
Implementation of Xen PVHVM

drivers in OpenBSD

Mike Belopuhov
Esdenera Networks GmbH

mike@esdenera.com

Tokyo, March 12 2016

The goal

Produce a minimal well-written and well-understood code base
to be able to run in Amazon EC2 and fix potential problems
for our customers.

The challenge

Produce a minimal well-written and well-understood code base
to be able to run in Amazon EC2 and fix potential problems
for our customers.

Requirements

Need to be able to:

I boot

Requirements

Need to be able to:

I boot: already works!

Requirements

Need to be able to:

I boot: already works!

I mount root partition

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

I support SMP

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

I support SMP: didn’t work on amd64

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

I support SMP: fixed shortly

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

I support SMP: fixed shortly

I perform “cloud init”

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

I support SMP: fixed shortly

I perform “cloud init”: requires PV networking driver. Snap!

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

I support SMP: fixed shortly

I perform “cloud init”: requires PV networking driver

I login into the system via SSH...

Requirements

Need to be able to:

I boot: already works!

I mount root partition: already works!

I support SMP: fixed shortly

I perform “cloud init”: requires PV networking driver

I login into the system via SSH... Same thing.

Outlook on the FreeBSD implementation

I Huge in size

Outlook on the FreeBSD implementation

I Huge in size

“du -csh” reports 1.5MB vs. 124KB in OpenBSD as of 5.9

35 C files and 83 header files vs. 4 C files and 2 headers

Outlook on the FreeBSD implementation

I Huge in size

I Needlessly complex

Overblown XenStore API, interrupt handling, . . .

Guest initialization, while technically simple, makes you chase
functions all over the place.

Outlook on the FreeBSD implementation

I Huge in size

I Needlessly complex

I Clash of coding practices

Outlook on the FreeBSD implementation

I Huge in size

I Needlessly complex

I Clash of coding practices

Lots of code has been taken verbatim from Linux (where
license allows)

Outlook on the FreeBSD implementation

I Huge in size

I Needlessly complex

I Clash of coding practices

I Questionable abstractions

Outlook on the FreeBSD implementation

I Huge in size

I Needlessly complex

I Clash of coding practices

I Questionable abstractions

Code-generating macros, e.g. DEFINE RING TYPES.

Macros to “facilitate” simple producer/consumer arithmetics,
e.g. RING PUSH REQUESTS AND CHECK NOTIFY and friends.

A whole bunch of things in the XenStore: xs directory

dealing with an array of strings, use of sscanf to parse single
digit numbers, etc.

Porting plans. . .

. . . were scrapped in their infancy.

Single device driver model

In OpenBSD a pvbus(4) driver performs early hypervisor
detection and can set up some parameters before attaching
the guest nexus device:

xen0 at pvbus?

The xen(4) driver performs HVM guest initialization and
serves as an attachment point for PVHVM device drivers, such
as the Netfront, xnf(4):

xnf* at xen?

HVM guest initialization

I The hypercall interface

Hypercalls

Instead of defining a macro for every type of a hypercall we
use a single function with variable arguments:

xen hypercall(struct xen softc *, int op,

int argc, ...)

Xen provides an ABI for amd64, i386 and arm that we need to
adhere to when preparing arguments for the hypercall.

The hypercall page

Statically allocated in the kernel code segment:

.text

.align NBPG

.globl C LABEL(xen hypercall page)

C LABEL(xen hypercall page):

.skip 0x1000, 0x90

The hypercall page

(gdb) disassemble xen hypercall page

<xen hypercall page+0>: mov $0x0,%eax

<xen hypercall page+5>: sgdt

<xen hypercall page+6>: add %eax,%ecx

<xen hypercall page+8>: retq

<xen hypercall page+9>: int3

...

<xen hypercall page+32>: mov $0x1,%eax

<xen hypercall page+37>: sgdt

<xen hypercall page+38>: add %eax,%ecx

<xen hypercall page+40>: retq

<xen hypercall page+41>: int3

...

HVM guest initialization

I The hypercall interface

I The shared info page

HVM guest initialization

I The hypercall interface

I The shared info page

I Interrupt subsystem

Interrupts

I Allocate an IDT slot

Pre-defined value of 0x70 (start of an IPL NET section) is used
at the moment.

Interrupts

I Allocate an IDT slot

I Prepare interrupt, resume and recurse vectors

Xen upcall interrupt is executing with an IPL NET priority.

Xintr xen upcall is hooked to the IDT gate.

Xrecurse xen upcall and Xresume xen upcall are hooked
to the interrupt source structure to handle pending Xen
interrupts.

