The datatool Bundle: Databases and Data
Manipulation

Nicola L.C. Talbot

Dickimaw Books
dickimaw—books.com

version 3.4.1 2025-04-25

! (i] \
[This document is also available as HTML (datatool—-user.html).

The datatool bundle includes the following documentation:

User Manual for datatool (datatool—-user.pdf)

This document is the main user guide for the datatool package.

Documented Code for datatool (datatool—code.pdf)

Advanced users wishing to know more about the inner workings of all the packages provided
in the datatool bundle should read “Documented Code for datatool v3.4.1”.

CHANGES
Change log.

README .md

Package summary.

DEPENDS.txt

List of all packages unconditionally required by datatool (hard dependencies). Other
unlisted packages may be required under certain circumstances. For help on installing
packages see, for example, How do I update my TgX distribution?! or (for Linux users)
Updating TgX on Linux.?

ltex.stackexchange.com/questions/55437
’tex.stackexchange.com/questions/14925

https://www.dickimaw-books.com/
datatool-user.html
datatool-code.pdf
CHANGES
README.md
DEPENDS.txt
https://tex.stackexchange.com/questions/55437
https://tex.stackexchange.com/questions/14925
http://tex.stackexchange.com/questions/55437
http://tex.stackexchange.com/questions/14925

Related resources:
« datatool FAQ?
* Bug tracker”

* performance gallery’

datatool-regions®

datatool-english’

e datatooltk?®
[i

k—d
The datatool bundle is provided to help perform repetitive commands, such as mail merging,

but since TEX is designed as a typesetting language, don’t expect this bundle to perform as
efficiently as custom database systems or a dedicated mathematical or scripting language.
If the provided packages take a frustratingly long time to compile your document,
use another language to perform your calculations or data manipulation and save
the results in a file that can be input into your document. For large amounts of data
that need to be sorted or filtered or joined, consider storing your data in an SQL database
and use datatooltk toimport the data, using SQL syntax to filter, sort and otherwise
manipulate the values.

3dickimaw-books.com/faq.php?category=datatool
4dickimaw-books.com/bugtracker.php?category=datatool
’dickimaw-books.com/gallery/#performance
®ctan.org/pkg/datatool-regions
’ctan.org/pkg/datatool-english
8ctan.org/pkg/datatooltk

https://www.dickimaw-books.com/faq.php?category=datatool
https://www.dickimaw-books.com/bugtracker.php?category=datatool
https://www.dickimaw-books.com/gallery/#performance
https://ctan.org/pkg/datatool-regions
https://ctan.org/pkg/datatool-english
https://ctan.org/pkg/datatooltk
https://www.dickimaw-books.com/faq.php?category=datatool
https://www.dickimaw-books.com/bugtracker.php?category=datatool
https://www.dickimaw-books.com/gallery/#performance
https://ctan.org/pkg/datatool-regions
https://ctan.org/pkg/datatool-english
https://ctan.org/pkg/datatooltk

Contents

List of Examples X

. User Guide 1
1. Introduction 2
I.1. Rollback e 4
12, BIEX3 . . 4
1.2.1. Regular Expressions, 4

1.2.2. Comma-Separated Lists 5

1.2.3. Calculations 6

2. Base Commands (datatool—base package) 8
2.1. datatool-base Options 8
2.2, DataTypes o i i e e 11
2.2.1. NumericOptions i i it i e 13
2.2.2. Parsing Locale-Formatted Numbers and Currency Values 15
2.23. Datum Commands 16
2.2.4. Datum Items (Advanced), 20

2.3. Localisation e e e 27
23.1. Encoding 31
232, Numerical e 42
2.3.3. Lexicographical 46
2.3.4. Adding New Region Support 53
2.3.5. Adding New Language Support 54

24. Conditionals 62
2.4.1. If-Else or Case Conditionals 62
2.4.2. ifthenconditionals 89

2.5. Decimal Functions 97
2.5.1. PlainNumbers 98
2.5.2. Formatted Numbers 108

2.6 CUITENCY v ot e e e e e 114
27. Datesand Times e e e e 131
2.8. SHINGS e 138
2.8.1. Substitution and String Splittingo 138
2.8.2. Inmitial Letters 140
2.8.3. Advanced Utility Commands 146

3.1.

Contents

2.9. Comma-Separated Lists 149
2.9.1. ListSettings 150
2.9.2. Formatting Lists. L L Lo 151
29.3. ListElements 153
29.4. AddingtoLists 155
295, SortingLists. 156

Databases (datatool package) 176
Options e e 177

3.2. Example Databases e 182
3.2.1. Student Marks (CSV) 182
3.2.2. StudentScores 184
323, CuStomers ot e e 187
324, ProductList 191
325, Priceist 194
3.2.6. Balance Sheet (CSV) 195
32.7. Fruit (CSV) e 196
32.8. Profits (CSV) 197
3.2.9. Timeto Growth (CSV), 199
3.2.10. Time to Growth (TSV) 201
3.2.11. Generic X/Y Data (CSV) 203

33. ActionCommand e e 205
33.1. DefinedActions 207
3.3.2. Action Settings e e 224

34. CreatingaNew Database 231

3.5. Deleting or Clearinga Database 235

3.6. Database Conditionals and Metadata 236

3.7. Displaying the Contents of a Database 241
37.1. DisplayOptions e 242
3.7.2. Associated Commands Lo 252
377.3. Examples 260

3.8. Iterating Through a Database 285
3.8.1. TIterating Over Rows with \DTLmapdata 285
3.8.2. Tterating Over Rows with \DTLforeach 293

3.9. Loops and Conditionals with tabular-like Environments 303

3.10. Null Values o 310
3.10.1. Examples 311
3.10.2. Advanced Commands 315

3.11. Special Values e 317

3.12. Editing Database Rows o 318

3.13. Arithmetical Computations on Database Entries 321

3.14. Sortinga Database e 325
3.14.1. Sorting with \DTLsortdata 325
3.14.2. Sorting with \dtlsort 334

i

Contents

3.15. Database Files (I/O) e 336
3.5.1. FileFormats 336
3152, T/O Settings oL 346
3.15.3. Loading a Database from an External File 360
3.15.4. Saving a Database to an External File 364
3.15.5. VO Examples e 365

3.16. Advanced Database Commands, 369
3.16.1. Operatingon CurrentRow 371
3.16.2. Advanced Iteration, 374

. Pie Charts (datapie package) 377

4.1. Package Options 380

4.2, Settings e e 380
42.1. PieChartData, 381
422. PieChartStyle 381
423. PieChartLabels 383

43. PieChartExamples o 385
4.3.1. Pie Chart Filtering Examples 386
4.3.2. Pie Chart Styles Examples 387
4.3.3. Pie Chart Labels Examples 389
4.3.4. Pie Chart Placeholder Example 391
4.3.5. Pie Chart Label Formatting Example 391
4.3.6. Pie Chart Colour Example 393

4.4. Pie Chart Variables 394

4.5. Pie Chart Label Formatting 395

4.6. PieChartColours e 396

47. PieChart Hooks e 397

. Bar Charts (databar package) 399

5.1. Package Options L 406

5.2 Settings e 406
52.1. BarChartData 408
5.22. BarChartStyle 409
5.2.3. BarChartLabels 414
5.24. BarChart AXes i i i e e e 416

5.3. BarChart Examples 420
5.3.1. Labels oL 420
532, Filtering 423
5.3.3. Lower Label Alignment 424
5.3.4. Upper Label Alignment 427
5.3.5. Multi Bar ChartLabels 427
53.60 AXES . . .o e 429
53.7. BarColours e 431
5.3.8. Hooks e 436

1l

Contents

5.4. Bar Chart Associated Commands
54010 AXES. . . . e
542, Textual
543. BarColours
54.4. Hooks

. Scatter and Line Plots (dataplot package)

6.1. PlotSettings e
6.1.1. Database Content
6.1.2. PlotSize
6.1.3. Markerand Line Styles,
6.1.4. AXES. e e

6.2. PlotExamples e
6.2.1. BasicExamples
6.2.2. LegendExamples,
6.2.3. PlotStyle Examples L.
6.2.4. PlotAxesExamples o
6.2.5. Beginand EndHooks L.

6.3. Supplementary Plot Commands
6.3.1. General Functions and Variables
6.3.2. Stream Functions and Variables
6.3.3. Post-Stream Hooks

6.4. Conditionals e
6.4.1. Lengths e
6.4.2. Counters e e
6.4.3. MacCros e

6.5. Adding to a Plot Stream at the StartorEnd

. Converting a BisTEX database into a datatool database (databib package)
7.1. Package Options
7.2. BBIEX: AnOverview e
7.2.1. BmeIgXdatabase
7.2.2. ColumnKeys (Fields)
7.3. Loading a databib databaseo
7.4. The databib Database Construction Commands
7.5. Sorting adatabibdatabase Lo L
7.6. Displaying a databib database L L.
7.7. Changing the bibliography style
7.7.1. Modifying an existingstyle oL
7.8. Iterating through a databib database
7.9. Multiple Bibliographies o
7.10. Exampleso L
7.10.1. Sortby Author
7.10.2. Tabulate BibData

iv

Contents

7.10.3. Publications Since a Given Year
7.10.4. Five Most Recent Publications
7.10.5. Compact Bibliography
7.10.6. Highlight a Given Author
7.10.7. Separate Bib Types
7.10.8. Multiple Bibliographies
7.1, Localisation e e e e e e e

. Creating an index, glossary or list of abbreviations (datagidx package)

.1, OptioNS o e e e e e e
8.1.1. Package Options
8.1.2. Post-Package Options

8.2. Defining Index/Glossary Databases

8.3. Loading Data Created by datatooltk

8.4. DefiningTerms e
8.4.1. Markup Commands forTerms
8.4.2. Commands to Assist Label Creation
8.4.3. Commands to Assist Sorting

8.5. ReferencingTerms
8.5.1. Shortcut Commands
8.5.2. Locations e e e

8.6. AddingExtraFields

8.7. Abbreviations
8.7.1. Using Abbreviations,
8.7.2. Unsetting and Resetting Abbreviations

8.8. Displaying the Index or Glossary
8.8.1. Hooks and Associated Commands
8.8.2. Index or Glossary Styles
8.8.3. Sorting the Index or Glossary Database

8.9. Supplementary Commands,
8.9.1. Conditionalsand Loops
8.9.2. NewTerms i it
89.3. Styles

8.10. Database Structures L L
8.10.1. The Catalogue Database
8.10.2. The Term Databases

.11. Examples e

Referencing People (person package)

9.1. Package Options L. e
9.2. Other Options o 0 it e e
9.3. Defining and Undefining People
9.4. Genders e e

Contents

9.5. Displaying Information o Lo
9.5.1. Accessing Individual Information
9.52. ListPeople

9.6. Examples e
9.6.1. MailMerging
9.6.2. Orderof Service

9.7. Advanced Commands
9.7.1. Conditionals
9.7.2. TIterating Through Defined People
90.7.3. Localisation e e
0.7.4. HOOKS e

10. Acknowledgements

Summaries and Index

Symbols

Glossary

Command Summary

Command Summary: A
Command Summary: C e
Command Summary: D
Command Summary: Eo
Command Summary: F o
Command Summary: G
Command Summary: H
Command Summary: I
Command Summary: L
Command Summary: M.
Command Summary: N L
Command Summary: P
Command Summary: R
Command Summary: S
Command Summary: T
Command Summary: U L
Command Summary: V L
Command Summary: X e e
Command Summary: Y e

Environment Summary

vi

664
665
666

668
668
669
670
776
777
778
782
782
785
801
801
802
817
817
819
820
821
821
822

824

Contents

Package Option Summary 825

Index 829

vii

List of Figures

viil

List of Tables

3.1. Mappings Used with csv—content=1iteral Before Re-Scanning . . .

9.1. Synonyms provided by the shortcuts packageoption

iX

351

List of Examples

If an example shows the icon Q® then the source code is embedded in the PDF as an attachment.
If your PDF viewer supports attachments, you can extract the self-contained example file to
try it out for yourself. Alternatively, you can click on the download icon &= which will try
downloading the example source code from your closest CTAN mirror, but make sure that this
user manual matches the version on CTAN first. You can also try using:

texdoc -1 datatool-user-example(nnn) \

where (nnn) is the example number zero-padded to three digits to find out if the example files are
installed on your device.

