
Embracing the BSD Routing Table

Martin Pieuchot mpi@openbsd.org

EuroBSDcon, Belgrade

September 2016

Embracing the BSD Routing Table

How many global data structures do you need?

Agenda

BSD Routing Table

Refined Interface

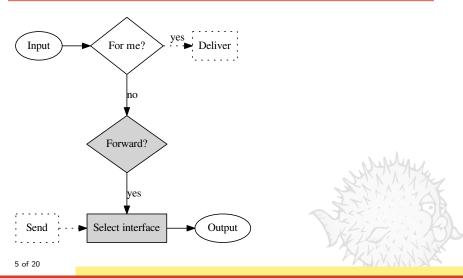
New data structures

Conclusion

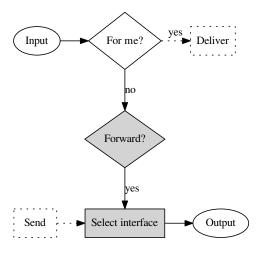
Agenda

BSD Routing Table

Refined Interface


New data structures

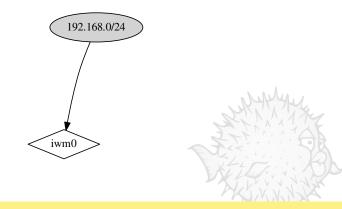
Conclusion


Forwarding table

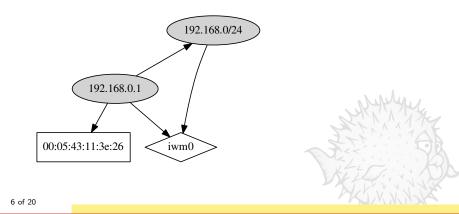
sys/net/radix.c

Forwarding table

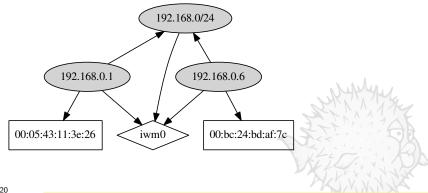
 $\mathsf{sys/net/radix.c}$



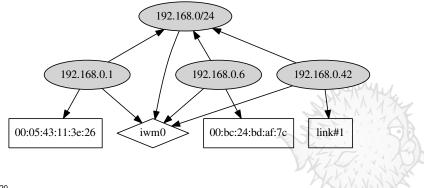
- replace hash-based lookup
- PATRICIA trie
 - \Box radix tree with r = 2


sys/net/if_ethersubr.c

RTF_CLONING: For each connected route


sys/net/if_ethersubr.c

RTF_CLONING: For each connected route


sys/net/if_ethersubr.c

RTF_CLONING: For each connected route RTF_CLONED: For every host in the subnet

sys/net/if_ethersubr.c

RTF_CLONING: For each connected route RTF_CLONED: For every host in the subnet

Message oriented IPC

sys/net/rtsock.c

Routing messages

- RTM_ADD
- RTM_DELETE
- RTM_CHANGE
- RTM_GET

RTM_NEWADDR
RTM_DELADDR
RTM_IFINFO

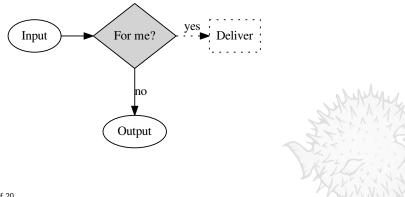
...

Native speakers

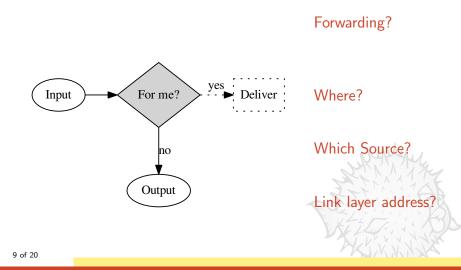
route(8), dhclient(8), bgpd(8), dvmrpd(8), eigrpd(8), ldpd(8), ospfd(8), ospfd(8), ripd(8), snmpd(8), ...

