://www.ethereal.com/). Fortunately, you can create tcpdump data files and view them with a tool
such as ethereal. Even if a stream analysis tool is not available, the documentation for ethereal
(http://www.ethereal.com/docs/user-guide/) is tremendously helpful in packet analysis.

Using tcpdump to view ARP messages

Example G-16. Viewing an ARP broadcast request and reply with tcpdump

[root@masq-gw]#

Example G-17. Viewing a gratuitous ARP packet with tcpdump

[root@masq-gw]#

Example G-18. Viewing unicast ARP packets with tcpdump

[root@masq-gw]#

Using tcpdump to see ICMP unreachable messages

Example G-19. tcpdump reporting port unreachable

[root@masq-gw]#

156

Appendix G. Diagnostics

Example G-20. tcpdump reporting host unreachable

[root@masq-gw]#

Example G-21. tcpdump reporting net unreachable

[root@masq-gw]#

Using tcpdump to watch TCP sessions

Example G-22. Monitoring TCP window sizes with tcpdump

[root@masq-gw]#

Example G-23. Examining TCP flags with tcpdump

[root@masq-gw]#

Example G-24. Examining TCP acknowledgement numbers with tcpdump

[root@masq-gw]#

157

Appendix G. Diagnostics

Reading and writing tcpdump data

Example G-25. Writing tcpdump data to a file

[root@masq-gw]#

Example G-26. Reading tcpdump data from a file

[root@masq-gw]#

Example G-27. Causing tcpdump to use a line buffer

[root@masq-gw]#

Understanding fragmentation as reported by tcpdump

Example G-28. Understanding fragmentation as reported by tcpdump

[root@masq-gw]#

Other options to the tcpdump command

Example G-29. Specifying interface with tcpdump

[root@masq-gw]#

158

Appendix G. Diagnostics

Example G-30. Timestamp related options to tcpdump

[root@masq-gw]#

tcpflow
FIXME

tcpreplay
FIXME

Notes
1. If the admin controls both sides of the link, it is a matter of choice and preference whether traffic

from the outside IP of the peer VPN endpoint should be allowed. I’ll argue that traffic from the peer
endpoint should not be allowed, but this is opinion only.

2. Additionally, netstat can display multicast information with the --group switch. I have zero
experience here. Anybody with experience want to write about this?

159

Appendix H. Miscellany
This appendix is a collection of odds and ends which didn’t fit anyplace else. So, consider it a grab-bag
of toys, tips, and remarks. Here, you’ll find a brief look at some IP calculators and some general remarks
about iproute2 tools.

ipcalc and other IP addressing calculators
There are a number of different utilities called ipcalc, almost all of which perform the same basic task.
These are handy calculators for converting from CIDR to traditional IP notation and determining
network and broadcast addresses.

• A short perl script (http://packages.debian.org/unstable/net/ipcalc.html), this prints out alll the
information you would want to know about an IP address. It defaults to print colorized output, and
comes with its own CGI (shown running here (http://jodies.de/ipcalc)).

• For those who perform all operations and research through a web browser, a DHTML calculator
(http://www.hesketh.com/~schampeo/projects/ipcalc/) should do the trick.

• You can run this ipcalc (http://www.ajw.com/ipcalc.htm), which features hexadecimal as well as
decimal output, on your PDA.

• RedHat has created their own ipcalc utility which prints out a shell variable assignment command
instead of simply the requested piece of information. In the startup scripts, RedHat evals this variable
assignement into existence. Despite this shortcoming, it is a useful tool and is documented in its
manpage (part of the initscripts RPM).

Doubtless, there are a large number of other IP calculators available to ease the job of the network
administrator. The above tools are meant as a brief summary of some of the offerings.

Some general remarks about iproute2 tools
This is a meant to be a collected set of thoughts which don’t fit anyplace else about the iproute2 tools. If
you are reading this in search of more details about the iproute2 tools, you should run (not walk) to your
nearest command line, and execute the following command: bash -c ’ gv $(locate
ip-cref.ps) ’.

In any case, I suggest that the reader consult the documentation which comes with the iproute2 package
for canonical answers.