1. Regular Expressions with STEX3 5
2. Comma-Separated Lists with ISTEX3 6
3. Performing Calculations with STgX3 7
4. Performing Calculations with LualaTeX 7
5. Datum Control Sequences L. 20
6. Datum Tests for Equality 25
7. Datum Control Sequences to Floating Point Variables 26
8. Localisation Support (en-CA) e 29
9. Localisation Support (fr-CA) Lo 30
10. Icelandic Alphabetico 49
11. DJ-Initial Support e 51
12. Icelandic Sorting and Letter Groups 52
13. TestforInteger Value 65
14. TestforReal Value 66
15. TestforCurrency e 67
16. Testfor Numerical 68
17. Testfor Strings e 68
18. TestforDataType et e e 69
19. Testing if an Element is in a Comma-Separated List 72
20. String Equality Tests 74
21. StringLessThan. 74
22. String Greater Than 75
23. String Between Tests 75
24. Substring Tests e 77
25. PrefixTests L 78

https://www.tug.org/texdoc/

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.
62.
63.
64.
65.
66.
67.
68.

List of Examples

Suffix Tests 80
All Upper/Lower Case Tests 81
Numerical Comparisons (Parsed) 82
Conditionals (13£fp) e 85
Conditionals (1lua) e e 86
Conditionals (fp) e 86
Conditionals (pgfmath) 87
Numerical/String Comparisons 89
Data Type Conditionals for use with ifthen 95
Order Conditionals for use with ifthen 96
Substring Conditionals for use with ifthen 97
Decimal Functions (13fp)o 105
Decimal Functions (1ua) o i e 106
Decimal Functions (fp) 107
Decimal Functions (pgfmath) 109
Formatting and Parsing Currency (No Region) 117
Currency Formats (GBRegion) 120
Currency Formats (GBand I[ERegions) 123
Defininga Currencyo 131
Parsing Datesand Times 136
Parsing Dates and Times and Reformatting 137
String Substitution and Splitting Lo 140
Name or Phrase Initials 144
Word Initial Letter with UTF-8 145
Word Initial Commands 146
CSV List Argument Expansion 150
Formatting CSV Lists 153
Elementsof aCSV List 155
Appending, Prepending and Inserting List Elements 156
Sorting Lists with \dt 1sort1list (Casevs NoCase) 169
Sorting Lists with \dt 1sort1list (Lettervs Word) 169
Sorting Lists with \dt 1sort1ist (comma and parenthetical markers) . . 171
Sorting Lists with \DTLsortwordlist (comma and parenthetical markers)172
Sorting Lists with \dt 1sortlistand UTF-8 173
Sorting Lists with \DTLsortwordlist and UTF-8 and No Localisation

Support e 174
Sorting Lists with \DTLsortwordlist and UTF-8 and Localisation Support 174
Sort Word Hook (Roman Numerals) 175
New Value Expansion 179
Trimming New Values 181
Creating and Displaying a Database with \DTLaction 205
Adding New Columns Using Actions 211
Selectrowaction L 216
Row aggregate actions 222

Xi

69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.

106.

List of Examples

Automatically Formatting Values Calculated by Actions 231
Creating a New Database withalLabel 235
ColumnwithNoValues 241
Display Data with Custom Alignment 261
Display Data in a Table Omitting Columns 262
Display Data in a Table with Named Columns 263
Display Data in a Table with Filtered Rows 264
Referencing Rows from Displayed Data 267
Inserting a Column at the Start of Displayed Data 268
Display Data in a Table with an Extra Column 270
Adjusting the Item Hook to Calculate Totals and Show Negative Numbers in Red 273
Display Two Database Rows Per Tabular Row 274
Display Two Database Rows Per Tabular Row (Top to Bottom) 275
Display Dataina Stripy Table 277
Display Stripy Two Database Rows Per TabularRow 278
Display Two FieldsinOne Column 281
Displaying Data with Calculations, Filtering and Row Highlighting 284
Iterating Over Rows with \DTLmapdata and DTLenvmapdata 287
Iterating Over Rows with \DTLmapdata to Append a Column 293
Display Data in a Table with \DTLforeach. 299
Using \DTLforeach to Display a Stripy Table 300
Displaying Data with Row Numbers Using \DTLforeach 301
Using \DTLforeach to Display Data in a Table with a Running Total Column302
Editing a Database with \DTLforeach 303
Loops and Alignment 310
CSV Data Containing Empty Cells and Missing Final Cells. 312
Constructed Data With Missing (Null) Values 313
Display Data With Missing (Null) Values ShownasaDash 314
Iterating Through Data with Empty or Missing Values 316
EditingaRowof Data 321
Sorting CSV Data Using \DTLsortdata by Organisation, Surname and

Forename With No Replacements 329
Sorting CSV Data Using \DTLsortdata by Organisation, Surname and

Forename With Replacements 330
Sorting Data Using \DTLsortdata With Replacements (Null vs Empty) . 331
Sorting CSV Data Using \DTLsortdata With Language Support 332
Sorting Data Using \DTLsortdata on Age then Surname (Empty or Null

Values) e 332
Sorting Data Using \DTLsortdata on Age then Surname (No Empty Sort

Values) e 333
Sorting Data Using \DTLsortdata by Descending Numeric and Ascending

String Values L 334
Sorting CSV Data Using \dt 1 sort by Organisation, Surname and Forename

With Replacements, 336

xii

107.
108.
109.
110.

111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.

List of Examples

Loading Data With No Parsing 361
Loading Data With No Parsing and Columns Identified as Decimal 362
Loading Data With No Parsing and Columns Identified as Decimal and Currency 362

Loading Data With No Parsing and Columns Identified as Decimal and Currency

with Reformatting oo 363
Loading and Saving Data (Be Careful of Category Codes) 367
Loadinga TSV File, 368
Automatically Reformatting Data While Loadinga CSVfile 369
PieChart e 379
Pie Chart (Action ‘piechart’) 379
Pie Chart (Filtering) 386
Separating Segments from a Pie Chart 388
Separating a Range of Segments froma Pie Chart 389
Separating Individual Consecutive Segments from a Pie Chart 390
Pie Chart (Inner and Outer Labels) 391
Pie Chart (Labels Rotated) 392
Pie Chart (Percentage Rounding) 392
Pie Chart (Changing the Label Format) 393
Pie Chart (Changing and Referencing the Segment Colours) 395
Vertical Bar Chart 402
Vertical Bar Chart (Action ‘barchart’) 403
Horizontal Bar Chart 404
Multi Bar Chart 404
Multi Bar Chart (Action ‘multibar chart’) 405
Bar Chart With Labels 421
Bar Chart With Labels (Action ‘barchart’) 422
Bar Chart (Filtering) 423
Horizontal Bar Chart with Labels (Default Alignment) 425
Horizontal Bar Chart with Labels (lower—-label-style=same) ... 425
Horizontal Bar Chart with Labels (Lower—label—-style=below). .. 426
Horizontal Bar Chart with Labels (Llower—label-style=above). .. 426
Horizontal Bar Chart with Upper Labels Over the Bars (negative upper—

label-offset) e 428
Multi Bar Chart With Group Labels 429
Bar Chart With Axes e 430
Bar Chart With Rotated Tick Labels 432
Bar Chart With a Limited Set of Custom Colours 433
Bar Chart Cycling through the Colour Set 434
Single Colours for Positive and Negative Bars 435
Shaded Bar 436
HookatEveryBar. 437
Every Bar Hook (Filtering) 438
Bar Chart WithalLegend 440
Multi Bar Chart Withalegend 441

Xiil

149.
150.
151.
152.
153.
154.
155.
156.
157.

158.
159.
160.
161.

162.
163.
164.
165.
166.

167.

168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.

List of Examples

Scatter Plot (One Database) 474
Scatter Plot (Two Databases) 474
Scatter Plot (Action) e 476
Scatter Plot (One Database, Two Setsof Data) 477
Scatter Plot (Two Databases, Two Setsof Data) 478
Scatter Plot (Two Databases, Multiple Sets of Data) 479
Scatter Plot With Mismatched X and Y Columns 480
Scatter Plot with Custom Legend Labels (One Database, Two Sets of Data) . . 481

Scatter Plot with Custom and Default Legend Labels (One Database, Two Sets

of Data) e 482
Scatter Plot with an Omitted Legend Label (One Database, Two Sets of Data) . 483
Scatter Plot (Two Databases with Name Map) 485

Scatter Plot with Legend Label Mappings (Two Databases, Multiple Sets of Data)486

Scatter Plot with Legend Label Mappings and Custom formatting (Two Databases,

Multiple Setsof Data) 486
Scatter Plot with Custom Legend Labels (Two Databases, Multiple Sets of Data) 488
Scatter Plot with Shifted Legend (Two Databases, Multiple Sets of Data) . . . 489
Scatter Plot with Custom Legend (Two Databases, Multiple Sets of Data) . . . 490
Line and Scatter Plot (Two Databases) 491
Scatter Plot with Custom Colours and Styles (Two Databases, Multiple Sets of

Data). e e e 492
Scatter Plot with the Same Line Colour for Each Stream in a Given Database

(Two Databases, Multiple Setsof Data) 494
Scatter Plot with Plot Marks Reset (Two Databases, Multiple Sets of Data) . . 495
Setting the PlotBounds 496
Rounding the Tick Labels 497
Changing the Axis Style 498
Grid e 499
Custom Grid Lines 500
Plot Encapsulated inaBox L. 501
Plot Encapsulated in a Box Without Ticks 502
Positive and Negative Axes o e 503
Extendingthe Axes 504
Changing the Tick Label Node Style 505
Side AXeS e e e e e 506
Side-Axes, Extended AxesandBoxed 507
No Side-Axes, Extended Axesand Boxed 508
Redefining the Start and End Hooks 510
Bibliography Sorted by Author, 561
Tabulate BtbData 563
List of Publications Since a Given Year 564
Five Most Recent Publications 565
Compact Bibliography L 568
Highlighting a given author 570

X1V

189.
190.
191.
192.
193.
194.
195.
196.
197.

List of Examples

Separate List of Journals and Conference Papers 572
Multiple Bibliographies 575
CreatinganIndex, 626
Creating a List of Abbreviations 627
Mail Merging 648
Memorial Order of Service, 649
Memorial Order of Service (Shortcuts) 650
Baptism Order of Service, 651
Baptism Order of Service (Shortcuts and Localisation) 653

XV

Part I.

User Guide

1. Introduction

The following packages are provided by the datatool bundle:

* datatool—base This is the underlying package automatically loaded by all the other listed
packages, but may be loaded without the other packages if only the base functions are
required. The datatool—base package may be used to:

— Determine whether an argument is an integer, a real number, currency or a string.
Locale dependent number settings are supported (such as a comma as a decimal
character and a full stop as a number group character). As from version 3.0, scientific
notation is also supported.

— Convert locale dependent numbers or currency to plain number format, enabling
arithmetic to be performed on elements of the database.