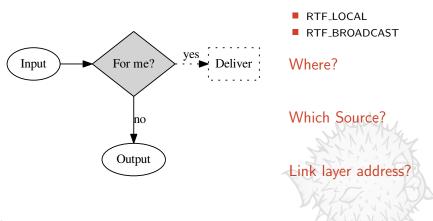
Agenda

BSD Routing Table

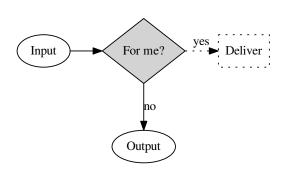

Refined Interface

New data structures


Conclusion


sys/netinet/ip_input.c

 $\mathsf{sys}/\mathsf{netinet}/\mathsf{ip}_{-}\mathsf{input.c}$



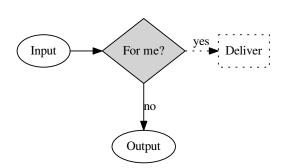
 $\mathsf{sys}/\mathsf{netinet}/\mathsf{ip}_{-}\mathsf{input.c}$

Forwarding?

 $\mathsf{sys}/\mathsf{netinet}/\mathsf{ip}_{-}\mathsf{input.c}$

Forwarding?

- RTF_LOCAL
- RTF_BROADCAST

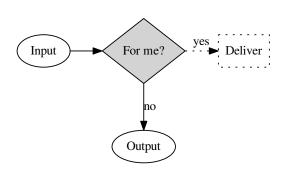

Where?

rt_ifidx

Which Source?

Link layer address?

 $\mathsf{sys}/\mathsf{netinet}/\mathsf{ip}_{-}\mathsf{input.c}$


Forwarding?

- RTF_LOCAL
- RTF_BROADCAST

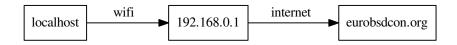
Where?

- rt_ifidx
- Which Source?
 - rt₋ifa
- Link layer address?

 $\mathsf{sys}/\mathsf{netinet}/\mathsf{ip}_{-}\mathsf{input.c}$

Forwarding?

- RTF_LOCAL
- RTF_BROADCAST

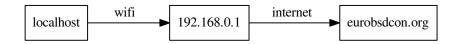

Where?

- rt_ifidx
- Which Source?
 - rt₋ifa
- Link layer address?

rt_gateway

Gateway route

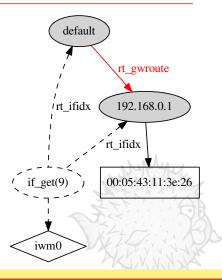
sys/net/route.c



10 of 20

Gateway route

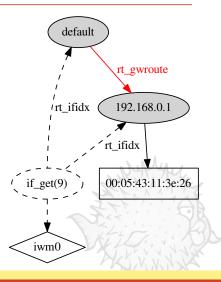
sys/net/route.c


\$ netstat -rnf inet

Routing tables

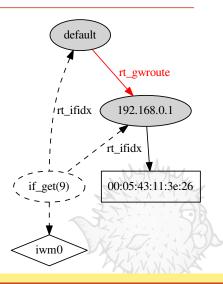
Internet:

Destination	Gateway	Flags	Refs	Use	Mtu	Prio	Iface
default	192.168.0.1	UGS	20	420	N.	8	iwm0
192.168.0/24	192.168.0.6	UC	2	10	24	4	iwm0
192.168.0.1	00:05:43:11:3e:26	UHLch	1	241	CE	4	iwm0
192.168.0.6	00:bc:24:bd:af:7c	UHL1	1	4		4	iwm0

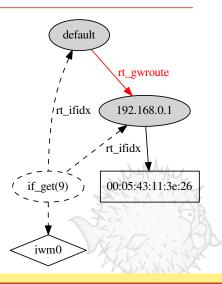

 $sys/net/if_ethersubr.c$

 $sys/net/if_ethersubr.c$

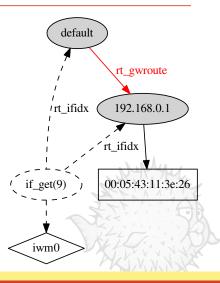
Single shared cache


Proxy reference count

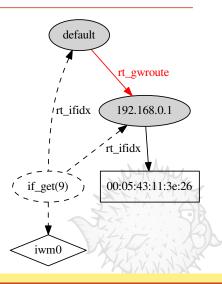
11 of 20


 $sys/net/if_ethersubr.c$

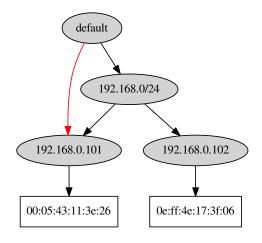
- Proxy reference count
- Immutable pointer