• The iproute2 suite exposes all of the networking functionality of the linux kernel where the venerable
tools (ifconfig, route) are hamstrung by history.

• Each of the iproute2 object names can be shortened to the shortest unique set of characters. This
means that ip route show can be abbreviated ip ro s and ip rule show can be abbreviated ip ru s. Also
ip address show can be ip a s. Such convenient shortcuts on the command line are often confusing in
documentation. For this reason, I have preferred examples featuring the complete object names and

160

Appendix H. Miscellany

action verbs. Note also below that iproute2 accepts not only abbreviations but also synonyms as
described in Table H-1.

• There are some syntactic synonyms available within the iproute2 package. See this Table H-1 for a
complete list of synonyms.

• Because the iproute2 command suite is under development, there may be slight differences between
the output described in this documentation and that of your release of iproute2. I have tried to focus
on the overwhelmingly common uses of the iproute2 tools rather than the ones which are under active
development, and are subject to syntactic changes or new output presentations.

• There are extensions to the iproute2 command suite, which can alter the sets of objects or syntax
available for manipulation and inspection. Where these are covered in detail in this documentation,
they will be relegated to a non-canonical ghetto. Examples will (someday) include ip arp
(http://www.ssi.bg/~ja/#iparp) and tc extensions.

There are some common synonyms in iproute2 syntax. Outlined below in Table H-1 is a list of the
common synonyms. Note, that these synonyms are available in addition to the abbreviations indicated
above.

Table H-1. iproute2 Synonyms

Command Variant Synonyms

ip neighbor ip neighbour

ip tunnel ip tunl

ip OBJECT show ip OBJECT ls, ip OBJECT list

ip OBJECT change ip OBJECT chg, ip OBJECT replace

Because the iproute2 suite of tools is so tightly integrated with linux, it is not available for other
operating systems. This is at once its strength and weakness. For users contemplating linux for the first
time, ifconfig, netstat, and route are familiar and they feel intuitive. More experienced users and control
freaks will find the iproute2 tools attractive and perhaps indispensable.

Brief introduction to sysctl
Many behaviours of the linux kernel can be modified through the use of run time variables. These
variables can be changed manually or with the use of a convenient command line utility. Most linux
distributions also include a standard configuration file which can store these parameters for use at boot
time.

For a deeper reference into the matter and use of sysctl see the IP Sysctl tutorial
(http://ipsysctl-tutorial.frozentux.net/), maintained by Oskar Andreasson.

161

Appendix I. Links to other Resources

Links to Documentation
This chapter contains some categorized links to various further reading and reference materials on many
topics in the linux and networking arenas. Also supplied are a number of links to software as well.

Linux Networking Introduction and Overview Material

• The best first place to go (if you can’t find any help on this page) is to visit the comprehensive TLDP
archive of networking-related documentation
(http://www.tldp.org/HOWTO/HOWTO-INDEX/networking.html). Here you will find a breakdown of
the available documentation, organized in a sensible way.

• The Linux Network Administrator’s Guide (http://www.tldp.org/LDP/nag2/index.html) covers some
of the same material as this guide. It additionally covers UUCP, SLIP, PPP, NIS, NFS, IPX, email
administration, and NNTP. It is an excellent general reference.

• The Networking HOWTO (http://www.tldp.org/HOWTO/Net-HOWTO/index.html) provides a good
overview of most of the networking protocols and link layer devices supported under linux, though it
covers primarily the 2.0 and 2.2 kernels.

• Here’s one step-by-step tutorial (http://eressea.pikus.net/~pikus/plug_firewall/page0.html) (among
many) which shows how to configure a linux machine as a router/firewall. A brief summary rather
than a thorough explanation, it instructs well by example.

Linux Security and Network Security
Linux has been adopted widely as a platform on which to build network security devices as a result of its
feature set. Here, you’ll find links to network security documentation.

• The Security HOWTO (http://tldp.org/HOWTO/Security-HOWTO/) introduces many of the topics
that touch on securing a linux machine, including many network security topics.

• The Security Quickstart HOWTO (http://tldp.org/HOWTO/Security-Quickstart-HOWTO/) is for the
impatient.