— Names can be converted to initials.

— Determine if strings are all upper or lower case.

— Perform string comparisons (both case sensitive and case insensitive).
See 82.

¢ datatool

Main package providing database support. Automatically loads datatool—base. This
package can be used to:

— Create or load databases.
— Sort rows of a database (either numerically or alphabetically, ascending or descending).

— Perform repetitive operations on each row of a database (e.g. mail merging). Condi-
tions may be imposed to exclude rows.

Database commands are described in §3.

* datagidx
The datagidx package (see §8) can be used to generate indexes or glossaries as an alternative
to packages such as glossaries. Note that datagidx is far more limited than glossaries and
doesn’t provide any localisation support. See §8.

* datapie
The datapie package can be used to convert a database into a pie chart:

— Segments can be separated from the rest of the chart to make them stand out.

1. Introduction

— Colour/grey scale options.

— Predefined segment colours can be changed.

— Hooks provided to add extra information to the chart
See §4.

 dataplot
The dataplot package can be used to convert a database into a two dimensional plot using
markers and/or lines. Three dimensional plots are currently not supported. See §6.
* databar
The databar package can be used to convert a database into a bar chart:
— Colour/grey scale options.
— Predefined bar colours can be changed.
— Hooks provided to add extra information to the chart
See §5.

e databib

The databib package can be used to convert a BIBIEX database into a datatool database.
See §7.

* person

The person package can be used to reference people by the appropriate gender pronouns.
Automatically loads datatool. See §9.

(@]

=
The datapie and databar packages do not support the creation of 3D charts, and I have no

plans to implement them at any later date. The use of 3D charts should be discouraged.
They may look pretty, but the purpose of a chart is to be informative. Three dimensional
graphics cause distortion, which can result in misleading impressions. The pgf manual
provides a more in-depth discussion on the matter.

J

The code providing the mathematical functions have some limitations. These limitations
will therefore also be present in the various packages provided with datatool, according to the
underlying package (fp or pgfmath) or I£ITgX3 kernel commands or Lua code used. As from
version 3.0, the new default is 1ua, if \direct lua is defined, or 1 3 fp otherwise. To avoid
repeated parsing, some functions, such as the aggregate functions (§3.13) or charts (§§4, 6 & 5),
will use KTEX3 commands regardless of the math option.

1. Introduction

1.1. Rollback

Version 3.0 is a major new version where many commands have been rewritten to use ISTEX3
macros. Additionally, some packages, such as xkeyval and substr are no longer loaded. If you
experience any backward-compatibility problems with the new version, you can rollback to the

previous version (2.32):

(]
Rollback provides a useful way of reverting back to an earlier release if there’s a problem
with a new version. However, the further away the rollback date is from the current LaTeX
kernel, the more likely that incompatibilities will occur. If you have historic documents
that you need to compile, consider using the historic TgX Live Docker images. (See, for
example, Legacy Documents and TEX Live Docker Images.¢)

\usepackage{datatool} [=v2.32]

¢dickimaw-books.com/blog/legacy-documents—-and-tex-live-docker-images

1.2. BTEX3

The I5TEX kernel has changed significantly since datatool was first released in 2007. There is now
improved support for UTF-8 and many of the commands provided by datatool now have much
better I&TEX3 alternatives. You may find some tasks more efficient if you use I£I[EX3 commands
directly. However, If[EX3 commands are intended for internal use within the definitions of
document commands rather than explicit use in the document.

IATEX3 syntax must first be switched on (\ExplSyntaxOn) before defining commands
that use them and then switched off (\ExplSyntaxOf f) afterwards. Spaces are ignored,
so you need to use ~ if an actual space is required. Further information can be found in the
interface3.pdf document:

texdoc interface3 \

1.2.1. Regular Expressions

IETEX3 provides commands for regular expressions. A simple example is shown below that replaces Bl
\emph{boo} with \textbf {BOO}. More generally, the custom command searches for

any instance of \ emph { (word) }, where (word) consists of one or more word characters (\ w+),

and replaces it with \textbf { (WORD) }, where the argument is the original (word) converted

to uppercase using \text_uppercase:n.

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.tug.org/texdoc/

1. Introduction

\documentclass{article}
\ExplSyntaxOn
\NewDocumentCommand{\testreplace} { m }
{
\regex_replace_all:nnN
{ \c{emph} \cB\{ (\w+) \cE\} }
{ \c{textbf} { \c{text_uppercase:n}{ \1 } } }
#1
t
\ExplSyntaxOff
\begin{document}
\newcommand{\teststring}{The duck said \emph{boo}
to the goose.}
Original: \teststring

\testreplace{\teststring}
Replaced: \teststring
\end{document}

4 Example 1: Regular Expressions with [4TeX3 \EF R AL

Original: The duck said boo to the goose.
Replaced: The duck said BOO to the goose.

1.2.2. Comma-Separated Lists

IATEX3 provides commands for dealing with CSV lists. You may prefer to use those instead of E
the commands provided by datatool—base described in §2.9.

\documentclass{article}

\ExplSyntaxOn

\clist_new:N \1_my_clist
\NewDocumentCommand \createmylist { m }

{
\clist_set:Nn \1_my_clist { #1 }
}
\NewDocumentCommand \mylistelement { m }
{

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 1 Regular Expressions with LaTeX3
% Label: "ex:l3regex"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\ExplSyntaxOn
\NewDocumentCommand{\testreplace} { m }
{
 \regex_replace_all:nnN
 { \c{emph} \cB\{ (\w+) \cE\}}
 { \c{textbf} { \c{text_uppercase:n}{ \1 } } }
 #1
}
\ExplSyntaxOff
\begin{document}
\newcommand{\teststring}{The duck said \emph{boo} to the goose.}
Original: \teststring

\testreplace{\teststring}
Replaced: \teststring
\end{document}

Nicola Talbot
Regular Expressions with LaTeX3 (source code)
Example document using LaTeX3 regular expressions (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example001.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example001.pdf

1. Introduction

\clist_item:Nn \1l_my_clist { #1 }

t
\NewDocumentCommand \reversemylist { }
{

\clist_reverse:N \1l_my_ clist
t
\NewDocumentCommand \displaymylist { }
{

\clist_use:Nnnn \1l_my_clist {~and~ } { ,~ }
{ ,~and~}
t
\ExplSyntaxOff

\begin{document}
\createmylist{ant,duck,goose, zebra}
\displaymylist

Second element: \mylistelement{2}.

\reversemylist
\displaymylist

Second element: \mylistelement{2}.
\end{document}

4 Example 2: Comma-Separated Lists with [ATeX3 \ERE
ant, duck, goose, and zebra
Second element: duck.
zebra, goose, duck, and ant
Second element: goose.
1.2.3. Calculations
If you have complex calculations, you may prefer to use IZ[|EX3 commands directly instead of EX

using the datatool—base commands described in §2.5.1.

=

\documentclass{article}
\ExplSyntaxOn
\newcommand{\myfunc} [3]

{

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 2 Comma-Separated Lists with LaTeX3
% Label: "ex:l3clist"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\ExplSyntaxOn
\clist_new:N \l_my_clist
\NewDocumentCommand \createmylist { m }
{
 \clist_set:Nn \l_my_clist { #1 }
}
\NewDocumentCommand \mylistelement { m }
{
 \clist_item:Nn \l_my_clist { #1 }
}
\NewDocumentCommand \reversemylist { }
{
 \clist_reverse:N \l_my_clist
}
\NewDocumentCommand \displaymylist { }
{
 \clist_use:Nnnn \l_my_clist {~and~ } { ,~ } { ,~and~}
}
\ExplSyntaxOff
\begin{document}
\createmylist{ant,duck,goose,zebra}
\displaymylist

Second element: \mylistelement{2}.

\reversemylist
\displaymylist

Second element: \mylistelement{2}.
\end{document}

Nicola Talbot
Comma-Separated Lists with LaTeX3 (source code)
Example document using LaTeX3 comma-separated list commands (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example002.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example002.pdf

1. Introduction

\fp_to_decimal:n{ #1 + 0.5 * sqgrt (#2) / (#3) }
t
\ExplSyntaxOff
\newcommand{\numA}{1023.5}
\newcommand{\numB}{54.75000}
\newcommand{\numC}{-20648.68}
\begin{document}
$ \numA+\frac{\sqgrt{\numB}}{2\times\numC} =
\myfunc{\numA}{\numB}{\numC} $
\end{document}

EN Example 3: Performing Calculations with 1&TeX3 %@ 2

54.75000 __
1023.5 + 5Y5LT000 — 1023.499820828152

If you plan on re-parsing commands such as the example \numA, \numB and \numC com-
mands, then it would be better to convert them to I£I|EX3 floating point variables or constants.
See the IKTEX3 Interfaces document for further details.

Example 4 performs the same calculation but uses \direct lua, which requires Lual&TEX:

\newcommand{\myfunc} [3]{%
\directlua{tex.print (#1+0.5*math.sqrt (#2)/ (#3)) }%
¥

4 Example 4: Performing Calculations with LuaLaTeX \EFIE

54.75000 __
1023.5 + ;Y/54T5000 — 1(23.4998208282

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 3 Performing Calculations with LaTeX3
% Label: "ex:l3fptodec"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \ExplSyntaxOn
\newcommand{\myfunc} [3]
{
 \fp_to_decimal:n{ #1 + 0.5 * sqrt(#2) / (#3) }
}
\ExplSyntaxOff
\newcommand{\numA}{1023.5}
\newcommand{\numB}{54.75000}
\newcommand{\numC}{-20648.68}
\begin{document}
 $ \numA+\frac{\sqrt{\numB}}{2\times\numC} = \myfunc{\numA}{\numB}{\numC} $
\end{document}

Nicola Talbot
Performing Calculations with LaTeX3 (source code)
Example document that uses LaTeX3 floating point commands (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 4 Performing Calculations with LuaLaTeX
% Label: "ex:directlua"
% arara: lualatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\newcommand{\myfunc}[3]{%
 \directlua{tex.print(#1+0.5*math.sqrt(#2)/(#3))}%
}
\newcommand{\numA}{1023.5}
\newcommand{\numB}{54.75000}
\newcommand{\numC}{-20648.68}
\begin{document}
 $ \numA+\frac{\sqrt{\numB}}{2\times\numC} = \myfunc{\numA}{\numB}{\numC} $
\end{document}

Nicola Talbot
Performing Calculations with LuaLaTeX (source code)
Example document that uses Lua to perform floating point arithmetic (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example003.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example003.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example004.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example004.pdf

2. Base Commands (datatool—base
package)

\usepackage [(options)] {datatool-base}

The datatool—base package may be loaded on its own, without the datatool package, if no
database commands (see §3) are required. Available package options for datatool—base are listed
below.

2.1. datatool—base Options

Options can be passed through the package option list in the usual way. Some options may also
be later set with:
X

\DTLsetup{ (key=value list) }

(Options specific to locale files should be set with \DTLsetLocaleOptions, see §2.3.)
[=
Wl

math=(processor) initial: varies

This setting may only be used as a package option, not in \DTLsetup, and identifies the
required maths processor. This determines how the floating point commands described in §2.5
are defined. The value may be one of the following.

(&]

| A

math=13fp

This setting defines the datatool—base floating point commands (such as \dt 1add) to use
IATEX3 commands. This is the default setting unless LualfTEX is used.
[
(A

math=1lua

This setting defines the datatool—base floating point commands (such as \dt 1add) to use
\directlua to perform the mathematical calculations. This is the default setting if LualSTEX
is used.

