
Mininet on OpenBSD: Using rdomains for Interactive SDN Testing and
Development

Ayaka Koshibe
akoshibe@openbsd.org

Abstract—Mininet is an interactive development tool designed
for the purpose of prototyping and testing of Software-
defined network (SDN) controllers, their applications, and
SDN-capable switches. It, however, heavily depends on Linux-
specific network virtualization features and applications. This
paper describes the work to create a version of Mininet that is
capable of running on OpenBSD by making use of rdomain(4)s
and the SDN components available on it, namely switch(4)
and switchd(8). Along the way, we describe the motivation for
porting a tool like Mininet, and provide some examples of
how it is used. We also describe some of the issues that were
encountered in the porting process so far, and how they were
resolved.

1. Introduction

A developer of an SDN component can only get so far
with piecemeal validation and unit testing. Sooner or later,
that component will need to be tested within reasonably
realistic SDN environments to see how it fares as part of
a network. This points to the benefit of a development tool
that can give developers easy access to customizable SDN-
capable networks.

SDN developers tend to favor network emulation for its
flexibility, footprint, and convenience. An emulated network
can be quickly brought up and torn down, and take on arbi-
trary topologies incorporating the components being devel-
oped, in various ways. An emulator can also provide ways to
run sanity checks against the networks that it creates. Simply
put, an emulated network is able to model a sufficiently
realistic network for a fraction of the cost, maintenance,
and admininstration resources that would be required for a
more realistic hardware-based network testbed.

This paper describes an SDN development tool called
Mininet [1] and its OpenBSD port, net/mininet. Mininet
allows developers to quickly create custom network topolo-
gies and test scenarios, and to interact with their emulated
network via a CLI. However, it was also developed around
Linux namespaces [2] and cgroups [3]. Although it saw us-
age during the development of OpenBSD’s sflow controller,
switchd(8), it had to be run in an Ubuntu VM [4]. The aim of
this port is a version of Mininet capable of running natively
on OpenBSD, to ease future development work around its
SDN components.

2. Overview of SDN

2.1. Definition and Architecture

Since the term ’SDN’ has many meanings attached to
it, we first establish what we mean by ’SDN’ in this paper.
SDN is an approach in network design where a network
is formed of two logical components, a control plane and
a data plane. The former defines the logic that the latter
follows in order to handle network traffic. The control plane,
or controller, usually runs on commodity hardware with
more processing capacity than the network hardware making
up the data plane. The means used by the control and data
planes to interact take many forms, with OpenFlow [5]
being a well-known effort to develop a standardized protocol
for this purpose. In practice, protocols such as SNMP and
NETCONF, or RESTful APIs aren’t uncommon, and it is
possible to use a combination of different methods as long
as the overall architecture is maintained.

One key result of SDN is the development of a global
view of the network as a whole, so that its behavior can be
managed as if it were a single entity rather than a collection
of devices, each with their own and distinct interfaces.
This unified view - an important basis for orchestration -
is provided by the control plane on its northbound inter-
face, in the form of some API. On top of the API are
applications that control and collect network state, including
UIs meant to replace the multiple terminals to each switch
(or other SDN-managed device) with a single one to the
control plane. Since the notion of a ”northbound API” is
not standardized to the extent of, e.g., OpenFlow, imple-
mentations and boundaries vary greatly between controllers
and applications.

2.2. OpenFlow

While Mininet is designed to emulate SDNs in its gen-
eral form, this paper focuses on SDNs based on OpenFlow
since it is what the OpenBSD SDN implementation uses
between the control and data planes. OpenFlow’s name
stems from its usage of packet header patterns to define
different traffic classes, or flows, to which different actions
are applied. These match-action pairs, or flow rules, are
installed into the switch’s flow table(s) via a control channel
using the OpenFlow protocol. When a switch sees a packet
that matches a flow rule, it applies the action to the packet.

Common actions include outputting it to some port or
dropping it, rewriting a portion of the header, or searching
for matches in another table.