 $sys/net/if_ethersubr.c$

- Proxy reference count
- Immutable pointer
- Flag it RTF_CACHED

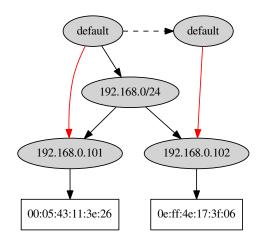

 $sys/net/if_ethersubr.c$

- Proxy reference count
- Immutable pointer
- Flag it RTF_CACHED
- Checks during insertion
 - No second route lookup

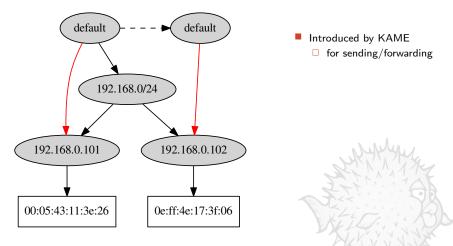


 $sys/net/if_ethersubr.c$

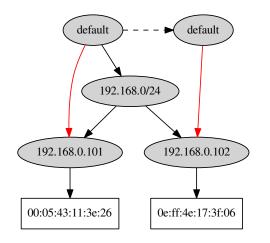
- Proxy reference count
- Immutable pointer
- Flag it RTF_CACHED
- Checks during insertion
 No second route lookup
- No atomic operations



sys/net/radix_mpath.c

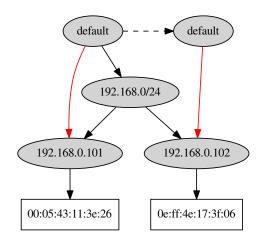


sys/net/radix_mpath.c


A CONTRACTOR

 $\mathsf{sys/net/radix_mpath.c}$

12 of 20


 $\mathsf{sys/net/radix_mpath.c}$

- Introduced by KAME
 for sending/forwarding
- Identical keys in the tree
 - different priority, or
 - different gateway

 $\mathsf{sys/net/radix_mpath.c}$

- Introduced by KAME
 for sending/forwarding
- Identical keys in the tree
 - different priority, or
 - different gateway
- Extended to
 - Connected routes
 - ARP proxy entries
 - (Multicast groups)

Agenda

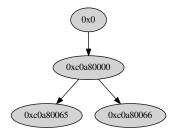
BSD Routing Table

Refined Interface

New data structures

Conclusion

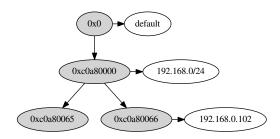
13 of 20


Why? sys/net/radix_mpath.c

```
/*
 * Stolen from radix.c rn_addroute().
 * This is nasty code with a certain amount of magic and dragons.
[...]
 */
```


Everything is multipath

sys/net/rtable.c

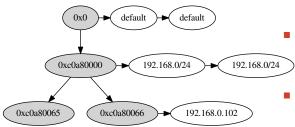


15 of 20

Everything is multipath

sys/net/rtable.c

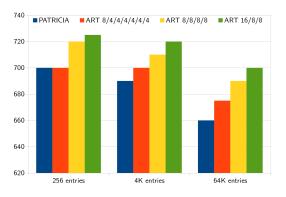
- Data structure separation
 - network agnostic
 - value is a pointer


Everything is multipath

sys/net/rtable.c

Everything is multipath

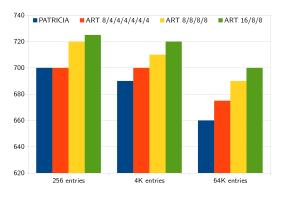
 $\mathsf{sys}/\mathsf{net}/\mathsf{rtable.c}$



- Data structure separation
 - network agnostic
 - value is a pointer
 - List of entries
 - value points to a list
 - ordered by priority
 - generic multipath
- MP ready
 - different lifetimes
 - separated refcount
 - no backpointer

