Hardware review

How to select an HF transceiver ? (I)

On what basis must we select an HF transceiver ? What features made the difference between a mid-range and a high-end model ? Is the price a good indicator ? Are DSP functions useful ? Is it better to install mechanical filters or a DSP filtering ? Is the selectivity and 3d-order IMD important ? Here are some among the thousands questions that run through our mind when we decide to buy a new RTX. 

Icom IC-756PROIII

If you are not at the top of the novelties in reading regularly ham magazines or speaking with friends in radio clubs, you will have difficulties to have a deep knowledge of the technology used in new transceivers, how it performs against the older models, especially if you are not interested in the new developments in both hardware and built-in software.

In a transceiver, the most important module after the transmitter is of course the receiver. Emitting a signal is not really a problem. It requires few components and sometimes even not much power (QRP). The receiver on the contrary is a very complex module. If you can quite easily send a message using the transmitter, you need a performing receiver to detect the weakest signals emitted by your correspondent, and the few microvolts displayed on the S-meter are really not much energy to pick up. Therefore the performances of a transceiver depend first of all of the quality of its receiver. There is first its sensitivity, the minimum input signal required to produce a specified output signal, under which threshold you listen only to the electronic noise of components or, at best, the noise on the frequency but no readable signal. 

The receiver selectivity

The second quality factor concerns the selectivity of the receiver. It represents its ability to respond to a tuned station and to reject any nearby undesired signal. This is probably the first feature where your receiver will show its performance. The next one will be the DSP.

We have also to make the distinction between modes of traffic. The response curve of a filter is defined by its bandwidth at different characteristic attenuation levels (0, -6, -40, -60 dB). Such a curve displays scarcly the rectangular shape of the theoretical model, but a sort of bell shape which wings are more or less abrupt with skirts more of less short. Some of the best mechanical filters are Collins. These filters are inserted all through the receiving chain at each IF stage.

If I take the example of the Yaesu FT-1000MP Mark V, in CW a narrow filter of 250 Hz of bandwidth at -6 dB (700 Hz at -60 dB) is enough to work all pile-ups and weak stations submerged by QRM. But in SSB, the signal is much wider. The narrowest IF passband is 1.8 kHz wide at -6 dB and 3.6 kHz at -60 dB. You can't thus get similar results in SSB and in CW. 

On the Yaesu these filters are installed at the second IF at 8.215 MHz and at the third IF at 455 kHz. Like on all transceivers they can be combined in cascade to form the equivalent of one filter showing a variable bandwidth (called VBT to Kenwood).

In some books we read that a filter would works better if signals applied to it are weak. This is not true because the response of a crystal or ceramic filter is very linear; it responds exactly the same way to large signals as it does to small signals. 

Three of the many ways to suppress QRM on the Yaesu FT-1000MP Mark V : with IF WIDTH, IF SHIFT and DSP NOTCH controls. Clic on the drawing to enlarge.

This means that whether the signal applied to the filter in within the filter's passband or not, the amount of signal appearing at the output of the filter is proportional to the input signal applied. 

The method to suppress these undesired noises (they are static noise or RFI) consists in rejecting them outside the passband or, if they are on the same frequency, to attenuate the interfering signals as much as possible before they reach the RF amplification stage.

As you cannot change the filter passband, you need to apply one to three cascading methods to remove all interference and noise that prevent you listening your correspondent in good conditions. Let's see each of them in a few words illustrated with some graphs.

High and Low cut settings

The first method consists in shifting the passband of each filter up or down in frequency until the noise has disappeared. So the signal is now in sandwitch between the two filters, rejecting the interfering signals outside the passband (see graph B. below). This technique does not modify the beat frequency oscillator (BFO) tuned on the remote station frequency, so the signal sounds normal. You can also use the High and Low cut controls to remove undesired audio high and low pitch from the desired signal and thus reduce or remove interference as well. 

These graphs explain better that any comment the effects of filters on interference and noise interfering with a signal in the passband. The first graph describes the default bandwidth of an SSB filter, all controls off. Note that the BFO frequency (red) stands close to the filter center frequency (+1800 Hz). The second graph displays the effect of Low and High cut controls on two tunes interfering with a signal (yellow) in the center of the passband. In sliding the High/Low cut the effective passband became narrower, rejecting the interferences. The third graph displays the effect of Attenuation (30 dB) and High/Low cut on two strong interfering signals adjacent to the desired signal. The fourth graph displays two interferences on the same frequency as the signal. This time the IF shift control was set to +500 Hz and the RIT was adjusted so that the BFO is properly positioned in the passband. In addition the RF gain was reduced, and the attenuation and High/Low cut controls were adjusted to isolate the desired signal. In playing cleverly with these controls you can reject all residual RFI and noise. In high-end receivers these controls are completed with a Notch and DSP.

