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Outline

● The Moment of Failure

● Memory/Register state at moment of Failure

● What attackers do with this

● What can be done about it?



Oops, a bug is triggered by 
unexpected data

● Programmer mishandles some situation, and things go off the 
rails
– Generally, code keeps running for a quite a while
– Reading this, writing that, etc
– Until it performs an illegal operation
– SIGSEGV/SIGBUS, etc

● Attacker observes this condition
● Fuzzing is making it easier to find such bugs



What does it actually look like

● Static binary memory layout

pc sp

Code     data/bss   heap stack



What does it actually look like

● The Crash state

● Before 1999, every crash state had an identical footprint

pc spinteger regs fpu regs

Values and pointers

frame



What does it actually look like

● Dynamic binary

● Just more state.  PIC code model

pc spinteger regs fpu regs

ld.so libc.so



What the attacker knows

● In 1999
– Crash-State 100% identical on attacker‘s test host and 

target host
– Attack method could be iterated till perfection
– Then deliver payload, own the target

● By 2010, ASR+W^X+stack-protector had added many 
unknowns and increased difficulty for the attacker



Consider Constant-Relative offsets

                                 Some shared object

Attacker finds address in a reg or memory

Attacker wants this address

The distance remains constant, and is
thus a part of what the attacker knows.



What the attacker does

● Before 1999, classic buffer overflows were the common technique

● After W^X became common, ROP methodology became more common

● With ASR/ASLR now common, sprays and other non-turing-complete 
"damage the state“ methods become common.

● In JIT systems, the stack protector is usually absent.



What can be done about this?

● Perturb address spaces
● Strict permissions (RWX, X-only, MAP_STACK, syscall-notX)
● Micro-architectural random cookies (stackghost, SROP)
● Self-protecting data structures (malloc, setjmp)
● Stackprotector / RETGUARD
● PIE, bindnow, ld.so unmapping
● Guards and trapsleds

*REMOVE INFORMATION & INCREASE CHANCE OF SIDE-EFFECT DAMAGE*



Perturb address spaces

● PIC to PIE
● Kernel and ld.so do random layout
● All heap allocations via random mmap()
● ASR (not ASLR)

● libc/libcrypto/ld.so boot-time randomization
● KARL kernel boot-time randomization
● amd64 & arm64 VA+PA KASRL



Allocation guards and code trapsleds

● Guards are unmapped memory between objects
● More guards        improved chance an attacker‘s misfire kills him

● Trapsleds are illegal instructions in the instruction sequence, rather 
than the classic NOP sequences used in the past (for various 
reasons)

● Requires an attacker to precisely target gadgets, rather than sliding 
through NOPs

● (Used heavily in the RETGUARD design)



Perturbances - Before

● Dynamic binary

● Just more state.  PIC code model, and maybe PIE 

pc spinteger regs fpu regs

ld.so libc.so



Perturbances – After

pc sp          integer regs fpu regs

ld.so libc.so

ld.so random relink @ boot libc.so random relink @ boot

Main program is PIE

All objects random placement

Heap is gaurded micro allocations



Perturbances – After (2nd run)

pc sp integer regs fpu regs

ld.so libc.so

ld.so random relink @ boot libc.so random relink @ boot

Main program is PIE

All objects random placement

Heap is gaurded micro allocations



There are still some knowns

● At moment of crashing
– A specific register will still have a constant value
– Pointers will still point at the same objects

● But many relative offsets are disrupted
● libc.so and ld.so boot-time randomization helps
● Cannot use part of a pointer as a integer constant in a calculation
● ROP gadgets & their locations are not known



Strict page permissions

● W^X
● .rodata
● Trying to develop X-only (to prevent blind ROP)
● MAP_STACK pseudo page-protection (prevents 

ROP-stack pivot into data memory)
● syscalls not permitted from writeable memory



History of our Stack-Protector

● 2001 – stack-protector protects functions >= 16 bytes of local
● 2012 – one stack-protector value per shared-object
● 2014 – stack-protector-strong (more functions protected)
● 2015 – stack-protector values become read-only
● 2018 – RETGUARD: unique read-only stack-protector value   

            per function (all functions protected to eliminate           
            terminator-gadget)



Micro-architectural cookies

● Stackghost (sparc64)
● SROP mitigation (cookie in sigcontext)
● setjmp/longjmp cookie 



Self-protecting data structures

● atexit() chain storage is write-protected
● malloc() tracking datastructures are out-of-band
● Large number of paranoia features in malloc() 

and free()



Remove ROP gadgets

● SROP eliminated
● RETGUARD
● OpenBSD/arm64 has no RET-ROP gadgets!
● X86 instr Polymorphic RETs can be significantly 

reduced (nearly eliminated)
● ld.so unmapping when finished (dlopen gadgetry)
● crt0 gadgetry cleanup



The role of privsep, fork + exec

● Privsep: Rewrite programs and structure them in a micro-kernel way

● Fork+exec: create new & unique address spaces whenever possible

● Moment-of-Failure knowledge from one privsep process, isn‘t 
applicable in another privsep process



Complexity, Cost, Tradeoffs

● Cost of change must be evaluated

● As machines get faster, it is reasonable to use a larger 
portion of the cpu for self-protection



Pledge and unveil

● If the attacker manages to execute code in your 
environment
– Take away as many system calls as possible
– Restrict the filesystem space available



Conclusions

● Situation is much improved since 1999

● A Full-Stack approach

● Many other systems matching our trajectory

● Open-ended mission:  More interesting work to do.
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