2. Base Commands (datatool—base package)

3

math=£fp

This setting defines the datatool—base floating point commands (such as \dt 1add) to use the
fp package commands to perform the mathematical calculations. (Automatically loads the fp
package.) Note that the fp package can be less precise than If[|EX3 or Lua. (See examples 37, 39
& 38.)

4

math=pgfmath

This setting defines the datatool—base floating point commands (such as \dt 1 add) to use the
pgfmath package commands to perform the mathematical calculations. (Automatically loads the
pgfmath package.) Note that the pgfmath package has limitations and may produce the error:

! Dimension too large \

This option is maintained for backward-compatibility but, in general, the new default 1 3fp or
lua options are better.

| ©
=
As from version 3.0, some functions, such as the aggregate functions (§3.13) or charts

(§84, 6 & 5), will use I8T|EX3 commands regardless of the mat h option to avoid repeated
parsing.

[®
|
verbose=(boolean) default: true; initial: false
If true, this option will write extra informational messages to the transcript.
(=
==
lang-warn={ (boolean) } default: true; initial: true

This setting may only be used as a package option, not in \DTLsetup. If false, this setting
switches off localisation warnings. Note that this will also switch off tracklang warnings. If true,
this setting will switch on datatool—base localisation warnings without altering tracklang warnings.
If you need tracklang warnings to be switched back on again for the next package that requires it,
use \TrackLangShowWarningstrue.

=N

| S

nolocale

This setting may only be used as a package option, not in \DTLset up, and has no value. If
used it will prevent any localisation files from being loaded, regardless of the document language
settings. This option will override 1ocales (and 1ang). See §2.3.

2. Base Commands (datatool—base package)

locales={(locale list) }

This setting may only be used as a package option, not in \DTLset up. It counteracts the effect
of nolocale and tracks each listed language tag using tracklang’s \TrackLanguageTag.
Note that localisation support must be installed separately. See §2.3.

[©
This option will have an effect on packages that are subsequently loaded that also use
tracklang. Note that multiple instances of this option override each other.

Sam
lang={ (locale list) } alias: locales
A synonym of locales.
=
initial-purify=(value) initial: early

This boolean setting indicates whether or not to purify the (fext) argument of \DTLGet-
InitialLetter before parsing.

--—
—a

o=
auto-reformat-types={list) initial: integer, decimal, si,
currency, datetime, date, time

This option takes a comma-separated list, where the items in the list may be any of the following
keywords: integer, decimal, si, currency, datetime, date, time. This
identifies which data types should be automatically reformatted if the corresponding auto
—reformat numeric option or aut o—reformat datetime option is on.

The auto-reformat -t ypes doesnot switch on the corresponding aut o—reformat
numeric option or auto—reformat datet ime option. It simply establishes which
data types should be affected when the applicable option is on.

For example:

\DTLsetup{

auto-reformat-types={decimal, si,datetime},
numeric={auto-reformat},
datetime={parse=auto-reformat}

}

In the above, if \DTLparse identifies a decimal or SI notation (but not an integer) or a
datetime (but not a date or a time) then the string value will be automatically reformatted.

10

2. Base Commands (datatool—base package)

[i
=
If auto-reformat-types is missing all numeric types, then the auto

—reformat numeric option will have no effect. Similarly, if auto-reformat
—types is missing all temporal types, then the aut o—reformat datetime option
will have no effect.

[=
Sl
1lists=(key=value list) default: true

This setting may be used to adjust the behaviour of commands that deal with lists. The value
should be a (key)=(value) list of options, which are described in §2.9.1.
[=

=
compare=(key=value list) default: true

This setting may be used to adjust the behaviour of commands that deal with comparisons. The
value should be a (key)=(value) list of options, which are described in §2.9.5.1.
[=

=
numeric=(key=value list) default: true

This setting may be used to adjust the behaviour of commands that deal with numeric (but not
temporal) values. The value should be a (key)=(value) list of options, which are described in

§2.2.1.
[=
Sl
datetime=(key=value list) default: true

This determines whether or not commands such as \DTLpar se should also try parsing for
timestamps (date and time), dates (no time) or times (no date). The temporal data types were
only added to datatool—base version 3.0 and are still experimental so this feature is off by default.
The value should be a (key)=(value) list of options, which are described in §2.7.

2.2. Data Types
The datatool—base package recognises the following data types:

Integers

An integer is a sequence of digits, optionally groups of three digits may be separated by
the number group character. The default number group character is a comma (,) but may
be changed using \DTLsetnumberchars. Examples: 1,234 (which has the default
number group character) and 1234 (which is also a plain number) but not 1234.0 (which
is a decimal). A double sign (such as ++1234 or —+1234) isn’t permitted and will be
treated as a string.

11

2. Base Commands (datatool—base package)

If a whole number is represented in scientific notation (for example, 1e+4 instead of
1000) then it will be identified as a decimal not an integer. Otherwise, a large integer will
be considered a string (otherwise it will trip TgX’s integer limit).

Real Numbers (Decimals)

A real number is a sequence of digits as per integers followed by the decimal character
followed by one or more digits. The number group character is only recognised before the
decimal character. The decimal character is a full stop “decimal point ” by default.
The number group and decimal characters may be changed using \DTLsetnumber-
chars. Examples: 1,234.0 (which has the default number group character and decimal
character), 1234.0 (which is also a plain number) but not 1234 (which is an integer). A
double sign (suchas ++1234 .0 or —+1234. 0) isn’t permitted and will be treated as a
string.

As from version 3.0, scientific notation, such as 2 . 5e+10 or 1E-5 is supported. Note
that the locale symbols aren’t supported when parsing for scientific notation. The format
should be (mantissa)E (exponent) or (mantissa)e (exponent). A space may occur between
the mantissa and the E/e. The exponent must be an integer. The mantissa may include
a decimal point. If the aut o—reformat setting is on, parsed scientific notation will
have the value encapsulated with \DTLscinum.

Currency

The parser recognises currency values if provided in one of the following forms: \DTT-
currency{(mum)}, \DTLfmtcurrency{(sym)} {(num)} \DTLEfmt curr {(currency-
code) } { (num) } or (sym)(num) where (sym) is a recognised currency symbol (identified

with \DTLnewcurrencysymbol) and (num) is an integer or decimal using the

current number group character and decimal character (not scientific notation). The sign

may occur before the currency symbol. Some regional localisation files will also recognise

currency where the symbol is prefixed with the region’s code.

Examples: $1, 234 .56 and \pounds1234 (which both have a recognised currency
symbol)and \DTLfmtcurrency{£}1,234or\DTLcurrency{1,234.00}
(which both use known currency formatting commands) but not “1, 234 USD ” (which
doesn’t fit the recognised format). Both —\pounds1234 and \pounds—1234 are
recognised as a currency with a negative numeric value.

Additionally, \DTLfmtcurr{GBP }1, 234 will also be recognised as currency (al-
though it requires the datat ool —-GB. 1df region file to be loaded in order to correctly
format the value). If datatool—-GB.1df has been loaded, then GB£1, 234 will
also be recognised. However, if, say, datatool—-IE. 1df has been loaded, then
IE€1, 234 won't be recognised as that region doesn’t support a currency prefix. See
§2.6.

Temporal Values (Dates and Times) New to version 3.0 and still experimental. ISO dates and
times can be parsed (if enabled with pa r se) and converted into a numerical form so that
they can be treated as numbers.

12

2. Base Commands (datatool—base package)

o

If temporal parsing is off or the format is unsupported, dates and times will be
treated as strings. Regional formats can only be supported if they have been defined
in a loaded region file. See §2.3.

There are three temporal types:

1. Dates are in the form (YYYY)—(MM)—(DD) where (YYYY) is the year, (MM) is the
two digit month and (DD) is the two digit day. The numeric value is the integer JDN.

2. Times are in the form (hh) : (mm) : (ss) or (hh) : (mm) where (hh) is the two digit 24
hour, (mm) is the two digit minute, and (ss) is the two digit second (“00” if omitted).
The numeric value is the JF.

3. Timestamps include both a date and time. If the time zone is missing, UTC+O0 is
assumed. Recognised formats:

(YYYY)~(MM)
(YYYY)~(MM)
(YYYY)~(MM)

B
ISES]
SS
=
= S

E‘SS‘
=
£
g

|
[S]
S
=
=

Where (TZh) is the time zone hour and (7Zm) is the time zone minute. A space
may also be used instead of “T” as the separator between the date and time. The
corresponding numeric value is the JD, which is the integer JDN plus the fractional
JF.

Strings
Any non-blank content that doesn’t belong to the above types is considered to be a string.
See §2.8.

Unknown
Blank values are classified as an unknown type. This may be the result of an empty element
in a CSV list or file.

Null

Values that are missing (not simply empty) are considered null values. This is similar in
conceptto \c_novalue_t1 butuses a different internal marker. See §3.10 for further
details.

2.2.1. Numeric Options

The options listed here govern parsing and formatting of localised integers, decimals and currency.
The options may be passed in the value of the numer 1 c option. For example:

13

2. Base Commands (datatool—base package)

\DTLsetup/{
numeric=4
auto-reformat,
region—-currency-prefix=smallcaps

}

(@

auto-reformat=(boolean) default: true; initial: false

Determines whether or not commands like \DTLpar se should reformat the string part for
integers, decimals and currency. (According to the auto—reformat—-types setting.)

o

This option has no effect with csv—content=no—-parse as the values aren’t parsed.
Use convert—numbers instead.

If auto-reformat—-types includes the keyword integer, then any integers will
be reformatted according to the current localisation settings. If auto—-reformat-types
includes the keyword decimal, then any decimals not in scientific notation will be reformatted
according to the current localisation settings.

If auto-reformat—types includes the keyword s i, then any scientific notation, will
be have the string part set to

X

\DTLscinum{ (value)}

If siunitx is loaded, this will be defined to use \num otherwise it will simply expand to its
argument.

If auto-reformat—-types includes the keyword currency, then currency will be
reformatted to use \DTLfmt curr, if the associated currency code can be determined, or to
\DTLfmt currency otherwise.

[©

Sl
[region-currency={boolean) default: £ rue; inifial: true

Determines whether or not the region hook should change the default currency. The region files
should provide a command called \datat ool (Region)Set Currency which checks this
boolean value before setting the default currency.

Note that if the region hook has already set the default currency, this option won’t undo
that. It can only prevent the change the next time the hook is used (for example, when the

14

2. Base Commands (datatool—base package)

document language changes).

[=
=
currency-symbol-style=(value) initial: symbol

This option simply redefines \DTLcurrCodeOr SymOrChar to expand to its first argument
(1s0) or second argument (symbo 1) or third argument (st ring).
[=

==

set—currency=(currency-code)

Essentially this is like doing:

\DTLsetdefaultcurrency {{currency-code)}
\DTLsetup{region-currency=false}

.

However, unlike \DTLsetdefaultcurrency the value (currency-code) must be a de-
fined currency code.
=

=
region-currency-prefix=(value) initial: normal

Redefines \datatoolcurrencysymbolprefixfmt. Allows values are: normal
(redefines to expand to its argument), smallcaps (redefines to expand to use \textsc
with the argument converted to lowercase), or smaller (redefines touse \textsmaller,
which will require the relsize package).

2.2.2. Parsing Locale-Formatted Numbers and Currency Values

Formatted numbers can be parsed provided the appropriate number group character and decimal
character have been set with \DTLsetnumberchars and the currency symbol has been
declared with \DTLde fcurrency (typically by loading a region file via 1ocales or the
document language support). If you want to format a plain number, you can use \DTLdeci-
maltolocaleor \DTLdecimaltocurrency, described in §2.3, or use siunitx.