Attenuation and RF gain

But this solution does not work if the interference is at the same frequency as the desired signal. To remove the interference without rejecting the signal, you need to apply a second method, the attenuation, displayed above in the center graph. Thanks to the RF attenuator (ATT control) adjusted to 20 or 40 dB for example depending the strenght of the noise, you could lower the intensity of all signals until the interference reaches the background noise hash. In these conditions you will reduce the generation of undesired products. If this is not enough, you can  cascade it with a low RF gain until the interfering signal is removed from the passband, offering you a chance to hear your correspondent without QRM. If you still heard the RFI you can in addition adjust the High and Low cut controls to reduce the passband to less than 1.5 kHz or so, while keeping the BFO frequency close to the passband.

However, adding more attenuation and reducing the RF Gain have one drawback. In many receivers there is a poor audio circuitry following the detection stage, which results in excessive noise (hiss) being added to the desired signals. The gain that you reduced on one side has to be made up for elsewhere. If the signals are not already above the AGC attack threshold for a same amount, a significant amount of audio gain must be applied to maintain the desired listening levels at the speaker output. Consequently, this audio gain will increase the amount of hiss present in most receivers. This means that the operator has to manually adjust the AF or RF stage in order to maintain the desired signal levels under fading conditions.

IF Shift

Till now we haven't modified the BFO frequency that was fixed in relation to the filter center frequency. The BFO was set at about 1 kHz or a bit more up or down from the IF center frequency.

Now, in some conditions, you can hear both interference and noise on the frequency, tunes as well as static nosies. In the worst case all signals are on the same frequency. To remove these undesired nosies you must use a third method, using this time the IF shift as displayed above in the third graph at right. In most cases you will have to cascade all three methods, playing with together a string attenuation, a low RF gain, adjusting the High/Low cut, and at last setting the IF shift to some hundreds of Hz above the filter center frequency, and adjusting the RIT to properly position the BFO close to the passband. 

In most conditions, in using  this approach you will get a reception free of noise and interference. However, if a strong interference gain access to the amplification stage located behind the last IF stage, you will hear it loud and clear in your headset. To remove it modern transceivers are equipped of a fourth IF stage, called the DSP. We will come back on this technology later when we will speak about the high-end transceivers.

Dynamic Range of some Transceivers

(at 5 kHz spacing, in dB)

Transceiver

Blocking

IMD

Elecraft K2

Ten-Tec Omni 6+

WinRadio G303i

Yaesu FT-1000MP Mark V

Icom IC-756PRO

Icom IC-775DSP

Kenwood TS-2000

Icom IC-746

Kenwood TS-570D

Icom IC-706MKIIG

Yaesu FT-847

126

119

113

106

104

104

  99

  88

  87

  86

  82

88

86

93

78

80

77

67

78

72

74

73

Dynamic range measurements at 5 kHz spacing for several current HF transceivers. Blocking is the signal level required to block or to reduce the sensitivity of a receiver to weak signals. When this occurs the strongest signal from an adjacent frequency tends to "capture" the amplifier reducing the strength of the other signals. IMD quantify the intermodulation, non-linearities by a single number, the intercept point (IP2, IP3). This is a measurement of the mixing products produced when two strong signals are fed to the receiver simultaneously.

Competition between transceivers

Now that our transceiver is equipped of two or more IF stages, each of them taking advantage of the finest filters, let's see what are the different features offered in some well-known transceivers, and some of their respective performances in order to well understand the difficulty of selecting a transceiver suited to your needs.

To clarify the problem, we will compare different transceivers used by amateurs. On one side the mid range Kenwood TS-570D, famous of its performances and sold at an affordable price, and on the other side high-end models like the Icom IC-775DSP, Icom IC-756PROII, Kenwood TS-2000, Ten-Tec ORION or Yaesu FT-1000MP Mark-V, models that are approximatively three times more expensive than the first. Are they worth their price and do they display all similar performances ? We have a tendency to believe that in a same category all transceivers are on par, even if their price fluctuates somewhat from one brand to another. But this is an opinion put a priori, and a subjective feeling far to reflect the reality of the field.

Mid-end vs. high-end transceivers

The Kenwood TS-570D is a fine transceiver for casual, non-contest operations. In short, as I explained in my review, its DSP noise reduction is great, and with the optional 1.8 kHz SSB filter, selectivity is good – a reason I bought it contrarily to the opinion of some hams ! But under stress, to carve your hole in a crowded band, to work a pile-up or when the atmospherics are strong, the TS-570D shows its limits due to its limited number of filtering means. Although it uses the DSP technology, this one is installed on the AF stage rather that on the IF one what presents some drawbacks when it tries to remove interferences or even simple tunes on a near frequency that successfully passed through the all chain of detection.

