
A new implementation of LaTeX’stabular and
array environment∗

Frank Mittelbach David Carlisle†

Printed March 10, 2004

Abstract

This article describes an extended implementation of the LaTeXar-
ray– and tabular–environments. The special merits of this implementa-
tion are further options to format columns and the fact that fragile LaTeX–
commands don’t have to be\protect’ed any more within those environ-
ments.

The major part of the code for this package dates back to 1988—so does
some of its documentation.

1 Introduction

This new implementation of thearray– and tabular–environments is part of a
larger project in which we are trying to improve the LaTeX-code in some aspects
and to make LaTeX even easier to handle.

The reader should be familiar with the general structure of the environments
mentioned above. Further information can be found in [3] and [1]. The additional
options which can be used in the preamble as well as those which now have a
slightly different meaning are described in table 1.

Additionally we introduce a new parameter called\extrarowheight. If it\extrarowheight

takes a positive length, the value of the parameter is added to the normal height of
every row of the table, while the depth will remain the same. This is important for
tables with horizontal lines because those lines normally touch the capital letters.
For example, we used\setlength{\extrarowheight}{1pt} in table 1.

We will discuss a few examples using the new preamble options before deal-
ing with the implementation.

• If you want to use a special font (for example\bfseries) in a flushed left
column, this can be done with>{\bfseries}l. You do not have to begin
every entry of the column with\bfseries any more.

• In columns which have been generated withp, m or b, the default value of
\parindent is 0pt. This can be changed with
>{\setlength{\parindent}{1cm}}p.

∗This file has version number v2.4a, last revised 2003/12/17.
†David kindly agreed on the inclusion of the\newcolumntype implementation, formerly in

newarray.sty into this package

1

Unchanged options
l Left adjusted column.
c Centered adjusted column.
r Right adjusted column.

p{width} Equivalent to\parbox[t]{width}.
@{decl.} Suppresses inter-column space and insertsdecl. instead.

New options

m{width}
Defines a column of widthwidth. Every entry will be cen-
tered in proportion to the rest of the line. It is somewhat
like \parbox{width}.

b{width} Coincides with\parbox[b]{width}.

>{decl.} Can be used before anl, r, c, p, m or ab option. It inserts
decl. directly in front of the entry of the column.

<{decl.} Can be used after anl, r, c, p{..}, m{..} or a b{..}
option. It insertsdecl. right after the entry of the column.

|
Inserts a vertical line. The distance between two columns
will be enlarged by the width of the line in contrast to the
original definition of LaTeX.

!{decl.}

Can be used anywhere and corresponds with the| option.
The difference is thatdecl. is inserted instead of a vertical
line, so this option doesn’t suppress the normally inserted
space between columns in contrast to@{...}.

Table 1: The preamble options.

• The >– and <–options were originally developed for the following ap-
plication: >{$}c<{$} generates a column in math mode in atabular–
environment. If you use this type of a preamble in anarray–environment,
you get a column in LR mode because the additional $’s cancel the existing
$’s.

• One can also think of more complex applications. A problem which has
been mentioned several times in TeXhax can be solved with>{\centerdots}c
<{\endcenterdots}. To center decimals at their decimal points you
(only?) have to define the following macros:

{\catcode‘\.\active\gdef.{\egroup\setbox2\hbox\bgroup}}
\def\centerdots{\catcode‘\.\active\setbox0\hbox\bgroup}
\def\endcenterdots{\egroup\ifvoid2 \setbox2\hbox{0}\fi

\ifdim \wd0>\wd2 \setbox2\hbox to\wd0{\unhbox2\hfill}\else
\setbox0\hbox to\wd2{\hfill\unhbox0}\fi

\catcode‘\.12 \box0.\box2}

Warning: The code is bad, it doesn’t work with more than one dot in a
cell and doesn’t work when the tabular is used in the argument of some
other command. A much better version is provided in thedcolumn.sty by
David Carlisle.

• Usingc!{\hspace{1cm}}c you get space between two columns which is

2

enlarged by one centimeter, whilec@{\hspace{1cm}}c gives you exactly
one centimeter space between two columns.

1.1 Defining new column specifiers

Whilst it is handy to be able to type\newcolumntype

>{〈some declarations〉}{c}<{〈some more declarations〉}

if you have a one-off column in a table, it is rather inconvenient if you often
use columns of this form. The new version allows you to define a new column
specifier, sayx, which will expand to the primitives column specifiers.1 Thus we
may define

\newcolumntype{x}{>{〈some declarations〉}{c}<{〈some more declarations〉}}

One can then use thex column specifier in the preamble arguments of allarray
or tabular environments in which you want columns of this form.