7

\DTLconverttodecimal { (num)} {{(cs)}

Converts a formatted number (num) to a plain number and stores the result in (cs). The (num)
argument may be a command whose definition is a formatted number. A full expansion is not
used on (num) to allow for non-robust currency symbols.

15

2. Base Commands (datatool—base package)

(o]

=
\DTLconverttodecimal is internally used by commands like \DTLadd to ob-

tain the numerical value. The result is then converted back to a formatted number using
either \DTLdecimaltolocaleor \DTLdecimaltocurrency, depending
on the data type of the supplied arguments. The result is a datum control sequence to
reduce the need for re-parsing.

. 7

A warning is issued if the data type is a string rather than a numeric value and the value will be
treated as zero. An empty (num) is also treated as zero. No trimming is performed on (num).
For example:

=

\DTLconverttodecimal{\$1,234.50}{\myNum}

This will define \myName to expand to 1234 .50 (assuming the default number group char-
acter and decimal character). Again, the result is a datum control sequence to reduce the need for
re-parsing.

2.2.3. Datum Commands

Instead of repeatedly parsing the same content, you may prefer to parse it once and store the
information for later use. This can be done with the following command:

7

\DTLparse{{cs)} { (content) }

This parses (content) (without expansion) to determine its data type and (if numerical) its value.

X

\DTLxparse{(cs)} {(content) }

As \DTLparse but fully expands (content) before parsing.

In both cases, the parsed data is stored in the control sequence {(cs) (a datum control sequence)
in a form that includes the original value (or expanded value in the case of \DTLxparse),
the data type, the numerical value (if one of the numerical types), and the currency symbol (if
applicable).

The “string value”, which is the content that (cs) will expand to, may be automatically refor-
matted if an applicable setting is in effect (such as numeric={auto-reformat}).
(i]
=
This means that the numerical value is still available even if the number group character

and decimal character are later changed. The important thing is to ensure that they are
correct before parsing the data.

16

2. Base Commands (datatool—base package)

The datum item format is particularly useful with databases (see §3) that have numeric data
which needs to be converted into plain numbers for arithmetic computations (such as aggregates)
or plotting. If store—-datum is enabled before creating the database, each value will be
stored as a datum item. If you then assign a placeholder command to the value, for example with
\DTLmapgetvalues, then that command will be a datum control sequence in the same
format as that obtained with \DTLparse.

The component parts can then be extracted using the following expandable commands, where
{cs) is the datum control sequence.

X

\DTLusedatum{ (cs) }

Expands to the original value (content) that was parsed (or the expanded value in the case of
\DTLxparse, or the reformatted string value, if the applicable option was in effect). You
can also simply use the datum control sequence. The difference is that \DTLusedatum can
fully expand the datum value whereas using the datum control sequence directly won’t. If (cs) is
\dt1lnovalue,then \DTLusedatum{ (cs)} will expand to \dt lnovalue.

X

\DTLdatumvalue{/{cs)}

Expands to the numeric value (as a plain number) if the parsed value was numerical, otherwise
expands to empty. If (cs) is \dt lnovalue, then \DTLdatumvalue{{cs)} will expand
to \DTLnumbernull.

X

\DTLdatumcurrency{{(cs)}

Expands to the currency symbol if the parsed value was a currency, otherwise expands to empty.
If (cs) is \dt lnovalue, then \DTLdatumcurrency{(cs)} will expand to \dt 1no-
value.

7

\DTLdatumtype{{(cs)}

Expands to an integer representing the data type: O (string), 1 (integer), 2 (decimal), 3 (currency),
4 (timestamp), 5 (date), 6 (time) or —1 (unknown). If (cs) is \dt 1novalue, then \DTL-
datumtype{{(cs)} will expand to the unknown data type value.

For example:

B

\DTLparse\mydatum{1,234.0}
Data type: \DTLdatumtype{\mydatum}.

Note that the data type is actually stored as a If[|EX3 integer constant, but \DTLdatumtype
will convert the constant value to an integer denotation. If you want the actual constant, use:

17

2. Base Commands (datatool—base package)

[\exp_args:NV \datatool_datum_type:Nnnnn (cs)

but there’s no check for \dt 1novalue in this case.
For debugging purposes, you may find it easier to have a textual representation of the data type
so that you don’t have to lookup what the numeric value represents. You can do this with:

X

\DTLgetDataTypeName { (number) }

This will expand to one of: \DTLdatatypeunsetname, \DTLdatatypestring-
name, \DTLdatatypeintegername, \DTLdatatypedecimalname, \DTL-
datatypecurrencyname, \DTLdatatypedatetimename, \DTLdatatype-
datename, \DTLdatatypetimename, or \DTLdatatypeinvalidname.

You may also “show” the component parts in the console and transcript:

X

\datatool_datum_show:N{(cs)}

Instead of parsing an existing value, you can define a new datum control sequence using one of
the commands below. Only \DTLset fpdatum performs any parsing.

X

\DTLsetintegerdatum{ {cs)} { (formatted value) } { (value) }

Defines the control sequence (cs) as an integer datum, where (formatted value) is the formatted
integer and (value) is the integer value as a plain number.

X
\DTLxsetintegerdatum{(cs)} { (formatted value) } { (value) }
As \DTLsetintegerdatum but expands (formatted value) and (value).
X
\DTLsetdecimaldatum{ {cs)} { (formatted value) } { (value) }

Defines the control sequence (cs) as a decimal datum, where (formatted value) is the formatted
decimal and (value) is the decimal value as a plain number.

X

\DTLxsetdecimaldatum{{cs)} { (formatted value) } { (value) }

As \DTLsetdecimaldatum but expands (formatted value) and (value).

18

2. Base Commands (datatool—base package)

\DTLset fpdatum{ (cs)} { (formatted value) } { (value) }

Similar to \DTLsetdecimaldatum but this will expand and parse (value) and store it
with the \datatool_datum_fp:nnn markup.

X

\DTLsetcurrencydatum{ (cs)} { (formatted value) } { (value) } { {currency
symbol) }

Defines the control sequence (cs) as a currency datum, where (formatted value) is the formatted
currency and (value) is the currency value as a plain number. This has an extra argument which
is the currency symbol.

X

\DTLxsetcurrencydatum{(cs) } { (formatted value) } { (value) } { {currency
symbol) }

As \DTLsetcurrencydatum but expands (formatted value), (value) and {(currency sym
bol).

X

\DTLsetstringdatum{ (cs)} { (string) }

Defines the control sequence (cs) as a string datum.

\DTLxsetstringdatum{ {cs)} { (string) }

As \DTLsetstringdatum but expands (string).
Datum control sequences may be used in commands that expect a formatted number, such as

\DTLadd, as demonstrated in Example 5, which is produced with the code below. 25

\usepackage{datatool-base}
\usepackage{siunitx}

\DTLparse{\numA} {23,452}
\DTLparse{\numB}{45.0}
\DTLparse{\numC}{\pounds 24.50}

\DTLset fpdatum{\numD}{\num{1.5e-4}}{1.5e-4}
\begin{document}

Original value: \DTLusedatum{\numC} or \numC.
Numeric value: \DTLdatumvalue{\numC}.
Currency: \DTLdatumcurrency{\numC}.

Data type: \number\DTLdatumtype{\numC}.

19

2. Base Commands (datatool—base package)

\DTLadd{\result}{\numA} {\numB}
S\numA + \numB = \result$

\DTLaddall{\result}{\numA, \numB, \numC }
S\numA + \numB + \numC = \result$

\dtladd{\result}{\DTLdatumvalue{\numA} }{\DTLdatum—
value{\numB}}

S\DTLdatumvalue{\numA} + \DTLdatumvalue{\numB}

= \results$

\dtladdall{\result}
{\DTLdatumvalue{\numA}, \DTLdatumvalue{\numB}, \DTL—
datumvalue{\numC}}
S\DTLdatumvalue{\numA} + \DTLdatumvalue{\numB}
+ \DTLdatumvalue{\numC} = \result$

\DTLxsetdecimaldatum{\total}{\num{\result}}{\result}
Total: \total.

\dtlmul{\result}{20}{\DTLdatumvalue{\numD}}
$20 \times \numD = \result$

\end{document}

‘4 Example 5: Datum Control Sequences \EEE

Original value: £24.50 or £24.50. Numeric value: 24.50. Currency: £.
Data type: 3.

23,452 + 45.0 = 23,497

23,452 + 45.0 + £24.50 = £23,521.50

23452 + 45.0 = 23497

23452 4 45.0 4 24.50 = 23521.5

Total: 23521.5.

20 x 1.5 x 107* = 0.003

2.2.4. Datum ltems (Advanced)

If you have the expansion text from a datum control sequence (a datum item), that text will be in
the form:

20

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 5 Datum Control Sequences
% Label: "ex:datumcs"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\usepackage{siunitx}
\DTLparse{\numA}{23,452}
\DTLparse{\numB}{45.0}
\DTLparse{\numC}{\pounds 24.50}
\DTLsetfpdatum{\numD}{\num{1.5e-4}}{1.5e-4}
\begin{document}
Original value: \DTLusedatum{\numC} or \numC.
Numeric value: \DTLdatumvalue{\numC}.
Currency: \DTLdatumcurrency{\numC}.
Data type: \number\DTLdatumtype{\numC}.

\DTLadd{\result}{\numA}{\numB}
$\numA + \numB = \result$

\DTLaddall{\result}{\numA,\numB,\numC}
$\numA + \numB + \numC = \result$

\dtladd{\result}{\DTLdatumvalue{\numA}}{\DTLdatumvalue{\numB}}
$\DTLdatumvalue{\numA} + \DTLdatumvalue{\numB} = \result$

\dtladdall{\result}{\DTLdatumvalue{\numA},\DTLdatumvalue{\numB},\DTLdatumvalue{\numC}}
$\DTLdatumvalue{\numA} + \DTLdatumvalue{\numB} + \DTLdatumvalue{\numC} = \result$

\DTLxsetdecimaldatum{\total}{\num{\result}}{\result}
Total: \total.

\dtlmul{\result}{20}{\DTLdatumvalue{\numD}}
$20 \times \numD = \result$
\end{document}

Nicola Talbot
Datum Control Sequences (source code)
Example document that demonstrates parsing data and storing the content in datum control sequences (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example005.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example005.pdf

2. Base Commands (datatool—base package)

(marker-cs) { (string) } { (value) } { {currency) } { {type) }

Decimals may have the (value) part stored as:

X
\datatool_datum_fp:nnn {{fp-value)} {(fp-var-content)} {(decimal)}

With math=fp this expands to (decimal) (since the fp package can’t parse scientific notation)
otherwise this expands to (fp-value) (the original value if supplied in scientific notation or the
plain number obtained from parsing a locale decimal). The (fp-var-content) argument allows an
I3fp variable to be reconstructed (with \datatool_set_ fp : Nn) without having to reparse
the value.

Temporal data types may have the (value) part stored as:

\DTLtemporalvalue (number)} { (ISO)}

This allows the date/time stamp to be retained. This simply expands to the first argument by

default, which is the numeric value associated with the data. In the case of date (without time),

the value is an integer Julian day; in the case of a timestamp (date and time), the value is a decimal

Julian date; in the case of time (without a date), the value is the fractional part of the Julian date.
The date/time stamp can be extracted with:

X

\datatool_extract_timestamp:NN (damwm-cs) (result-l)

where (result-tl-var) is the token list variable in which to store the date/time stamp and (datum-cs)
is the datum control sequence. This works by locally redefining \DTLtemporalvalue and
then expanding \DTLtemporalvalue{(value)}. If the (value) part in (datum-cs) is just
a number and not encapsulated within \DTLtemporalvalue then this trick won’t work
and the number will need to be converted back. The result will be empty if there is no date/time
information.