• FIXME

• FIXME

General IP Networking Resources
There are a number of resources available to cover a large range of IP networking topics. I have selected
a few here, but there are many other sources of this information both dead-tree versions and Internet
documentation.

162

Appendix I. Links to other Resources

• One of the key reference materials for any IP networking shop is the seminal work by the late W.
Richard Stevens (http://www.kohala.com/start/). Three volumes catalog the architecture of IP
networking and higher layer protocols.

• Here is a good introduction to Classless Inter Domain Routing (CIDR)
(http://www.ralphb.net/IPSubnet/). CIDR is a technique employed since the mid 1990s to reduce the
load on the routing devices employed on the Internet. A beneficial side effect is the simplicity of the
CIDR addressing notation. For a CIDR address reference, RFC 1878
(http://www.isi.edu/in-notes/rfc1878.txt) has proven invaluable to me.

• Some general IP subnetting and other Internetworking questions are answered at SubnetOnline
(http://www.subnetonline.com/). At Cisco’s site, you can find a good introduction to subnetting an IP
space (http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4/nd20a.htm). Another one-page tutorial
introduction to subnetting and CIDR networking is available here
(http://www.j51.com/~sshay/tcpip/ip/ip.htm). And don’t forget the IP subnetting mini-HOWTO
(http://www.linuxpowered.com/HOWTO/mini/IP-Subnetworking.html) from TLDP.

• The Internet Assigned Numbers Authority (IANA) (http://www.iana.org/) has selected a number of IP
networks which are intended for discretionary use in private networks. RFC 1918
(http://www.isi.edu/in-notes/rfc1918.txt) outlines the address ranges which are available for private
use. Additionally, IANA has posted a summary (http://www.iana.org/assignments/ipv4-address-space)
of the identity of the subdelegates of each of the class A sized network address ranges. See also the
update to RFC 1918 in RFC 3330 (http://www.isi.edu/in-notes/rfc3330.txt)

• Address Resolution Protocol is used to provide the glue between Ethernet link layer information
(hardware addresses) and the IP layer. This page
(http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html) is instructive in ARP.

• As discussed in the Section called MTU, MSS, and ICMP in Chapter 4, MSS and MTU are key matters
for IP communication. Path MTU discovery, as discussed in RFC 1911
(http://www.isi.edu/in-notes/rfc1911.txt), is used as a way to make most efficient use of network
resources by detecting the smallest link layer between two endpoints and setting the MTU
accordingly. This breaks when ICMP is assiduously filtered. Visit this discussion
(http://blue-labs.org/howto/mtu-mss.php) or this page on MTU and MSS
(http://alive.znep.com/~marcs/mtu/), and of course LARTC’s discussion and solution
(http://lartc.org/howto/lartc.cookbook.mtu-discovery.html). For more on the general issue of ICMP
and what is required see also this SANS discussion (http://rr.sans.org/audit/more_ICMP.php). At a
Usenix conference in late 2002, the issue of MTU and MSS
(http://www.usenix.org/events/lisa02/tech/vanderberg.html) prompted the MSS Initiative
(http://home.earthlink.net/~jaymzh666/mss/index.html). Because this is a widely misunderstood issue,
there is even a workaround in the RFCs, RFC 2923 (http://www.isi.edu/in-notes/rfc2923.txt).

Masquerading topics

• The Linux Documentation Project keeps a clear and up to date reference on IP masquerading
(http://www.tldp.org/HOWTO/IP-Masquerade-HOWTO/) which thoroughly covers the issues
involved with masquerading.

163

Appendix I. Links to other Resources

Network Address Translation

• If you have a 2.4 kernel and are using iptables, you should read Rusty Russell’s documentation on
NAT (http://www.netfilter.org/unreliable-guides/NAT-HOWTO/NAT-HOWTO.linuxdoc.html) with
netfilter.

• The command reference for the iproute2 tools provides sparse documentation of the NAT features, but
has an appendix (http://linux-ip.net/gl/ip-cref/node157.html) which covers the key questions with
regard to iproute2 NAT.

• SuSe has Michael Hasenstein’s paper (http://www.suse.de/~mha/linux-ip-nat/diplom/nat.html) on
NAT, which is an excellent technical overview of the case for NAT.