It is common to need math-mode and LR-mode columns in the same align-
ment. If we define:

\newcolumntype{C}{>{$}c<{$}}
\newcolumntype{L}{>{$}l<{$}}
\newcolumntype{R}{>{$}r<{$}}

Then we can useC to get centred LR-mode in anarray, or centred math-mode in
atabular.

The example given above for ‘centred decimal points’ could be assigned to a
d specifier with the following command.

\newcolumntype{d}{>{\centerdots}c<{\endcenterdots}}

The above solution always centres the dot in the column. This does not look
too good if the column consists of large numbers, but to only a few decimal places.
An alternative definition of ad column is

\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}

where the appropriate macros in this case are:2

\def\coldot{.}% Or if you prefer, \def\coldot{\cdot}
{\catcode‘\.=\active

\gdef.{$\egroup\setbox2=\hbox to \dimen0 \bgroup$\coldot}}
\def\rightdots#1{%

\setbox0=\hbox{1}\dimen0=#1\wd0
\setbox0=\hbox{\coldot}\advance\dimen0 \wd0
\setbox2=\hbox to \dimen0 {}%
\setbox0=\hbox\bgroup\mathcode‘\.="8000 $}

\def\endrightdots{$\hfil\egroup\box0\box2}

1This command was named\newcolumn in thenewarray.sty. At the moment\newcolumn
is still supported (but gives a warning). In later releases it will vanish.

2The packagedcolumn.sty contains more robust macros based on these ideas.

3

Note that\newcolumntype takes the same optional argument as\newcommand
which declares the number of arguments of the column specifier being defined.
Now we can specifyd{2} in our preamble for a column of figures to at most two
decimal places.

A rather different use of the\newcolumntype system takes advantage of the
fact that the replacement text in the\newcolumntype command may refer to
more than one column. Suppose that a document contains a lot oftabular en-
vironments that require the same preamble, but you wish to experiment with dif-
ferent preambles. Lamport’s original definition allowed you to do the following
(although it was probably a mis-use of the system).

\newcommand{\X}{clr}
\begin{tabular}{\X} . . .

array.sty takes great carenot to expand the preamble, and so the above does
not work with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}
\begin{tabular}{X} . . .

The replacement text in a\newcolumntype command may refer to any of
the primitives ofarray.sty see table 1 on page 2, or to any new letters defined
in other\newcolumntype commands.

A list of all the currently active\newcolumntype definitions is sent to the\showcols

terminal and log file if the\showcols command is given.

1.2 Special variations of\hline

The family of tabular environments allows vertical positioning with respect to
the baseline of the text in which the environment appears. By default the environ-
ment appears centered, but this can be changed to align with the first or last line
in the environment by supplying at or b value to the optional position argument.
However, this does not work when the first or last element in the environment is a
\hline command—in that case the environment is aligned at the horizontal rule.

Here is an example:

Tables with no
hline
commands
used

versus

tables
with some
hline
commands

used.

Tables
\begin{tabular}[t]{l}
with no\\ hline \\ commands \\ used

\end{tabular} versus tables
\begin{tabular}[t]{|l|}
\hline
with some \\ hline \\ commands \\

\hline
\end{tabular} used.

Using\firsthline and\lasthline will cure the problem, and the tables\firsthline

\lasthline will align properly as long as their first or last line does not contain extremely
large objects.

4

Tables with no
line
commands
used

versus

tables with some
line
commands

used.

Tables
\begin{tabular}[t]{l}

with no\\ line \\ commands \\ used
\end{tabular} versus tables
\begin{tabular}[t]{|l|}
\firsthline
with some \\ line \\ commands \\

\lasthline
\end{tabular} used.

The implementation of these two commands contains an extra dimension, which\extratabsurround

is called\extratabsurround, to add some additional space at the top and the
bottom of such an environment. This is useful if such tables are nested.

2 Final Comments

2.1 Handling of rules

There are two possible approaches to the handling of horizontal and vertical rules
in tables:

1. rules can be placed into the available space without enlarging the table, or

2. rules can be placed between columns or rows thereby enlarging the table.

array.sty implements the second possibility while the default implementation
in the LaTeX kernel implements the first concept. Both concepts have their merrits
but one has to be aware of the individual implications.