To allow for new data types introduced in a later version, you can check for the current
maximum allowed value with:

I
\datatool_max_known_type:
This will expand to the appropriate constant.
I
\datatool_if_valid_datum_type:nTE {(n)} {(true)} {(false)}
\datatool_if wvalid_datum_type_p:n {(n)}

Tests if the argument (n) represents a valid data type (including unknown).

21

2. Base Commands (datatool—base package)

\datatool_if_ numeric_datum_type:nTF {(n)} {(rrue)}

{(false) }
\datatool_if numeric_datum_type_p:n {(n)}

Tests if the argument (n) represents a numeric data type. Note that temporal data types are
considered numeric.

b §
\datatool_if_ temporal_datum_type:nTF {(n)} {(true)}
{(false) }
\datatool_if_ temporal_datum_type_p:n {(n)}
Tests if the argument (n) represents a temporal data type.
X

\datatool_if_ number_only_datum_type:nTF {(n)} {({true)}

{(false) }
\datatool_if_ number_only_datum_type_p:n {{(n)}

Tests if the argument () represents an integer or decimal data type (not currency or temporal).

X

\datatool_if_any_int_datum_type:nTF {(n)} {(true)}
{(false) }
\datatool_if_any_int_datum_type_p:n {{(n)}

Tests if the argument (n) represents data type that has an integer value (integer or date, but not
decimal or currency or timestamps or times).

2.2.4.1. Datum Components

It’s possible to pick out the desired component using an (n) of (m) style of command. However,
the following commands are provided as it’s more obvious from the command name which element
is required. Note that these require IATEX3 syntax enabled:

X
\datatool_datum_string:Nnnnn (marker-cs) {(string)} {(value)}
{(currency)} {(type)}
Expands to (string).
X
\datatool_datum_value:Nnnnn (marker-cs) {(string)} {(value)}
{ (currency)} {(type)}

22

2. Base Commands (datatool—base package)

Expands to (value).

X

\datatool_datum_currency:Nnnnn (marker-cs)y {(string)} {(value)}
{(currency)} {(type)}

Expands to (currency).

\datatool_datum_type:Nnnnn (marker-cs) {(string)} {(value)}
{(currency)} {(type)}

Expands to (type).

2.2.4.2. Datum Tests for Equality

If you want to test if a datum control sequence is equal to a string, then you can’t simply use
\tl_if_eq:NnTF or \ifdefstring asthe datum markup will prevent a match. Com-
mands such as \DTLifstringeq expand the arguments which will remove the datum
markup, but the following commands take the data type into account.

If both arguments have a numeric type then they will be compared numerically and by the
currency symbol. If both are ordinary token lists without the datum markup then they will be
compared using a normal token list comparison. If one has the datum format and the other doesn'’t,
then a string comparison is used.

X

\datatool_if_ value_eq:NNTF (Hvarl) (tdvar2) {(true)} {(false)}

Compares two variables where one or other may be a datum control sequence or simply a token
list variable.
X

\datatool_if_value_eq:NnTF (dvar) {{t)} {(true)} {(false)}

Test for equality where the variable (7 var) may be a datum control sequence and the token list
(1l) may be a datum item.

X

\datatool_if_value_eq:nNTF {(d)} (dvar) {(true)} {(false)}

Test for equality where the token list (/) may be a datum item and the variable (#/ var) may be a
datum control sequence.

7

\datatool_if_ value_eq:nnTF {(dl)} {{H2)} {(true)} {(false)}

Compares two token lists where one or other may be a datum item.
Example 6 demonstrates the above commands. First some datum control sequences are defined:

23

26

2. Base Commands (datatool—base package)

\DTLparse{\Fruit}{Pear}
\DTLparse{\Price}{\$1.50}
\DTLparse{\Quantity}{10}

_ B

The following \Ot herPri ce is numerically equivalent to \ P r i ce and has the same currency
symbol but the string representation is different:

\DTLsetcurrencydatum{\OtherPrice}
{1 dollar 50\textcent}{1.5}{\S}

_ B

Similarly, the following \Ot herQuant ity has the same numerical value as \Quantity
but it’s a decimal instead of an integer:

\DTLsetdecimaldatum{\OtherQuantity}{10.00}{10.0}

For convenience a command is provided for the tests:

\newcommand{\test} [3]{#1=#2 (\texttt{\string#3}) ?
#3{#1}r{#2}{true}{false}.\par}

The actual tests need to have IZTEX3 syntax enabled:

\ExplSyntaxOn

First are the string tests:

\test \Fruit {Pear} \tl_if_ eq:NnTF
\test \Fruit {Pear} \tl_if_ eqg:enTF
\test \Fruit {Pear} \datatool_if_value_eq:NnTF

_ B8 (8 L0 LB

The next set may appear to be numeric tests but they are still string tests because they are being
compared with a non-datum token list.

\test \Price {\$1.50} \tl_if_eqg:NnTF
\test \Price {\$1.50} \tl_if_eqg:enTF
\test \Price {\$1.50} \datatool_if_value_eq:NnTF

_ B

24

2. Base Commands (datatool—base package)

\test \Price {\$1.5} \datatool_if_value_eq:NnTF

For an actual numeric test, both arguments must use the datum format. Note that \Price and
\OtherPrice are numerically equivalent but when viewed as token list variables, they don’t
have the same content.

=

\test \Price \OtherPrice \tl_if_eq:NNTF
\test \Price \OtherPrice \datatool_if_value_eq:NNTF

There are similar tests for the quantity:

\test \Quantity {10} \tl_if_eq:NnTF

\test \Quantity {10} \tl_if eqg:enTF

\test \Quantity {10} \datatool_if_value_eq:NnTF
\test \Quantity {10.00} \datatool_if_value_eq:NnTF
\test \Quantity \OtherQuantity \tl_if_eq:NNTF
\test \Quantity \OtherQuantity \datatool_ if_value_
eq:NNTF

4 Example 6: Datum Tests for Equality PE X2 A

Pear=Pear (\t1_if_eq:NnTF) 7 false.

Pear=Pear (\t1_if_eq:enTF) ? true.

Pear=Pear (\datatool_if_value_eq:NnTF) ? true.
$1.50=%1.50 (\t1_if_eq:NnTF) 7 false.

$1.50=%1.50 (\t1_if_eq:enTF) ? true.

$1.50=%1.50 (\datatool_if_value_eq:NnTF) 7 true.
$1.50=%$1.5 (\datatool_if_value_eq:NnTF) 7 false.
$1.50=1 dollar 50¢ (\t1_if_eq:NNTF) 7 false.
$1.50=1 dollar 50¢ (\datatool_if_value_eq:NNTF) ? true.
10=10 (\t1_if_eq:NnTF) ? false.

10=10 (\t1_if_eq:enTF) ? true.

10=10 (\datatool_if_value_eq:NnTF) 7 true.
10=10.00 (\datatool_if_value_eq:NnTF) ? false.
10=10.00 (\t1_if_eq:NNTF) ? false.

10=10.00 (\datatool_if_value_eq:NNTF) 7 true.

25

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 6 Datum Tests for Equality
% Label: "ex:datumifeq"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\DTLparse{\Fruit}{Pear}
\DTLparse{\Price}{\$1.50}
\DTLparse{\Quantity}{10}
\DTLsetcurrencydatum{\OtherPrice}{1 dollar 50\textcent}{1.5}{\$}
\DTLsetdecimaldatum{\OtherQuantity}{10.00}{10.0}
\newcommand{\test}[3]{#1=#2 (\texttt{\string#3}) ? #3{#1}{#2}{true}{false}.\par}
\begin{document}
\ExplSyntaxOn
\test \Fruit {Pear} \tl_if_eq:NnTF
\test \Fruit {Pear} \tl_if_eq:enTF
\test \Fruit {Pear} \datatool_if_value_eq:NnTF

\test \Price {\$1.50} \tl_if_eq:NnTF
\test \Price {\$1.50} \tl_if_eq:enTF
\test \Price {\$1.50} \datatool_if_value_eq:NnTF
\test \Price {\$1.5} \datatool_if_value_eq:NnTF
\test \Price \OtherPrice \tl_if_eq:NNTF
\test \Price \OtherPrice \datatool_if_value_eq:NNTF

\test \Quantity {10} \tl_if_eq:NnTF
\test \Quantity {10} \tl_if_eq:enTF
\test \Quantity {10} \datatool_if_value_eq:NnTF
\test \Quantity {10.00} \datatool_if_value_eq:NnTF
\test \Quantity \OtherQuantity \tl_if_eq:NNTF
\test \Quantity \OtherQuantity \datatool_if_value_eq:NNTF
\ExplSyntaxOff
\end{document}

Nicola Talbot
Datum Tests for Equality (source code)
Example document that demonstrates equality tests with datum markup (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example006.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example006.pdf

2. Base Commands (datatool—base package)

2.2.4.3. Conversion to Floating Point

If you need to set an I3fp variable to a value that may be a datum control sequence or datum item
or may not yet be parsed, you can use:

X

\datatool_set_fp:Nn (fp-var) {(value)}

This sets the floating point variable (fp-var) to the floating point number obtained from the
given (value). If the (value) is either a datum control sequence or datum item then no parsing is
required. If not, the (value) will be expanded and then parsed to obtain its numeric value before
setting the variable. (Be aware that this may cause non-robust currency symbols to expand so that
they are no longer recognised as a currency symbol.) If (value) is determined to have a string or
unknown data type the variable will be set to zero.

Example 7 performs floating point calculations on a formatted number (which needs to be parsed
according to the current settings) and a value provided in scientific notation (with a formatted

representation using siunitx).

\usepackage{datatool-base}
\usepackage{siunitx}

\DTLparse{\numA}{1,500.0}

\DTLset fpdatum{\numB}{\num{1.5e-4}}{1.5e-4}
\begin{document }

A = \numA \space (value: \DTLdatumvalue\numA) .
B \numB \space (value: \DTLdatumvalue\numB) .

\ExplSyntaxOn

\datatool_set_fp:Nn \1_tmpa_fp { \numA }
\datatool_set_fp:Nn \1_tmpb_fp { \numB }
\fp_to_tl:N \1_tmpa_fp \c_space_tl

\texttimes \c_space_tl1
\fp_to_tl:N \1_tmpb_fp \c_space_tl = \c_space_tl
\fp_eval:n { \l_tmpa_fp * \1_tmpb_fp }
\ExplSyntaxOff
\end{document}

4 Example 7: Datum Control Sequences to Floating Point Variables N\ERE

A = 1,500.0 (value: 1500.0). B = 1.5 x 107* (value: 1.5e-4).
1500 x 1.5e-4 = 0.225

26

B

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 7 Datum Control Sequences to Floating Point Variables
% Label: "ex:datumfp"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\usepackage{siunitx}
\DTLparse{\numA}{1,500.0}
\DTLsetfpdatum{\numB}{\num{1.5e-4}}{1.5e-4}
\begin{document}
A = \numA \space (value: \DTLdatumvalue\numA).
B = \numB \space (value: \DTLdatumvalue\numB).

\ExplSyntaxOn
\datatool_set_fp:Nn \l_tmpa_fp { \numA }
\datatool_set_fp:Nn \l_tmpb_fp { \numB }
\fp_to_tl:N \l_tmpa_fp \c_space_tl \texttimes \c_space_tl
\fp_to_tl:N \l_tmpb_fp \c_space_tl = \c_space_tl
\fp_eval:n { \l_tmpa_fp * \l_tmpb_fp }
\ExplSyntaxOff
\end{document}

Nicola Talbot
Datum Control Sequences to Floating Point Variables (source code)
Example document that demonstrates converting locale formatted numbers to floating point variables (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example007.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example007.pdf

2. Base Commands (datatool—base package)

2.3. Localisation

The datatool—base package (v3.0+) loads the tracklang package, which attempts to determine
the document localisation settings. No actual localisation is provided by tracklang, but it enables
support to be easily added and maintained independently from a package (that uses the tracklang
interface) with 1 d £ files that have a particular naming scheme.