• Linas Vepstas has collected a number of links to projects and implementations relying heavily on NAT
(http://www.linas.org/linux/load.html) techniques.

iproute2 documentation

• Timur A. Bolokhov has written a good (though dated) introduction
(http://snafu.freedom.org/linux2.2/docs/advanced-routing/). to the policy routing features of iproute2
(supported by kernels 2.1 and later).

• Mark Lamb hosts a good technical overview (http://snafu.freedom.org/linux2.2/iproute-notes.html) of
both the iproute2 and tc packages.

• If your copy of iproute2 did not get packaged with ip-cref.ps or if you prefer online HTML, the
command reference is available in toto as HTML at linux-ip.net (http://linux-ip.net/gl/ip-cref/), HTML
at www.linuxgrill.com (http://www.linuxgrill.com/iproute2.doc.html), HTML at defiant.coinet.com
(http://defiant.coinet.com/iproute2/ip-cref/), HTML at snafu.freedom.org
(http://snafu.freedom.org/linux2.2/docs/ip-cref/ip-cref.html) or as PostScript
(http://defiant.coinet.com/iproute2/ip-cref.ps).

• Julian Anastasov has been working on many aspects of traffic control and advanced routing with the
iproute2 package. He has provided a large number of patches to iproute2 and some documentation
with for the linux virtual server (LVS) in addition to a great deal of code for LVS. See his main site
(http://www.ssi.bg/~ja/) for both patches and documentation.

• The Linux Advanced Routing and Traffic Control (http://lartc.org/) site provides a wealth of expertise
for complex networking configurations. I also recommend the LARTC mailing list
(http://mailman.ds9a.nl/mailman/listinfo/lartc) and archive (http://mailman.ds9a.nl/pipermail/lartc/).

• A brief article distilled from Matthew Marsh’s Policy Routing with Linux book, introduces the
concepts of policy routing under linux (http://www.unixreview.com/documents/s=1383/urmb16/) quite
admirably. For a fifteen minute overview of policy routing under linux, read this article.

• See this brief article on describing advanced networking
(http://www.samag.com/documents/s=1824/sam0201h/0201h.htm) features of linux.

164

Appendix I. Links to other Resources

Netfilter Resources

• Visit Oskar Andreasson’s iptables tutorial (http://iptables-tutorial.frozentux.net) for examples,
overview, details, and full documentation of iptables.

• The netfilter site (http://www.netfilter.org/) provides a wealth of tutorials, examples, documentation,
and a mailing list. Of particular interest is the documentation section
(http://www.netfilter.org/documentation/).

• See this brief introduction (http://www.knowplace.org/netfilter/) to packet filtering with iptables.

• Here is a brief summary of the logging output (http://logi.cc/linux/netfilter-log-format.php3#IPheader)
form from the netfilter engine.

ipchains Resources

• Documentation for ipchains (http://www.netfilter.org/ipchains/) is available courtesy of the author,
Rusty Russell. A mirror of the ipchains HOWTO
(http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html) is available at TLDP.

• Here is a brief summary of logging output (http://logi.cc/linux/ipchains-log-format.php3)from the
kernel.

• Along wiht a huge pile of other linux-related traffic control and packet filtering documentation, there
is a postscript reference card for ipchains
(http://snafu.freedom.org/linux2.2/docs/ipchains-refcard.letter.ps) at snafu.freedom.org.

•

ipfwadm Resources

• Not covered in this documentation, ipfwadm is only supported in the linux 2.2 and 2.4 kernels via
backward compatible interfaces to the internal packet filtering architectures. Read more on ipfwadm
here (http://www.xos.nl/linux/ipfwadm/paper/).

•

General Systems References

• To learn how to query the kernel’s iptables (http://www.tldp.org/HOWTO/Querying-libiptc-HOWTO/)
directly, you need this progamming reference.

• For a description of the path a frame on the wire takes
(http://www.gnumonks.org/ftp/pub/doc/packet-journey-2.4.html) through the kernel from the Ethernet
through to the upper layers, Harald Welte’s brief proves instructive.