Before flow installations can occur, the controller and
switch must complete a handshake in order to establish
the OpenFlow control channel. Among the information ex-
changed include information about the switch, such as its
unique ID in the network (datapath ID), its port numbering,
and capabilities.

What we have described here is a very high-level
overview of OpenFlow; [5] provides the full specifications of
OpenFlow 1.3.5, which is the protocol version implemented
by OpenBSD.

2.3. OpenFlow on OpenBSD

The switch(4) [6] network interface pseudo-device im-
plements a data plane node that supports OpenFlow 1.3.5.
As expected from a data plane device, its forwarding behav-
ior is defined by a controller. OpenBSD provides switchd(8)
[7] as a controller to use with switch(4), and switchctl(8)
[8] as a means to interact with the network through, and to
control, switchd(8).

Some aspects of a switch(4) interface, such as its mem-
ber interfaces, port numbering, and datapath ID, are not
configured by switchd(8). These features are configured
via ifconfig(8) and are announced by a switch during its
handshake with the controller, or during statistics queries.

3. Mininet

3.1. Basic Usage

One key goal of Mininet is to be an interactive develop-
ment platform for SDN components. It provides a command,
mn, that allows a user to quickly launch prepackaged but pa-
rameterizable network topologies. mn also provides options
for starting a CLI, specifying the components to use, and
simple sanity tests.

For example, the following launches a linear topology of
three switches, each with a host connected to it. The hosts
will ping eachother in a ’pingall’ test:

mn −−t opo = l i n e a r , 3 −− t e s t = p i n g a l l
(. . . s t a r t u p o u t p u t)
∗∗∗ Ping : t e s t i n g p ing r e a c h a b i l i t y
h1 −> h2 h3
h2 −> h1 h3
h3 −> h1 h2
∗∗∗ R e s u l t s : 0% dropped (6 / 6 r e c e i v e d)
∗∗∗ S t o p p i n g 1 c o n t r o l l e r s
(. . . t ea rdown o u t p u t)

When a test is specified, the topology is built before
the test is run, and torn down immediately afterwards. This
leaves little room for a closer look at the network. Another
option is to launch a CLI connected with the topology. The
CLI allows a user to run the same tests, but also inspect

and manipulate nodes and links, and to run commands at
network host shells. For example, the same test above can
be run from a CLI, but also after a link is taken down and
brought back up again:

mn −−t opo = l i n e a r , 3
(. . . s t a r t u p o u t p u t)
m i n i n e t> l i n k s1 s2 down
m i n i n e t> p i n g a l l
∗∗∗ Ping : t e s t i n g p ing r e a c h a b i l i t y
h1 −> X X
h2 −> X h3
h3 −> X h2
∗∗∗ R e s u l t s : 66% dropped (2 / 6 r e c e i v e d)
m i n i n e t> l i n k s1 s2 up
m i n i n e t> p i n g a l l
∗∗∗ Ping : t e s t i n g p ing r e a c h a b i l i t y
h1 −> h2 h3
h2 −> h1 h3
h3 −> h1 h2
∗∗∗ R e s u l t s : 0% dropped (6 / 6 r e c e i v e d)
m i n i n e t>

The pingall command in the CLI is functionally
equivalent to running the ping(8) command from each host.
Regular shell commands can be run from a Mininet host
by appending the command after its name. For example,
h1 route will cause host h1 to display its route tables.