• With standard LaTeX adding rules to a table will not affect the width or
height of the table (unless double rules are used), e.g., changing a preamble
from lll to l|l|l does not affect the document other than adding rules to
the table. In contrast, witharray.sty a table that just fit the\textwidth
might now produce an overfull box.

• With standard LaTeX modifying the width of rules could result in ugly
looking tables because without adjusting the\tabcolsep, etc. the space
between rule and column could get too small (or too large). In fact even
overprinting of text is possible. In contrast, witharray.sty modifying
any such length usually works well as the actual visual white space (from
\tabcolsep, etc.) does not depend on the width of the rules.

• With standard LaTeX boxed tabulars actually have strange corners because
the horizontal rules end in the middle of the vertical ones. This looks very
unpleasant when a large\arrayrulewidth is chosen. In that case a simple
table like

\setlength{\arrayrulewidth}{5pt}
\begin{tabular}{|l|}

\hline A \\ \hline
\end{tabular}

will produce something like

A instead of A

5

2.2 Comparisons with older versions ofarray.sty

There are some differences in the way version 2.1 treats incorrect input, even if
the source file does not appear to use any of the extra features of the new version.

• A preamble of the form{wx*{0}{abc}yz} was treated by versions prior
to 2.1 as{wx}. Version 2.1 treats it as{wxyz}

• An incorrect positional argument such as[Q] was treated as[c] by
array.sty, but is now treated as[t].

• A preamble such as{cc*{2}} with an error in a∗-form will generate dif-
ferent errors in the new version. In both cases the error message is not
particularly helpful to the casual user.

• Repeated< or > constructions generated an error in earlier versions, but are
now allowed in this package.>{〈decs1〉}>{〈decs2〉} is treated the same as
>{〈decs2〉〈decs1〉}.

• The \extracolsep command does not work with the old versions of
array.sty, see the comments inarray.bug. With version 2.1\extracolsep
may again be used in@-expressions as in standard LaTeX, and also in!-
expressions (but see the note below).

2.3 Bugs and Features

• Error messages generated when parsing the column specification refer to
the preamble argumentafter it has been re-written by the\newcolumntype
system, not to the preamble entered by the user. This seems inevitable with
any system based on pre-processing and so is classed as afeature.

• The treatment of multiple< or> declarations may seem strange at first. Ear-
lier implementations treated>{〈decs1〉}>{〈decs2〉} the same as>{〈decs1〉〈decs2〉}.
However this did not give the user the opportunity of overriding the set-
tings of a \newcolumntype defined using these declarations. For ex-
ample, suppose in anarray environment we use aC column defined as
above. TheC specifies a centred text column, however>{\bfseries}C,
which re-writes to>{\bfseries}>{$}c<{$} would not specify a bold
column as might be expected, as the preamble would essentially expand
to \hfil\bfseries#$ $\hfil and so the column entry would not be
in the scope of the\bfseries ! The present version switches the order of
repeated declarations, and so the above example now produces a preamble
of the form\hfil$ $\bfseries#$ $\hfil, and the dollars cancel each
other out without limiting the scope of the\bfseries.

• The use of\extracolsep has been subject to the following two restric-
tions. There must be at most one\extracolsep command per@, or !
expression and the command must be directly entered into the@ expression,
not as part of a macro definition. Thus\newcommand{\ef}{\extracolsep{\fill}}
. . .@{\ef} does not work with this package. However you can use some-
thing like\newcolumntype{e}{@{\extracolsep{\fill}} instead.

6

• As noted by the LaTeX book, for the purpose of\multicolumn each col-
umn with the exception of the first one consists of the entry and thefollow-
ing inter-column material. This means that in a tabular with the preamble
|l|l|l|l| input such as\multicolumn{2}{|c|} in anything other than
the first column is incorrect.

In the standard array/tabular implementation this error is not so noticeable
as that version contains negative spacing so that each| takes up no horizon-
tal space. But since in this package the vertical lines take up their natural
width one sees two lines if two are specified.

References

[1] M. GOOSSENS, F. MITTELBACH and A. SAMARIN . The LaTeX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[2] D. E. KNUTH. The TeXbook (Computers & Typesetting Volume A).
Addison-Wesley, Reading, Massachusetts, 1986.

[3] L. L AMPORT. LaTeX — A Document Preparation System. Addison-Wesley,
Reading, Massachusetts, 1986.

7