165

Appendix I. Links to other Resources

• If you are only interested in the path an IP packet takes through the netfilter (ipchains or iptables),
routing and ingress/egress QoS code, refer to Stef Coene’s excellent ASCII representation, the kernel
2.4 packet traveling diagram (http://www.docum.org/stef.coene/qos/kptd/).

• Oskar Andreasson (of iptables tutorial (http://iptables-tutorial.frozentux.net/) fame) has written an IP
sysctl tutorial (http://ipsysctl-tutorial.frozentux.net/) which covers the different /proc filesystem
entries. (kernel 2.4 only)

Bridging

• Your linux box can function as a bridge, and two boxen connected to the same hubs can use Spanning
Tree Protocol (STP) to protect against failure of one or the other. See the Bridge HOWTO
(http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO/index.html).

• For a brief article on using a linux bridge as a firewall see David Whitmarsh’s introduction
(http://www.sparkle-cc.co.uk/firewall/firewall.html) to the topic.

• There’s some fledgling documentation of the bridging code in kernel 2.4 (and 2.2) available, especially
in conjunction with netfilter here (http://bridge.sourceforge.net/docs/).

• Consider also, ebtables (http://users.pandora.be/bart.de.schuymer/ebtables/) named by analogy to
iptables. If you are bridging at all, or using ebtables at all, you’ll want to know about the interaction
between bridging and iptables, so visit the bridge and Netfilter HOWTO
(http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html).

Traffic Control

• The Linux Advanced Routing and Traffic Control (http://lartc.org/) website is the first place to go for
any traffic control (and advanced routing) documentation. I also recommend the LARTC mailing list
(http://mailman.ds9a.nl/mailman/listinfo/lartc) and archive (http://mailman.ds9a.nl/pipermail/lartc/).

• Stef Coene has written prodigiously on traffic control under linux (http://www.docum.org/). His site
contains practical guidance on traffic control and bandwidth shaping matters.

• There is an ADSL Bandwidth Management HOWTO
(http://www.tldp.org/HOWTO/ADSL-Bandwidth-Management-HOWTO/) on TLDP.

• Michael Babcock has a page discussing QoS on linux
(http://www.fibrespeed.net/~mbabcock/linux/qos_tc/). This is a good introduction, though a bit dated
(it seems to discuss only kernel 2.2).

• Leonardo Balliache’s has published a brief overview of the compared QoS offerings
(http://www.opalsoft.net/qos/).

•

• Sally Floyd is apparently one of the leading researchers in the use of QoS on the Internet. See her
work as a researcher at icir.org (http://www.icir.org/floyd/).

166

Appendix I. Links to other Resources

• Another major research center for QoS under linux is the University of Kansas. For some very
technical material on QoS under linux, see their main page (http://qos.ittc.ukans.edu/). Here you will
find some documentation of the tools available to those programming for QoS implementations under
linux.

• An implementation of DiffServ (http://diffserv.sourceforge.net/), is underway under linux. DiffServ is
an intermediate step to IntServ. There are also the old DiffServ archive
(http://www.atm.tut.fi/list-archive/linux-diffserv/thrd6.html) and the current archive
(http://sourceforge.net/mailarchive/forum.php?forum=diffserv-general).

IPv4 Multicast

• A dated multicast routing mini-HOWTO
(http://jukie.net/~bart/multicast/Linux-Mrouted-MiniHOWTO.html) provides the best introduction to
multicast routing under linux.

• The smcroute (http://www.cschill.de/smcroute/) utility provides a command line interface to
manipulate the multicast routing tables via a method other than mrouted.

Miscellaneous Linux IP Resources

• The sysctl utility is a convenient tool for manipulating kernel parameters. Combined with the
/etc/sysctl.conf this utility allows an administrator to alter or tune kernel parameters in a
convenient fashion across a reboot. See this brief RedHat page on the use of sysctl
(http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-proc-sysctl.html). See also
Oskar Andreasson’s IP Sysctl Tutorial (http://ipsysctl-tutorial.frozentux.net/) for a detailed
examination of the parameters and their affect on system operation.