Kenwood TS-570D

Icom IC-755DSP

Take now the Icom IC-775DSP, a high-end HF transceiver recently discontinued but from time to time available on secondhand. The main reason to purchase the IC-775 with options is to participate in more contests and penetrate through pile-ups. This is where the Icom excels, and still more equipped with all optional filters. But even using its default settings the IC-775 allows narrow filters at two IF-stages where the TS-570D allows only one. What is the result ? The Twin Passband Tuning used in conjunction with the two 1.8 kHz filters of the IC-775 is far superior to the IF Shift method offered on the TS-570D. With the manual notch filter, there is nothing you cannot filter out, another feature not available on the TS-570D. On 160 m also, when adding attenuation, turn off DSP, you can open the filters to 8 kHz for hi-fi audio, what the TS-570D could never perform.

Under strong Q-signals the IC-775DSP receiver does not overload or desense like the much cheaper TS-570D. The sensitivity is about the same, as you would expect because the TS-570D is really a great rig in its category, providing an excellent signal and a good reception in usual working conditions. As I explained previously, when the propagation is open and no QRN at all on the band, filtering is even useless and both rigs yield the same results ; they are really on par. So, before reselling your TS-570D, think rather twice than one as it can be a great performer for working abroad, e.g. on holidays or in the field as a portable RTX (even on dry battery) although the IC-775DSP is still small enough to be portable but it is much heavier.

On the other hand, while contesting against world class competitors, you need together powerful tools to remove the QRM and preferably a large aerial to pick up the weakest signals. In practice your system must be able to discrimine any incoming signal without be bored by near strong QRM. To reach these two objectives you need a high sensitivity, excellent 3d-order IMD and the best selectivity. With these objectives in mind, the small TS-570D will think seriously to give up the fight. Contrary to the IC-775DSP, that once equipped with all optional filters in its two IF-stages can have unbelievable selectivity and audio compared to many other rigs. But it is however not as selective as the Yaesu FT-1000MP Mark-V. This last has indeed more IF stages and more filtering features, both analog and digital to fight against interferences.

But take also care to the frequencies used by IF stages. In many high-end transceivers, and even the TS-570D, the IF stages are outside amateur bands (around 73 MHz, 8.8 MHz and 455 kHz) and they cannot disturb your QSO. But is some so-called performing mid-ranges, like the Elecraft K2 to name one, there are a lot of images right in the 15 and 17 meter bands... This is a problem too rarely brought to the fore but that spoils all the interest of this later model.

At last, as far as ergonomy is concerned, the cheap TS-570D is menu driven, without many direct functions, which slows down operation in contest. On the contrary, with the IC-775DSP or the FT-1000MP Mark-V all common settings have a control, even of small size, on the front panel. If many features of the Kenwood TS-2000 are also accessible from the front panel, most of them require however to push on two keys (FUNC + key). In conditions of heavy pile-up or QRM the design of both Kenwood is much less practical than a radio offering direct access keys and lights (e.g. Yaesu FT-1000MP Mark-V) that warn you when some features are enabled.

Filtering : DSP or Audio stage ?

If you are only interested in CW, a filter placed on the audio stage is more than enough to get good results in most traffic conditions. Autek QF-1A is for example an excellent product.

But as we explained in reviewing the Yaesu FT-1000MP Mark-V, a DSP doesn't work the same way, and in SSB for example it is able to remove automatically carriers that fall in the current passband, and this without using a notch circuit... a great improvement.

Block diagram of the Interlocked Digital Bandwidth Alignment Technique, for short IDBT, one of the best interference-fighting system developped by Yaesu to get the sharpest signal at reception. An analog IF includes both IF WIDTH and IF SHIFT controls in conjunction with cascaded filters to modify the IF passband width and center frequency. Thanks to this technique, the DSP filter is automatically re-programmed so as to match the custom bandwidth you set to extract the weakest signals from QRM.

The passband of a DSP is also programmable to get abrupt wings contrary to an audio filter that displays usually a bell shape. The first is thus "better", in theory.

At last, the elimination of noise is ruled by signal processing protocols (maths), whereas an audio filter depends of its bandwidth... which affects the audio and therefore, it is not always suited to the mode used.

In selecting a filter, keep in mind these reference parameters when comparing performances of your filters. Remember also that not all mechanical filters display the short skirts of the Collins and many are not worth their price.

Generally speaking we can thus say that a DSP is more versatile as it can be used with most modes of traffic than mechanical filters. Let's see how perform these DSP when they are used in high-end transceivers.

2d and last part

The competition between high-ends

Page 1 - 2 -


Back to:

HOME