This means that by adding a file called datatool—(locale) . 1Ldf to TgX’s path, the file
can automatically be loaded by datatool—base without any adjustments to the datatool—base
code. There is a search order for (locale) to allow for fine grained support. See the tracklang
documentation for further details or the “Locale Sensitive Files” section of Using tracklang in
Packages with Localisation Features.!

The tracklang package has limitations, but you may be able to supply the language identifier as
a document class option, for example:

Ei

\documentclass[british]{article}

or load babel/polyglossia and setup language support before the first package to load tracklang,
for example:

=

\usepackage [british] {babel}
\usepackage{datatool-base}

or use datatool—base’s Locales (or 1ang) option, for example:

=

\usepackage[locales=en-GB] {datatool-base}

If you use \babelprovide, ensure that you have at least version 1.6.4 of tracklang and load
tracklang after all instances of \babelprovide. There’s no support for “lazy loading” in
the document environment.

Note that this option will have an effect on packages that are subsequently loaded that also use
tracklang. Likewise, if you have already loaded a package that uses tracklang (such as datetime?2)
then the tracked locales from that will be picked up. For example:

=

\usepackage [en—-GB] {datetime?2}
\usepackage{datatool-base}

See the tracklang documentation or Localisation with t racklang . t ex? for further details.

'dickimaw-books.com/latex/tracklang/otherpkg.shtml
’dickimaw-books.com/latex/tracklang

27

https://www.dickimaw-books.com/latex/tracklang/otherpkg.shtml
https://www.dickimaw-books.com/latex/tracklang/otherpkg.shtml
https://www.dickimaw-books.com/latex/tracklang
https://www.dickimaw-books.com/latex/tracklang/otherpkg.shtml
https://www.dickimaw-books.com/latex/tracklang

2. Base Commands (datatool—base package)

(1)
If tracklang doesn’t recognise the language identifier, the root language will be “unde-
termined” (with code “und”) and so the file datatool-undetermined.1df
(provided with datatool) will be loaded.

For some packages (such as databib and person), the localisation support just relates to trans-
lating fixed text and the corresponding filename may simply have (locale) as the tracklang root
language label. So regardless of whether you have used 1ocales=en—-GBor locales=
en—US, the person package will require the file person—english.1df (provided with
datatool—english).

However, settings such as the currency symbol are specific to a region not a language. So
locales=en—GB would need the default currency switched to GBP whereas Locales
=en—1E would need the default currency switched to EUR and 1ocales=en—-ZA would
need the default currency switched to ZAR.

Therefore, localisation support for datatool—base (and its supplementary packages) is split
into two parts: the language file datat ool —(language) . Ldf (for example, datatool

—english.1df) which deals with the orthography, translations of fixed text, and other
language-specific code, and the region file dat at ool —(region) . 1d £ (forexample, datatool
—GB . 1df) which deals with language-independent region code. You will need both files for full
support but partial support can be obtained if one is missing.

The region files are fairly straightforward (albeit time-consuming) to create. They are therefore
all bundled together in a single distribution datatool—regions which needs to be installed in
addition to installing datatool. See §2.3.4 for further details.

Locale-sensitive commands that relate to regions may all be reset back to their original definitions
with:

) §

\DTLresetRegion

Note that this will clear \1_datatool_current_region_t1 and reset the current
number group character and decimal character and currency in addition to redefining commands
suchas \DTLCurrentLocaleCurrencyDP.

The language files are more complicated and require knowledge of someone familiar with the
language. Each language bundle should therefore be developed independently by a maintainer
fluent in the language and it will need to be installed in addition to installing datatool. At the time
of writing, only datatool—english is available, but you can copy and adapt it as appropriate. (Don’t
add me as author or maintainer of your contribution.) The datatool—english bundle includes
limited support for Old English (Anglo-Saxon) for Latin and Runic scripts, which may be used as
examples for extended Latin or non-Latin languages. See §2.3.5 for further details.

Locale-sensitive commands that relate to language may all be reset back to their original
definitions with:

X

\DTLresetLanguage

28

2. Base Commands (datatool—base package)

Note that this clears \1_datatool_current_language_t1l in addition to redefin-
ing commands such as \DTLandname, but only for the datatool—base set of commands.
Additional commands provided for the supplementary packages are not affected.

Example 8 assumes that datatool—regions and datatool—english are both installed.

B

\usepackage[locales=en-CA] {datatool-base}

\begin{document}
Default currency: \DTLCurrencyCode.

\newcommand{\mylist}{elk,élite, elephant}
\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Sorted list: \DTLformatlist{\mylist}.
\end{document}

4 Example 8: Localisation Support (en-CA) \ERE

Default currency: CAD.
Sorted list: elephant, élite and elk.

The above example shows the default currency code “CAD”, which has been set by datatool
—CA.1df. The sorted list has “élite” between “elephant” and “elk” because datatool
—english. 1df has enabled support for common UTF-8 characters so that “€” is treated as
“e” for sorting purposes.

Suppose now that you have datatool—regions installed but no French support. However your =9
document language is French Canadian (fr-CA):

,
\usepackage{babel}
\babelprovide{canadianfrench}
\usepackage{datatool-base}
\begin{document }

Default currency: \DTLCurrencyCode.

\newcommand{\mylist}{elk,élite,elephant}
\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Sorted list: \DTLformatlist{\mylist}.
\end{document}

In this case, the datatool—-CA. 1df file is found, so the default currency code is still CAD

but no file is found to provide support for the sorting handler so the extended Latin character “é”
is placed after the Basic Latin characters.

29

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 8 Localisation Support (en-CA)
% Label: "ex:enCA"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[locales=en-CA]{datatool-base}
\begin{document}
Default currency: \DTLCurrencyCode.

\newcommand{\mylist}{elk,élite,elephant}
\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Sorted list: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Localisation Support (en-CA) (source code)
Example document demonstrating support for en-CA region (datatool-regions and datatool-english must be installed as well) (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example008.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example008.pdf

2. Base Commands (datatool—base package)

N Example 9: Localisation Support (fr-CA) NERE

Default currency: CAD.
Sorted list: elephant, elk & élite.

Localisation files may provide options. These are define with: \datatoollocaledefinekeys:nn
This is simply a shortcut that uses \keys_define :nn. The (module) should be the applica-
ble language code (for example, “en”) or region code (for example, “GB”) or tag (for example,
“en-CA” or “fr-CA”), depending on what kind of support the file provides. Sub-modules may also
be specified.
These options can be set in the document with:

X

\DTLsetLocaleOptions [(parent module(s))] { (module(s)) } { (key=value
list) } modifier: *

If the optional argument is provided, this iterates over each locale parent module and sets the
given options for each sub-module identified by (parent) / (module). If the optional argument is
omitted or empty, this iterates over each locale module and sets the given options.

For example, with datatool—-GB. 1df the parent module is “GB” and there are no sub-
modules. To switch number style:

=

[\DTLsetLocaleOptions{GB}{number-style=education}

Another example, both datatool-GB.1df and datatool—-CA.1df support a cur-
rency symbol prefix so the setting can be switched on for both at the same time:

=

[\DTLsetLocaleOptions{CA,GB}{currency-symbol-prefix}

The databib-english.1df has parent module “en” and sub-module “databib”. To
switch the way month names are abbreviated for the abbrv style:

Ei

\DTLsetLocaleOptions[en] {databib}{short-month-
style=dotless}

Or:

30

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 9 Localisation Support (fr-CA)
% Label: "ex:frCA"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[T1]{fontenc}
\usepackage{babel}
\babelprovide{canadianfrench}
\usepackage{datatool-base}
\begin{document}
Default currency: \DTLCurrencyCode.

\newcommand{\mylist}{elk,élite,elephant}
\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Sorted list: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Localisation Support (fr-CA) (source code)
Example document demonstrating support for fr-CA region (datatool localisation files must be installed as well) (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example009.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example009.pdf

2. Base Commands (datatool—base package)

\DTLsetLocaleOptions{en/databib}{short-month-
style=dotless}

The unstarred form uses: \datatoolsetlocaleoptions:nn This iterates over
each module and sets the provided options using \keys_set : nn, which will trigger an error
for unknown options.

The starred form uses: \datatoolsetlocaleoptions:nn This iterates over each
module and sets the provided options using \keys_set_known : nn, which won’t trigger
an error for unknown options.

If you want to directly use the I3keys functions, the module path should be prefixed with
“datatool / locale /~

2.3.1. Encoding

In recent years, the I£TEX kernel has provided significant improvements to UTF-8 support for
pdfISTEX. (The newer engines, XgI4TEX and LualfTEX are natively UTF-8.) In particular, even
if you don’t load inputenc, the document is now assumed to be UTF-8 (whereas in the past the
default encoding was ASCII).

A

If inputenc is required, it should be loaded before datatool—base (and tracklang). Non-UTF-
8 documents may not be supported by the localisation files. For example, the (string)
argument of \DTLde fcurrency may not be correct.

To assist localisation files, the datatool—base package provides both a string (detokenized)
variable and corresponding token list variables that expand to common symbols (mostly currency)
that are included in Unicode and may be of use with localisation. These variables are first
defined to expand to an approximate ASCII representation, but then will be redefined if the
relevant dat at ool—(encoding) . 1 df file is found. This means that unsupported encodings
will fallback on ASCII values. There is limited support for ISO-8859-1 (cent, pound, currency
and yen).

For example, datatool—-GB. 1df defines the GBP currency as follows:

\datatool_def_currency:nnnV
{ \datatoolGBcurrencyfmt }
{ GBP }

{ \pounds }
\1l_datatool_pound_t1l

.

This means that the region 1d £ file doesn’t need to keep track of the encoding. (The language
1df typically does.)

31

2. Base Commands (datatool—base package)

\1l datatool cent_ str

[T

Expands to the string representation of the cent sign
“c” otherwise..

, if supported by the current encoding, or

)

X

\l datatool cent tl

“K

Expands to the symbol representation of the cent sign
or “c” otherwise..

, 1f supported by the current encoding,

I

\1l_datatool_pound_str

“

Expands to the string representation of the pound sign
or “L” otherwise..

, if supported by the current encoding,

X

\1l_datatool_pound_t1

[Tl

Expands to the symbol representation of the pound sign
or “L7” otherwise..

, if supported by the current encoding,

)

X

\1l_datatool_currency_str

[T

Expands to the string representation of the currency sign
or “ # ” otherwise..

, if supported by the current encoding,

I

\1l_datatool_currency_tl

6

Expands to the symbol representation of the currency sign
or “ # ” otherwise..

, if supported by the current encoding,

X

\1l_datatool_yen_str

[T

Expands to the string representation of the yen sign
“Y” otherwise..

, if supported by the current encoding, or

D

X

\1l_datatool_yen_t1l

[134]

Expands to the symbol representation of the yen sign
“Y” otherwise..

, if supported by the current encoding, or

32

2. Base Commands (datatool—base package)

b §
\1l datatool middot_ str
Expands to the string representation of the middle dot (raised decimal point) “ ”, if supported by
the current encoding, or “ . ” otherwise..
b §
\l datatool middot_ t1l
Expands to the symbol representation of the middle dot (raised decimal point) “ ”, if supported
by the current encoding, or “ . ” otherwise..
X

\l datatool florin_ str

[T

Expands to the string representation of the florin sign
or “ £” otherwise..