Interrupts

I Allocate an IDT slot

I Prepare interrupt, resume and recurse vectors

I Communicate the slot number with the hypervisor

A XenSource Platform PCI Device driver, xspd(4), serves as a
backup option for delivering Xen upcall interrupts if setting up
an IDT callback vector fails.

Interrupts

I Allocate an IDT slot

I Prepare interrupt, resume and recurse vectors

I Communicate the slot number with the hypervisor

I Implement API to (dis-)establish device interrupt handlers and
mask/unmask associated event ports.

int xen intr establish(evtchn port t,

xen intr handle t *, void (*handler)(void *),

void *arg, char *name);

int xen intr disestablish(xen intr handle t);

void xen intr mask(xen intr handle t);

int xen intr unmask(xen intr handle t);

Interrupts

I Allocate an IDT slot

I Prepare interrupt, resume and recurse vectors

I Communicate the slot number with the hypervisor

I Implement API to (dis-)establish device interrupt handlers and
mask/unmask associated event ports.

I Implement events fan out

Xintr xen upcall(xen intr()):

while(pending events?)

xi = xen lookup intsrc(event bitmask)

xi->xi handler(xi->xi arg)

Almost there: XenStore

I Shared ring with a producer/consumer interface

Almost there: XenStore

I Shared ring with a producer/consumer interface

I Driven by interrupts

Almost there: XenStore

I Shared ring with a producer/consumer interface

I Driven by interrupts

I Exchanges ASCII NUL-terminated strings

Almost there: XenStore

I Shared ring with a producer/consumer interface

I Driven by interrupts

I Exchanges ASCII NUL-terminated strings

I Exposes a hierarchical filesystem-like structure

Almost there: XenStore

I Shared ring with a producer/consumer interface

I Driven by interrupts

I Exchanges ASCII NUL-terminated strings

I Exposes a hierarchical filesystem-like structure

device/

device/vif

device/vif/0

device/vif/0/mac = ‘‘06:b1:98:b1:2c:6b’’

device/vif/0/backend =

‘‘/local/domain/0/backend/vif/569/0’’

Almost there: XenStore

References to other parts of the tree, for example, the backend
/local/domain/0/backend/vif/569/0:

domain handle uuid

script state frontend

mac online frontend-id

type feature-sg feature-gso-tcpv4

feature-rx-copy feature-rx-flip hotplug-status

Almost there: Device discovery and attachment

Enter Netfront

...or not!

Enter Netfront

Grant Tables are required to implement receive and transmit
rings.

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Producer

Consumer

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Producer

Consumer

Buffer 1

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Producer

Consumer

Buffer 1

Buffer 2

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Producer

Consumer

Buffer 1

Buffer 2

Buffer 3

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5Producer

Consumer

Buffer 3

Buffer 4

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Consumer

Buffer 3

Buffer 4

Producer

Producer

Buffer 5

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Consumer

Buffer 3

Buffer 4

Producer

Buffer 5

Consumer

What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Producer

Consumer

What’s in a ring?

bus dma(9)

Since its inception, bus dma(9) interface has unified different
approaches to DMA memory management across different
architectures.

bus dma(9): Preparing a transfer

I bus dmamap create to specify DMA memory layout

struct bus dmamap {

...

void * dm cookie;

bus size t dm mapsize;

int dm nsegs;

bus dmamap segment t dm segs[1];

};

typedef struct bus dmamap segment {

bus addr t ds addr;

bus size t ds len;

...

} bus dmamap segment t;

bus dma(9): Preparing a transfer

I bus dmamap create to specify DMA memory layout

I bus dmamem alloc to allocate physical memory

bus dma(9): Preparing a transfer

I bus dmamap create to specify DMA memory layout

I bus dmamem alloc to allocate physical memory

I bus dmamem map to map it into the KVA

An example of buffer spanning multiple pages

bus dma(9): Preparing a transfer

I bus dmamap create to specify DMA memory layout

I bus dmamem alloc to allocate physical memory

I bus dmamem map to map it into the KVA

I bus dmamap load to connect allocated memory to the layout

Buffer loaded into the segment map

bus dma(9): Preparing a transfer

I bus dmamap create to specify DMA memory layout

I bus dmamem alloc to allocate physical memory

I bus dmamem map to map it into the KVA

I bus dmamap load to connect allocated memory to the layout

I signal the other side to start the DMA transfer

bus dma(9): Transfer completion

I bus dmamap unload to disconnect the memory

bus dma(9): Transfer completion

I bus dmamap unload to disconnect the memory

I bus dmamem unmap to unmap the memory from the KVA

bus dma(9): Transfer completion

I bus dmamap unload to disconnect the memory

I bus dmamem unmap to unmap the memory from the KVA

I bus dmamem free to give the memory back to the system

bus dma(9): Transfer completion

I bus dmamap unload to disconnect the memory

I bus dmamem unmap to unmap the memory from the KVA

I bus dmamem free to give the memory back to the system

I bus dmamap destroy to destroy the DMA layout

Netfront RX ring

Consists of a 64 byte header and a power-of-2 number of 8
byte descriptors that fit in one page of memory.