• For users who need to provide a standards compliant VPN solution FreeS/WAN
(http://www.freeswan.org/) can be part of a good interoperable solution. Additionally, there are issues
with using FreeS/WAN on linux as a VPN solution. John Denker (appropriate last name) has grappled
with the issue of IPSec and routing (http://www.quintillion.com/moat/ipsec+routing/iproute2.html)
and has suggested the following work around
(http://www.quintillion.com/moat/ipsec+routing/iproute2.html). Here’s a summary of one network
admin’s perspective (http://www.quintillion.com/fdis/moat/index.html) on some of the issues related
to FreeS/WAN, roving users and network administration for VPN users. Note! The 2.5.x development
kernel contains an IPSec implementation natively. This means that by the release of 2.6.x, linux may
support IPSec out of the box.

• Explicit Congestion Notification (http://www.icir.org/floyd/ecn.html) is supported under linux kernel
2.4 with a sysctl entry.

• The 2.2 and 2.4 series support bonding of interfaces which allows both link aggregation (IEEE
802.3ad) and failover use of Ethernet interfaces. The canonical source for documentation about
bonding is Documentation/networking/bonding.txt in the kernel source distribution.

167

Appendix I. Links to other Resources

• If you are looking for virtual router redundancy protocol (VRRP) support under linux, there are
several fledgling options. The reference implementation (http://w3.arobas.net/~jetienne/vrrpd/) is
(according to LARTC scuttlebut) mostly a proof of concpt endeavor. At least one other
implementation is available for linux--and this one has the reputation of being more practical:
keepalived (http://www.keepalived.org/).

• If you want your linux box to support 802.1q VLAN tagging, you should read up on Ben Greear’s site
(http://www.candelatech.com/~greear/vlan.html).

• Don’t forget the value of looking for the answer to your question in the linux-net mailing list archive
(http://www.uwsg.indiana.edu/hypermail/linux/net/).

• Linux Journal has published a two part article on by Gianluca Insolvibile describing the path a packet
takes through the kernel. Part I covers the input of the packet until just before layer 4 processing
(http://www.linuxjournal.com/article.php?sid=4852). Part II covers higher layer packet handling
(http://www.linuxjournal.com/article.php?sid=5617), including simple diagram of the kernel’s
decisions for each IP packet (http://www.linuxjournal.com/modules/NS-lj-issues/issue95/5617f1.png).

• This PDF from the linux-kongress (http://www.linux-kongress.org/2002/papers/lk2002-heuven.pdf)
introduces some plans for MPLS and RSVP support under linux. (There are also many other
interesting papers (http://www.linux-kongress.org/2002/papers/) available here.) Another (the same?)
MPLS implementation (http://mpls-linux.sourceforge.net/) is available from SourceForge.

• A clearly written but probably quite dated introduction (http://www.tldp.org/LDP/tlk/net/net.html) in
English to the kernel networking code was written by David Rusling. (An update/replacement to this
is under development by David Rusling, although no URL is available.)

Links to Software

Basic Utilities

• The net-tools (http://www.tazenda.demon.co.uk/phil/net-tools/) package is a collection of basic
utilities for managing the Ethernet and IP layer under linux.

• The iproute2 package provides command-line support for the full functionality of the linux IP stack.
This package, written by Alexey Kuznetsov, is available here (ftp://ftp.inr.ac.ru/ip-routing/) and is
mirrored here (http://www.linuxgrill.com/anonymous/fire/alexey/).

• A tool more convenient than traceroute for tracing routes, mtr (http://www.bitwizard.nl/mtr/) can be
obtained here (ftp://ftp.bitwizard.nl/mtr/).

• The network swiss army knife of nc (NetCat)
(http://www.atstake.com/research/tools/index.html#network_utilities) is available from @stake.

• For a far more flexible tool in the same vein as nc, socat (http://www.dest-unreach.org/socat/) connects
all manner of files, sockets, and file descriptors under most types of unix.

168

Appendix I. Links to other Resources

Virtual Private Networking software

• CIPE (http://sites.inka.de/sites/bigred/devel/cipe.html) is a lightweight nonstandard VPN technology
which can use shared secrets or RSA keys. CIPE is developed primarily for linux but includes a
Windows port.