Mininet also provides a Python API that allow develop-
ers to script custom topologies and test scenarios. A minimal
one-switch, two-host topology with the CLI (what the mn
command by itself will produce) can be recreated with a
Python script:

! / u s r / b i n / env py thon
from m i n i n e t . t opo i m p o r t Topo
from m i n i n e t . n e t i m p o r t M i n i n e t
from m i n i n e t . c l i i m p o r t CLI

c l a s s MinimalTopo (Topo) :
d e f b u i l d (s e l f) :

Add h o s t s and s w i t c h e s
h1 = s e l f . addHost (’ h1 ’)
h2 = s e l f . addHost (’ h2 ’)
s1 = s e l f . addSwi tch (’ s1 ’)
Add l i n k s between nodes
s e l f . addLink (h1 , s1)
s e l f . addLink (h2 , s1)

topo = MinimalTopo ()
n e t = M i n i n e t (t opo = topo)
n e t . s t a r t ()
CLI (n e t)
n e t . s t o p ()

Mininet has quite a few features, which are documented
with its APIs at [1]. We will describe any relevant features
as they appear in the discussion.

3.2. Components Development Workflow

Even by itself, Mininet has all components needed to
create and run functional SDN-capable networks. Its flexi-
bility as a development tool comes from how a developer
can drop-in replace switches and/or controllers with their
own, and use mn to quickly test their work with pre-
canned tests or topologies. A developer can, for example,
run their controller against a topology with loops using
the --topo=torus option to test how well their cycle
detection and forwarding works. Since controller/application
development is considered a typical use case for Mininet, it
also provides a RemoteController component that can
be specified with the --controller=remote option.
The RemoteController is an abstract controller object
that points the switches to controller(s) already running
elsewhere.

Although there are no means to incorporate external
switches into the emulated network, Mininet’s API allows
developers to not only customize topology, but also to extend
base network objects to create their own. These subclasses
are recognized by Mininet as nodes and links that can be
incorporated into toplogies, or, with little effort, have mn
use it with its topologies and tests. As we will elaborate
later, this API was useful in implementing the switchd(8)
and switch(4) network objects for the port.

3.3. Original Implementation

We first describe the original implementation of Mininet
before discussing how it was modified to work on
OpenBSD.

3.3.1. Topology creation. A node or host in a Mininet
topology is a shell - bash - running in its own Linux
network namespace and assigned a unique name. A network
namespace restricts network access of a process and its
descendants to their own virtual network stack. Processes
running in different network namespaces are allowed to
interact through network links created by virtual ethernet
(veth) pairs. The ends of a veth pair are either added
to namespaces, or to switch nodes as member interfaces. A
node might also be allowed to connect to the outside world
by creating a link to a switch with outside connectivity.

3.3.2. Network objects. Since it is a shell, a node can
easily be converted into a specialized component by having
it run a few commands, such as launching a controller
such as Nox or Ryu to become a ’controller node’, or to
create and configure an OpenvSwitch bridge to become a
’switch node’. A host, being a ’generic’ node, does not
require special initialization except for the shell. In terms
of implementation, each node type is its own class and the
child of the Node base class.

Links are created from the root namespace, since a
link might join any two nodes. The ends are renamed to
track their location in the topology - ’h1-eth0’, for example,
indicates the first interface on host h1. Mininet uses the

ip link command from the iproute2 utility collection
in order to create, rename, and move veth link endpoints.

Mininet network objects define lifecycles, where each
stage can be redefined through the ’low-level’ API. This
mechanism is used by, for example, the child classes of
Node to run various commands at appropriate points in time
to set up, configure, and tear down switches and controllers.

Now that the key details have been described, we can
discuss the work done to get Mininet to run on OpenBSD.

4. Mininet on OpenBSD

As described in the previous sections, Mininet requires
a host system to at least support network virtualization
from layer 2 and above to construct topologies, and at
least one supported virtual switch and controller for use in
its canonical ’switch’ and ’controller’ nodes to implement
topologies that support OpenFlow. switch(4), switchd(8),
and switchctl(8), serve as the components for OpenFlow-
capable nodes. rdomain(4) [9] and pair(4) [10] provide the
virtualization needed for the topologies.

4.1. Overview of Routing Domains and pair(4)s

Routing domains, or rdomain(4)s, provide support for
multiple in-kernel routing tables and address spaces. A
process and its descendants can be restricted to using its
own network address space and routing table by running
it in an rdomain. Interfaces can be assigned to rdomains,
through which processes in one rdomain can communicate
with those in another. An interface of interest in our case is
pair(4), a virtual Ethernet interface designed to be used in
pairs, i.e. endpoints of an Ethernet link.