#define XNF RX DESC 256

struct xnf rx ring {

uint32 t rxr prod;

uint32 t rxr prod event;

uint32 t rxr cons;

uint32 t rxr cons event;

uint32 t rxr reserved[12];

union xnf rx desc rxr desc[XNF RX DESC];

} packed;

Netfront RX ring

Each descriptor can be a “request” (when announced to the
backend) or a “response” (when receive is completed):

union xnf rx desc {

struct xnf rx req rxd req;

struct xnf rx rsp rxd rsp;

} packed;

Netfront RX ring

Descriptor contains a reference (rxq ref) of a page sized
memory buffer:

struct xnf rx req {

uint16 t rxq id;

uint16 t rxq pad;

uint32 t rxq ref;

} packed;

bus dma(9) usage for the Netfront RX ring

Create a shared page of memory for the ring data:

I bus dmamap create a single entry segment map

bus dma(9) usage for the Netfront RX ring

Create a shared page of memory for the ring data:

I bus dmamap create a single entry segment map

I bus dmamem alloc a single page of memory for descriptors

bus dma(9) usage for the Netfront RX ring

Create a shared page of memory for the ring data:

I bus dmamap create a single entry segment map

I bus dmamem alloc a single page of memory for descriptors

I bus dmamem map the page and obtain a VA

bus dma(9) usage for the Netfront RX ring

Create a shared page of memory for the ring data:

I bus dmamap create a single entry segment map

I bus dmamem alloc a single page of memory for descriptors

I bus dmamem map the page and obtain a VA

I bus dmamap load the page into the segment map

bus dma(9) usage for the Netfront RX ring

Now we can communicate the location of this page with a
backend, but first we need to create packet maps for each
descriptor (256 in total) so that we can connect memory
buffers (mbuf clusters) with references in the descriptor.

We don’t need to allocate memory for buffers since they’re
coming from the mbuf cluster pool.

bus dma(9) usage for the Netfront RX ring

Whenever we need to put the cluster on the ring we just need
to perform a bus dmamap load operation on an associated
DMA map and then set the descriptor reference to the value
stored in the DMA map segment...

Right?

bus dma(9) usage for the Netfront RX ring

Whenever we need to put the cluster on the ring we just need
to perform a bus dmamap load operation on an associated
DMA map and then set the descriptor reference to the value
stored in the DMA map segment...

Right? Wrong!

RX and TX descriptors use references, not physical addresses!

Grant Table reference

Grant Table entry

Grant Table entry version 1 contains a frame number, flags
(including permissions) and a domain number to which the
access to the frame is provided.

Grant Table entry

Grant Table entry version 1 contains a frame number, flags
(including permissions) and a domain number to which the
access to the frame is provided.

If only we could add a translation layer to the bus dma(9)
interface to convert between physical address and a frame
number.

bus dma(9) and Grant Tables

Luckily bus dma(9) interface allows us to use custom methods:

struct bus dmamap tag xen bus dmamap tag = {

NULL, // <-- another cookie

xen bus dmamap create, xen bus dmamap destroy,

xen bus dmamap load, xen bus dmamap load mbuf,

NULL, NULL, xen bus dmamap unload,

xen bus dmamap sync, bus dmamem alloc,

NULL, bus dmamem free,

bus dmamem map, bus dmamem unmap,

};

Xen bus dma(9) interface

After creation of the DMA segment map structure via
bus dmamap create, we can create an additional array for
the purpose of mapping Grant Table references to physical
addresses of memory segments loaded via bus dmamap load

and set it to be a DMA map cookie!

Xen bus dma(9) interface

After creation of the DMA segment map structure via
bus dmamap create, we can create an additional array for
the purpose of mapping Grant Table references to physical
addresses of memory segments loaded via bus dmamap load

and set it to be a DMA map cookie!

We have to preallocate Grant Table references at this point so
that we can perform bus dmamap load and
bus dmamap unload sequences fast. Since we create DMA
maps in advance, xen grant table alloc can take time to
increase the number of Grant Table pages if we’re running low
on available references.

Xen bus dma(9) interface

When we’re ready to put the buffer on the ring we call
bus dmamap load that populates the DMA map segment
array with physical addresses of buffer segments.

Xen bus dma(9) interface

When we’re ready to put the buffer on the ring we call
bus dmamap load that populates the DMA map segment
array with physical addresses of buffer segments.

Once it’s done we can punch those addresses into Grant Table
entries that we have preallocated and set appropriate
permission flags via xen grant table enter.