• For a standards based VPN technology, FreeS/WAN (http://www.freeswan.org/download.html)
provides IPSec functionality for the linux kernel. If you need an SRPM of the FreeSWAN IPSec
software, get it here (http://www.sandelman.ottawa.on.ca/freeswan/rpm/). Note that development
kernel 2.5.47+ contains kernel-native support for IPSec. Refer to the LARTC IPSec documentation
(http://lartc.org/howto/lartc.ipsec.html) for more on this.

Traffic Control queueing disciplines and command line tools

• Martin Devera has written a queueing discipline called HTB (http://luxik.cdi.cz/~devik/qos/htb/)
which has been incorporated into the 2.4.20 kernel series. As of this writing, HTBv3 is included in
kernel 2.4.20+, but tc doesn’t support htb without the patch available here
(http://luxik.cdi.cz/~devik/qos/htb/v3/htb3.6-020525.tgz).

• Weighted Round Robin is a queueing discipline which distributes bandwidth among the multiple open
connections. Although the wrr qdisc is not included in the kernel, it is available here
(http://wipl-wrr.sourceforge.net/).

• Patrick McHardy has written a device which can be used independent of interface to perform traffic
shaping. The Intermediate Queueing Device (IMQ) (http://trash.net/~kaber/imq/) is supported under
kernel 2.4 and provides support for ingress shaping and traffic shaping over multiple physical devices.
(Site was available here (http://luxik.cdi.cz/~patrick/imq/).)

• Werner Almesberger is working on a more user friendly traffic control front end called tcng
(http://tcng.sourceforge.net/). This package includes a userspace simulator tcsim.

• DiffServ

•

Interfaces to lower layer tools

• A collection of various scripts and other interfaces for netfilter is available here
(http://www.linuxguruz.org/iptables/).

• A curses-based tool ipmenu (http://users.pandora.be/stes/ipmenu.html) provides a single uniform
interface to many of the IP layer features of linux.

•

•

169

Appendix I. Links to other Resources

Packet sniffing and diagnostic tools

• The tcpdump (http://www.tcpdump.org/) utility is a well known cross-platform utility for sniffing
traffic on the wire.

• To watch plaintext protocol conversations, the tcpflow
(http://www.circlemud.org/~jelson/software/tcpflow/) tool can be invaluable.

• To gather data on the nature and quality of the network path between two points, the bing
(http://www.cnam.fr/reseau/bing.html) program provides a running set of statistics by calculating the
delta between ICMP echo replies from different hosts.

• To help diagnose problems between network points, the pathchar
(http://www.caida.org/tools/utilities/others/pathchar/) tool can be handy. Unfortunately, it only comes
in a binary release, apparently because Van Jacobsen did not feel it was ready for full release.

•

• Among the sniffing and spoofing tools, dsniff (http://monkey.org/~dugsong/dsniff/) has received good
press. It is a collection of tools for network auditing and penetration testing.

• If you need to capture and reinject packets into the network, libnet
(http://www.packetfactory.net/Projects/Libnet/) is a library you can use for these purposes. This is a
diagnostic and security tool.

• To reproduce traffic from a captured file, use tcpreplay (http://tcpreplay.sourceforge.net/).

170

Appendix J. GNU Free Documentation License

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The

171

Appendix J. GNU Free Documentation License

Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

172

Appendix J. GNU Free Documentation License

COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

173

Appendix J. GNU Free Documentation License

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

174

Appendix J. GNU Free Documentation License

COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document

175

Appendix J. GNU Free Documentation License

under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

176

Appendix J. GNU Free Documentation License

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

177

Reference Bibliography and Recommended
Reading

Chandra Kopparapu, 2002, 0-471-41550-2, Load Balancing Servers, Firewalls, and Caches, John Wiley
& Sons, Inc..

W. Richard Stevens, 1994, 0-201-63346-9 (v.1), TCP/IP Illustrated, Volume I, Addison Wesley.

Robert L. Ziegler, 2001, 0-2357-1099-6, Linux Firewalls, New Riders.

Tony Mancill, 2000, 0-1308-6113-8, Linux Routers, Prentice Hall.

178

Index

179

