
Deterministic Behaviours are
your Attacker's Friend

Theo de Raadt
OpenBSD

Outline

● The Moment of Failure

● Memory/Register state at moment of Failure

● What attackers do with this

● What can be done about it?

Oops, a bug is triggered by
unexpected data

● Programmer mishandles some situation, and things go off the
rails
– Generally, code keeps running for a quite a while
– Reading this, writing that, etc
– Until it performs an illegal operation
– SIGSEGV/SIGBUS, etc

● Attacker observes this condition
● Fuzzing is making it easier to find such bugs

What does it actually look like

● Static binary memory layout

pc sp

Code data/bss heap stack

What does it actually look like

● The Crash state

● Before 1999, every crash state had an identical footprint

pc spinteger regs fpu regs

Values and pointers

frame

What does it actually look like

● Dynamic binary

● Just more state. PIC code model

pc spinteger regs fpu regs

ld.so libc.so

What the attacker knows

● In 1999
– Crash-State 100% identical on attacker‘s test host and

target host
– Attack method could be iterated till perfection
– Then deliver payload, own the target

● By 2010, ASR+W^X+stack-protector had added many
unknowns and increased difficulty for the attacker

Consider Constant-Relative offsets

 Some shared object

Attacker finds address in a reg or memory

Attacker wants this address

The distance remains constant, and is
thus a part of what the attacker knows.

What the attacker does

● Before 1999, classic buffer overflows were the common technique

● After W^X became common, ROP methodology became more common

● With ASR/ASLR now common, sprays and other non-turing-complete
"damage the state“ methods become common.

● In JIT systems, the stack protector is usually absent.

What can be done about this?

● Perturb address spaces
● Strict permissions (RWX, X-only, MAP_STACK, syscall-notX)
● Micro-architectural random cookies (stackghost, SROP)
● Self-protecting data structures (malloc, setjmp)
● Stackprotector / RETGUARD
● PIE, bindnow, ld.so unmapping
● Guards and trapsleds

REMOVE INFORMATION & INCREASE CHANCE OF SIDE-EFFECT DAMAGE

Perturb address spaces

● PIC to PIE
● Kernel and ld.so do random layout
● All heap allocations via random mmap()
● ASR (not ASLR)

● libc/libcrypto/ld.so boot-time randomization
● KARL kernel boot-time randomization
● amd64 & arm64 VA+PA KASRL

Allocation guards and code trapsleds

● Guards are unmapped memory between objects
● More guards improved chance an attacker‘s misfire kills him

● Trapsleds are illegal instructions in the instruction sequence, rather
than the classic NOP sequences used in the past (for various
reasons)

● Requires an attacker to precisely target gadgets, rather than sliding
through NOPs

● (Used heavily in the RETGUARD design)

Perturbances - Before

● Dynamic binary

● Just more state. PIC code model, and maybe PIE

pc spinteger regs fpu regs

ld.so libc.so

Perturbances – After

pc sp integer regs fpu regs

ld.so libc.so

ld.so random relink @ boot libc.so random relink @ boot

Main program is PIE

All objects random placement

Heap is gaurded micro allocations

Perturbances – After (2nd run)

pc sp integer regs fpu regs

ld.so libc.so

ld.so random relink @ boot libc.so random relink @ boot

Main program is PIE

All objects random placement

Heap is gaurded micro allocations

There are still some knowns

● At moment of crashing
– A specific register will still have a constant value
– Pointers will still point at the same objects

● But many relative offsets are disrupted
● libc.so and ld.so boot-time randomization helps
● Cannot use part of a pointer as a integer constant in a calculation
● ROP gadgets & their locations are not known

Strict page permissions

● W^X
● .rodata
● Trying to develop X-only (to prevent blind ROP)
● MAP_STACK pseudo page-protection (prevents

ROP-stack pivot into data memory)
● syscalls not permitted from writeable memory

History of our Stack-Protector

● 2001 – stack-protector protects functions >= 16 bytes of local
● 2012 – one stack-protector value per shared-object
● 2014 – stack-protector-strong (more functions protected)
● 2015 – stack-protector values become read-only
● 2018 – RETGUARD: unique read-only stack-protector value

 per function (all functions protected to eliminate
 terminator-gadget)

Micro-architectural cookies

● Stackghost (sparc64)
● SROP mitigation (cookie in sigcontext)
● setjmp/longjmp cookie

Self-protecting data structures

● atexit() chain storage is write-protected
● malloc() tracking datastructures are out-of-band
● Large number of paranoia features in malloc()

and free()

Remove ROP gadgets

● SROP eliminated
● RETGUARD
● OpenBSD/arm64 has no RET-ROP gadgets!
● X86 instr Polymorphic RETs can be significantly

reduced (nearly eliminated)
● ld.so unmapping when finished (dlopen gadgetry)
● crt0 gadgetry cleanup

The role of privsep, fork + exec

● Privsep: Rewrite programs and structure them in a micro-kernel way

● Fork+exec: create new & unique address spaces whenever possible

● Moment-of-Failure knowledge from one privsep process, isn‘t
applicable in another privsep process

Complexity, Cost, Tradeoffs

● Cost of change must be evaluated

● As machines get faster, it is reasonable to use a larger
portion of the cpu for self-protection

Pledge and unveil

● If the attacker manages to execute code in your
environment
– Take away as many system calls as possible
– Restrict the filesystem space available

Conclusions

● Situation is much improved since 1999

● A Full-Stack approach

● Many other systems matching our trajectory

● Open-ended mission: More interesting work to do.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