4.2. Initial Goals

In addition to recreating the core functions of Mininet,
another goal was to minimize the number of external depen-
dencies, which makes packaging simpler. This lead to some
choices such as the use of ksh(1) to remove a dependency
on bash.

The organization of the codebase also made it difficult to
simply extend Mininet to support both Linux and OpenBSD.
Part of the work involved quite a bit of refactoring to create
a boundary between the node and link object implemen-
tations and the OS-specific network virtualization features.
Once this was done, the APIs in Mininet were enough to
implement the ’switchd’ and ’switch’ nodes, while retaining
support for Linux.

Finally, sanity testing for Mininet involves the creation
and destruction of interfaces and switches, making the test-
ing process destructive. Because of this, we did not include
regression tests for the package.

4.3. Implementation

In terms of functionality, rdomain(4)s and pair(4) inter-
faces are drop-in replacements for network namespaces and
veth interfaces.

4.3.1. Nodes and Links. A node on OpenBSD becomes
a ksh(1) instance running in an rdomain(4). Due to the
way that a topology is initialized, nodes are created before
links. To create a routing domain for the shell to run in, an
extra interface is first created and assigned a rdomain before
route(8) is used to run the shell in it. This means that nodes
on OpenBSD will always have one extra interface.

Another quirk comes from how Mininet waits for a shell
to return from a command. When starting a shell, it runs it
interactively, with a shell prompt set to a sentinel character,
and assumes that this sentinel is the only character in the
prompt. Mininet detects that a shell has completed running
the command when it sees this sentinel, returning its own
CLI prompt and/or any command output assumed useful
(e.g., the results of an iperf test). Due to requiring root to
manipulate network namespaces, Mininet also assumes that
it and everything else must run as root. The result was a
modification of ksh(1) to make the ’#’ optional for root to
prevent Mininet from waiting forever for the lone sentinel
character.

A link is two patched pair(4)s where the endpoints
may be members of a routing domain and/or a switch(4)
instance. Mininet assumes that interfaces can be renamed as
mentioned earlier, and also that the new name can be used to
reference the interface on the system. Part of refactoring the
lower-level parts of Mininet included adding a way for it to
translate between its port names and those on the system.
The same modifications were used for mapping Mininet-
designated switch names (e.g. ’s1’) to the system’s switch(4)
interface names (e.g. ’switch0’).

4.3.2. Controller and Switch nodes. The switchd(8)-based
’Switchd’ node and switch(4) based ’IfSwitch’ node are
customized controller and switch Mininet objects, respec-
tively, with initialization and teardown methods that run
the needed ifconfig and switchctl commands. As
the only OpenFlow nodes available on the OpenBSD port,
these nodes are set as the default controller and switch types
used by mn on OpenBSD. This means that the topology
script described in Section 3.1, which is a typical level at
which scripts are written for Mininet, can be used without
modification. The only immediately noticeable difference
would be the change in the network objects’ types when
inspection commands such as dump are run at the CLI:

py thon . / t e s t . py
m i n i n e t> dump
<Host h1 : h1−e t h 0 : 1 0 . 0 . 0 . 1 p i d =28087>
<Host h2 : h2−e t h 0 : 1 0 . 0 . 0 . 2 p i d =46097>
<I f S w i t c h s1 : l o 0 : . . . p i d =321533>
<Swi tchd c0 : 1 2 7 . 0 . 0 . 1 : 6 6 5 3 p i d =31625>

In our case, IfSwitch replaces OVSSwitch, and
Switchd replaces Controller. The PIDs shown are
those of the ksh(1) instances that represent each node. These
details would become visible to a user creating scripts writ-
ten against the low-level API, where node and link classes
or shell commands must be specified.