 $\mathsf{sys}/\mathsf{net}/\mathsf{art.c}$

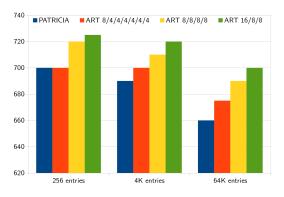
Number of packets received


while sending 800Kpps

sys/net/art.c

Number of packets received while sending 800Kpps

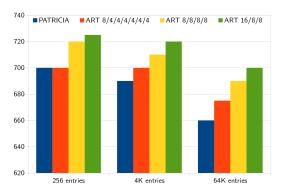
Shared code & knowledge


Beautiful free software story

Algorithm from Donald Knuth
 patent free

sys/net/art.c

Number of packets received while sending 800Kpps

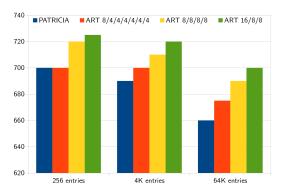

Shared code & knowledge Beautiful free software story

Algorithm from Donald Knuth
 patent free

- C version by Yoichi Hariguchi
 - documented in a paper
 - variable stride length
 - BSD licensed

sys/net/art.c

Number of packets received while sending 800Kpps



Shared code & knowledge Beautiful free software story

- Algorithm from Donald Knuth
 patent free
- C version by Yoichi Hariguchi
 - documented in a paper
 - $\hfill\square$ variable stride length
 - BSD licensed
- Integrated by Martin Pieuchot

sys/net/art.c

Number of packets received while sending 800Kpps

Shared code & knowledge Beautiful free software story

Algorithm from Donald Knuth
 patent free

- C version by Yoichi Hariguchi
 - documented in a paper
 - variable stride length
 - BSD licensed
- Integrated by Martin Pieuchot
- Lock free lookup by Jonathan Matthew & David Gwynne

Agenda

BSD Routing Table

Refined Interface

New data structures

Conclusion

 $\mathsf{sys}/\mathsf{net}/\mathsf{rtable.c}$

• Routing table as **single** gobal data structure

 $\mathsf{sys}/\mathsf{net}/\mathsf{rtable.c}$

Routing table as single gobal data structure

□ Used for *forwarding*, *sending* and *receiving*

 $\mathsf{sys}/\mathsf{net}/\mathsf{rtable.c}$

Routing table as single gobal data structure

- □ Used for *forwarding*, *sending* and *receiving*
- Consulted once per packet

 $\mathsf{sys}/\mathsf{net}/\mathsf{rtable.c}$

Routing table as single gobal data structure

- □ Used for *forwarding*, *sending* and *receiving*
- Consulted once per packet
- Lock free lookup

- Routing table as single gobal data structure
 - □ Used for *forwarding*, *sending* and *receiving*
 - Consulted once per packet
 - Lock free lookup
- No secondary lookup for *link layer address* translation

- Routing table as single gobal data structure
 - □ Used for *forwarding*, *sending* and *receiving*
 - Consulted once per packet
 - Lock free lookup
- No secondary lookup for *link layer address* translation
- No atomic primitive to get the gateway link layer address

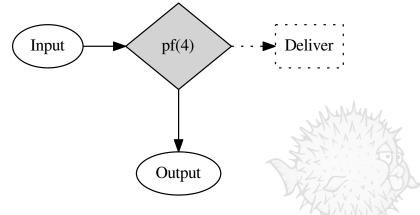
- Routing table as single gobal data structure
 - □ Used for *forwarding*, *sending* and *receiving*
 - Consulted once per packet
 - Lock free lookup
- No secondary lookup for *link layer address* translation
- No atomic primitive to get the gateway link layer address
- Generic, multi-use *multipath* implementation

 $\mathsf{sys}/\mathsf{net}/\mathsf{rtable.c}$

- Routing table as single gobal data structure
 - □ Used for *forwarding*, *sending* and *receiving*
 - Consulted once per packet
 - Lock free lookup
- No secondary lookup for *link layer address* translation
- No atomic primitive to get the gateway link layer address
- Generic, multi-use *multipath* implementation
- Faster route lookup via ART

- Routing table as single gobal data structure
 - Used for forwarding, sending and receiving
 - Consulted once per packet
 - Lock free lookup
- No secondary lookup for *link layer address* translation
- No atomic primitive to get the gateway link layer address
- Generic, multi-use *multipath* implementation
- Faster route lookup via ART
- Interface didn't change

Questions?


Slides on http://www.openbsd.org/papers/

More stories on http://www.grenadille.net

Coming soon!

sys/net/pf.c