Xen bus dma(9) interface

When we’re ready to put the buffer on the ring we call
bus dmamap load that populates the DMA map segment
array with physical addresses of buffer segments.

Once it’s done we can punch those addresses into Grant Table
entries that we have preallocated and set appropriate
permission flags via xen grant table enter.

We record physical addresses in our reference mapping array
and swap values in the DMA map segment array to Grant
Table references. This allows the Netfront driver to simply use
these values when setting up ring descriptors.

Xen bus dma(9) interface

During bus dmamap unload we perform the same operations
backwards: xen grant table remove clears the Grant Table
entry, we swap physical addresses back and call into the
system to finish unloading the map.

If we wish to destroy the map, bus dmamap destroy will
deallocate Grant Table entries via xen grant table free and
then destroy the map itself.

Announcing Netfront rings

In order to announce locations of RX and TX rings, Netfront
driver needs to set a few properties in its “device” subtree via
XenStore API.

Announcing Netfront rings

In order to announce locations of RX and TX rings, Netfront
driver needs to set a few properties in its “device” subtree via
XenStore API.

A Grant Table reference for the RX ring data needs to be
converted to an ASCII string and set as a value for the
“rx-ring-ref” property.

Announcing Netfront rings

In order to announce locations of RX and TX rings, Netfront
driver needs to set a few properties in its “device” subtree via
XenStore API.

A Grant Table reference for the RX ring data needs to be
converted to an ASCII string and set as a value for the
“rx-ring-ref” property.

TX ring location is identified by the backend with the
“tx-ring-ref” property.

Operation in the Amazon EC2

Amazon Machine Image (AMI) is required to contain some
knowledge of the EC2 cloud to be able to obtain an SSH key
during the instance creation.

Operation in the Amazon EC2

Amazon Machine Image (AMI) is required to contain some
knowledge of the EC2 cloud to be able to obtain an SSH key
during the instance creation.

Since the information is provided by the EC2 via an internal
HTTP server, it’s required that the first networking interface
comes up on startup with a DHCP configuration and fetches
the SSH key.

Operation in the Amazon EC2

Amazon Machine Image (AMI) is required to contain some
knowledge of the EC2 cloud to be able to obtain an SSH key
during the instance creation.

Since the information is provided by the EC2 via an internal
HTTP server, it’s required that the first networking interface
comes up on startup with a DHCP configuration and fetches
the SSH key.

This procedure is called “cloud-init” and obviously requires
some additions and adjustments to the OpenBSD boot
procedure.

Operation in the Amazon EC2

I Public images of 5.8-current snapshots were provided regularly
by Reyk Flöter (reyk@) and Antoine Jacoutot (ajacoutot@) in
several “availability zones”.

Operation in the Amazon EC2

I Public images of 5.8-current snapshots were provided regularly
by Reyk Flöter (reyk@) and Antoine Jacoutot (ajacoutot@) in
several “availability zones”.

I Antoine has created a few scripts to automate creation and
upload of OpenBSD images to the EC2 using ec2-api-tools as
well as perform minimal “cloud-init” on the VM itself.

Operation in the Amazon EC2

I Public images of 5.8-current snapshots were provided regularly
by Reyk Flöter (reyk@) and Antoine Jacoutot (ajacoutot@) in
several “availability zones”.

I Antoine has created a few scripts to automate creation and
upload of OpenBSD images to the EC2 using ec2-api-tools as
well as perform minimal “cloud-init” on the VM itself.

I We would like to provide an OpenBSD 5.9-release image in
the Amazon Marketplace.

Future work

I Support for the PVCLOCK timecounter

Future work

I Support for the PVCLOCK timecounter

I Support for suspend and resume

Future work

I Support for the PVCLOCK timecounter

I Support for suspend and resume

I Driver for the Diskfront interface

Future work

I Support for the PVCLOCK timecounter

I Support for suspend and resume

I Driver for the Diskfront interface

I Support for the PCI pass-through

Thank you!

I’d like to thank Reyk Flöter and Esdenera Networks GmbH for
coming up with this amazing project, support and letting me
have a freedom in technical decisions.

I’d also like to thank OpenBSD developers, especially Reyk
Flöter, Mark Kettenis, Martin Pieuchot, Antoine Jacoutot,
Mike Larkin and Theo de Raadt for productive discussions and
code reviews.

Huge thanks to all our users who took their time to test,
report bugs, submit patches and encourage development.

Special thanks to Wei Liu and Roger Pau Monné from Citrix
for being open to questions and providing valuable feedback as
well as other present and past contributors to the FreeBSD
port. Without it, this work might not have been possible.

Question Time

Questions?

Thank you for attending the talk!

ありがとうございました！