Unless mn is explicitly directed not to start a controller,
an instance of switchd(8) will always be started. switchctl(8)
can be used to configure switchd(8) to behave as an Open-
Flow proxy between a switch(4) instance and another con-
troller with the forward-to option when connecting the
switch to the (local) switchd(8) instance. This feature is used
to implement the --controller=remote option in mn
by running switchd(8) as a proxy to the target.

4.3.3. Higher-level constructs. Since they are never ex-
posed to the underlying system, the features of Mininet
that rely on the ’mid-level’ and ’high-level’ APIs are not
functionally affected by our changes. These features include
the CLI and the topology object, which at most need to
be aware of the existence of the newly created node and
link objects. The topology may need to be able to create
IfSwitches, but do not need to understand how switch(4)
interfaces are manipulated.

5. Current status

As of August 2017, Mininet has been made available
in the OpenBSD ports tree as net/mininet. The current
version of the port can be used to create and run OpenFlow-
capable networks both as scripts and through mn. mn’s ping
and iperf -based tests are also available, as well as ’base-
line’ bridge(4) nodes to create non-OpenFlow networks.

The imported version of the port is based on the fork of
Mininet being maintained at

https://github.com/akoshibe/mininet

The repository’s version of Mininet also includes support
for FreeBSD with vnet jails and epair(4)s, using the same
’API’ created when refactoring the node and link classes.

6. Future work

Due to the amount of features it has, and its reliance on
Linux-specific applications, not all network objects are sup-
ported on OpenBSD, notably resource-limited hosts (which
rely on Linux cgroups) and traffic-shaping links (which rely
on iptables and tc). It also requires root in order to run,
since it doesn’t cleanly separate privileged commands from
those that are not.

Additionally, we have yet to test some features, such
as the MiniEdit GUI, and the ’cluster edition’ remote links
for interconnecting multiple Mininet network instances. We
hope to gradually cover the unsupported or untested features,
and to upstream our work. The latter may be a challenge
due to the extensive changes that were needed in order to
support multiple systems simultaneously.

7. Conclusion

SDN developers find appeal in network emulators for
their ability to conveniently model SDN-capable networks,
within which their components can be tested. Mininet is

one such tool that has seen usage in OpenFlow-based SDN
development. We described how Mininet was ported to use
rdomain(4)s, and in a way that it can be more easily ported
to platforms with similar network resource virtualization
features. The goal is that, by providing a version of Mininet
that runs natively on OpenBSD, we provide a useful tool
for further development of its SDN implementation.

Acknowledgments

Many thanks go out to Bob Lantz, for his work on
Mininet and his interest in having it ported to systems
outside of Linux, and for providing feedback; Reyk Flöter
for suggesting an OpenBSD port of Mininet and introducing
the author to switch(4) and switchd(4); Kazuya Goda for
elucidating some of the design details of switchd(4); And
finally, Peter Hessler, for helping the author import Mininet
into the OpenBSD ports tree and for suggesting the author
to write this paper.

References

[1] Mininet: An Instant Virtual Network on your Laptop (or other PC).
[Online]. Available: http://mininet.org/.

[2] namespaces(7), namespaces - overview of Linux namespaces. Linux
manual pages.

[3] cgroups(7), cgroups - Linux control groups. Linux manual pages.

[4] From conversation with Reyk Flöter, 9 Mar 17.

[5] Open Networking Foundation (ONF), OpenFlow Switch Specification,
Version 1.3.5 (Protocol version 0x04), March 26, 2015.

[6] switch(4), switch - network switch pseudo device. OpenBSD manual
pages.

[7] switchd(8), switchd - software-defined networking (SDN) sflow con-
troller. OpenBSD manual pages.

[8] switchctl(8), switchctl - control the SDN flow controller. OpenBSD
manual pages.

[9] rdomain(4), rtable, rdomain - routing tables and routing domains.
OpenBSD manual pages.

[10] pair(4), pair - virtual Ethernet interface pair. OpenBSD manual pages.