, if supported by the current encoding,

X

\l datatool florin t1l

[Tt

Expands to the symbol representation of the florin sign
or “ £” otherwise..

, if supported by the current encoding,

X

\1l datatool_baht_ str

“

Expands to the string representation of the baht sign
“B” otherwise..

, if supported by the current encoding, or

X

\1l datatool baht t1l

({34

Expands to the symbol representation of the baht sign
or “B” otherwise..

, if supported by the current encoding,

X

\1l datatool ecu_str

6

Expands to the string representation of the ecu sign
“CE” otherwise..

, if supported by the current encoding, or

e

X

\1l datatool ecu_tl

[T

Expands to the symbol representation of the ecu sign
“CE” otherwise..

, if supported by the current encoding, or

33

2. Base Commands (datatool—base package)

\1l_datatool_colonsign_str

[

Expands to the string representation of the colon sign
or “C” otherwise..

, if supported by the current encoding,

X

\1_datatool_colonsign_tl

6

Expands to the symbol representation of the colon sign
or “C” otherwise..

, if supported by the current encoding,

D ——

X

\l datatool cruzerio_str

[T

Expands to the string representation of the cruzerio sign
or “Cr ” otherwise..

, if supported by the current encoding,

X

\l datatool cruzerio tl

[Tt

Expands to the symbol representation of the cruzerio sign
or “Cr” otherwise..

, if supported by the current encoding,

X

\1l datatool frenchfranc_str

6

Expands to the string representation of the French franc sign
encoding, or “F ” otherwise..

, if supported by the current

i

X

\1l datatool frenchfranc_ tl

6K

Expands to the symbol representation of the French franc sign
encoding, or “F ” otherwise..

, if supported by the current

D ——

X

\l datatool lira str

[

Expands to the string representation of the lira sign
“L7” otherwise..

, if supported by the current encoding, or

)

X

\l datatool lira tl

[t

Expands to the symbol representation of the lira sign
“L7” otherwise..

, if supported by the current encoding, or

34

2. Base Commands (datatool—base package)

\l datatool mill str

({3

Expands to the string representation of the mill sign
“m?” otherwise..

, if supported by the current encoding, or

e

X

\1l datatool mill t1

“

Expands to the symbol representation of the mill sign
or “m” otherwise..

, if supported by the current encoding,

D —

X

\l datatool naira_ str

[T

Expands to the string representation of the naira sign
“N” otherwise..

, if supported by the current encoding, or

)

X

\l datatool naira_ tl

[T

Expands to the symbol representation of the naira sign
or “N” otherwise..

, 1f supported by the current encoding,

X

[\1l_datatool_peseta_str

({34

Expands to the string representation of the peseta sign
or “Pts” otherwise..

, if supported by the current encoding,

X

\1l_datatool_peseta_t1

[T

Expands to the symbol representation of the peseta sign
or “Pts” otherwise..

, if supported by the current encoding,

X

\1l_datatool_rupee_str

“

Expands to the string representation of the rupee sign
or “Rs ” otherwise..

, if supported by the current encoding,

D —

X

\1l_datatool_rupee_tl

[132)

Expands to the symbol representation of the rupee sign
or “Rs ” otherwise..

, if supported by the current encoding,

35

2. Base Commands (datatool—base package)

\1l datatool won_str

[T

Expands to the string representation of the won sign
“W?” otherwise..

, if supported by the current encoding, or

e

X

\1l datatool won_t1l

[132

Expands to the symbol representation of the won sign
or “W?” otherwise..

, if supported by the current encoding,

D —

X

\l datatool shekel str

(132

Expands to the string representation of the shekel sign
or “S” otherwise..

, if supported by the current encoding,

X

\l datatool shekel t1

[132]

Expands to the symbol representation of the shekel sign
or “S” otherwise..

, if supported by the current encoding,

7

\1l_datatool_dong_str

[T

Expands to the string representation of the dong sign
“d” otherwise..

, if supported by the current encoding, or

)

X

\1l_datatool_dong_tl

[132)

Expands to the symbol representation of the dong sign
or “d” otherwise..

, if supported by the current encoding,

X

\1l datatool euro_str

[T

Expands to the string representation of the euro sign
“E” otherwise..

, if supported by the current encoding, or

—

X

\1l datatool euro_tl

“

Expands to the symbol representation of the euro sign
or “E ” otherwise..

, if supported by the current encoding,

36

2. Base Commands (datatool—base package)

\1l_datatool_kip_str

[T

Expands to the string representation of the kip sign
“K?” otherwise..

, if supported by the current encoding, or

X

\1l_datatool_kip_tl

[T

Expands to the symbol representation of the kip sign “ ”, if supported by the current encoding, or

“K” otherwise..

X

\1l_datatool_tugrik_str

“

Expands to the string representation of the tugrik sign
or “T” otherwise..

, if supported by the current encoding,

)

X

\1_datatool_tugrik_t1

[13t]

Expands to the symbol representation of the tugrik sign
or “T” otherwise..

, if supported by the current encoding,

7

\1l datatool drachma_str

({34

Expands to the string representation of the drachma sign
or “Dr ” otherwise..

, if supported by the current encoding,

X

\1l datatool drachma_tl

[T

Expands to the symbol representation of the drachma sign
or “Dr ” otherwise..

, if supported by the current encoding,

X

\1l_datatool_germanpenny_str

[T

Expands to the string representation of the Germany penny sign
encoding, or “p ” otherwise..

, if supported by the current

X

\1l_datatool_germanpenny_t1l

[T

Expands to the symbol representation of the Germany penny sign “ ”, if supported by the current

encoding, or “p ” otherwise..

37

2. Base Commands (datatool—base package)

\1l_datatool_peso_str

Expands to the string representation of the peso sign “ 7, if
“P ” otherwise..

supported by the current encoding, or

X

\1l_datatool_peso_tl

“w

Expands to the symbol representation of the peso sign “ 7,
or “P ” otherwise..

if supported by the current encoding,

X

\1l_datatool_guarani_str

[Tt

Expands to the string representation of the guarani sign “ ”,
or “G. ” otherwise..

if supported by the current encoding,

X

\1l_datatool_guarani_t1l

[T

Expands to the symbol representation of the guarani sign
or “G. ” otherwise..

, if supported by the current encoding,

e

X

\1l datatool austral str

K

Expands to the string representation of the austral sign “ ”,
or “A” otherwise..

if supported by the current encoding,

D —

X

\l datatool austral tl

[t

Expands to the symbol representation of the austral sign “ ”, if supported by the current encoding,

or “A” otherwise..

D ——

X

\1l_datatool_hryvnia_str

[T

Expands to the string representation of the hryvnia sign “ ”,
or “S” otherwise..

if supported by the current encoding,

X

\1l_datatool_hryvnia_t1l

[Tt

Expands to the symbol representation of the hryvnia sign
or “S” otherwise..

38

, if supported by the current encoding,

2. Base Commands (datatool—base package)

\1l datatool cedi_ str

({3

Expands to the string representation of the cedi sign
“S7” otherwise..

, if supported by the current encoding, or

)

X

\l datatool cedi tl

“ »

Expands to the symbol representation of the cedi sign
or “S” otherwise..

, 1f supported by the current encoding,

I

\l datatool livretournols_ str

“

Expands to the string representation of the livre tournois sign
encoding, or “ 1t ” otherwise..

, if supported by the current

X

[\1l datatool livretournois_tl

[T

Expands to the symbol representation of the livre tournois sign “ ”, if supported by the current

encoding, or “ 1t ” otherwise..

e

X

\1l_datatool_spesmilo_str

[Tt

Expands to the string representation of the spesmilo sign
or “ Sm” otherwise..

, if supported by the current encoding,

X

\1l_datatool_spesmilo_tl

It

Expands to the symbol representation of the spesmilo sign
or “ Sm” otherwise..

, if supported by the current encoding,

D ——

X

\1l_datatool_tenge_str

[T

Expands to the string representation of the tenge sign
or “T” otherwise..

, if supported by the current encoding,

X

\1l_datatool_tenge_tl1

[T

Expands to the symbol representation of the tenge sign
or “ T ” otherwise..

, if supported by the current encoding,

39

2. Base Commands (datatool—base package)

\1l_datatool_indianrupee_str

[T

Expands to the string representation of the Indian rupee sign
encoding, or “R” otherwise..

, if supported by the current

7

\1l_datatool_indianrupee_t1l

6K

Expands to the symbol representation of the Indian rupee sign
encoding, or “R” otherwise..

, if supported by the current

D ——

X

\l datatool turkishlira str

[T

Expands to the string representation of the Turkish lira sign
encoding, or “ L ” otherwise..

, if supported by the current

X

\l datatool turkishlira tl

[

Expands to the symbol representation of the Turkish lira sign
encoding, or “ L ” otherwise..

, if supported by the current

7

\1l datatool nordicmark_str

[T

Expands to the string representation of the Nordic mark sign
encoding, or “M” otherwise..

, if supported by the current

X

\1l datatool nordicmark_ tl

“

Expands to the symbol representation of the Nordic mark sign
encoding, or “M” otherwise..

, if supported by the current

D —

X

\l datatool manat_ str

“

Expands to the string representation of the manat sign
or “M” otherwise..

, if supported by the current encoding,

)

X

\l datatool manat_ tl

[T

Expands to the symbol representation of the manat sign
or “M” otherwise..

, if supported by the current encoding,

40

2. Base Commands (datatool—base package)

\1l datatool ruble str

[Tt

Expands to the string representation of the ruble sign
“R7” otherwise..

, if supported by the current encoding, or

e

X

\1l datatool ruble tl

(134

Expands to the symbol representation of the ruble sign
or “R” otherwise..

, if supported by the current encoding,

D —

X

\l datatool lari_ str

(I3

Expands to the string representation of the lari sign
“L7” otherwise..

, if supported by the current encoding, or

)

X

\l datatool lari tl

[T

Expands to the symbol representation of the lari sign
“L7” otherwise..

, if supported by the current encoding, or

)

X

\l datatool bitcoin_ str

[T

Expands to the string representation of the bitcoin sign
or “L7” otherwise..

, if supported by the current encoding,

X

\l datatool bitcoin t1l

6K "

Expands to the symbol representation of the bitcoin sign
or “L” otherwise..

, if supported by the current encoding,

X

\l datatool som str

[Tt

Expands to the string representation of the som sign
“c” otherwise..

, if supported by the current encoding, or

X

\1l datatool som_tl

[T

Expands to the symbol representation of the som sign
or “c” otherwise..

If any of the currency symbols are available in the current encoding, they will be added to the
currency signs regular expression variable:

, if supported by the current encoding,

41

2. Base Commands (datatool—base package)

\1_datatool_currencysigns_regex

This may be used within the locale handler to match for supported currency symbols.

2.3.2. Numerical

Non locale-sensitive numeric commands (such as \dt 1add) require plain numbers with a
period/full stop decimal point (.) and no number group character or currency symbol.

Numeric commands for formatted numbers (such as \DTLadd) parse their values for the
currency symbol, decimal character and number group character. The number group character
is only used in integers and before the decimal character in decimal and currency values. The
decimal character is only relevant to decimal numbers and currency values.

X

\DTLsetnumberchars{ (number group char) } { (decimal char) }

2

Sets the current number group character and decimal character. The default values are “,
(comma) and “decimal point” (full stop/period), although localisation support may
change this.

With EETEX3 syntax enabled, the following may be used instead.

X

\datatool_set_numberchars: nn{ (number group char)} { (decimal char) }
variants: nV Vn VV

As from version 3.0, \DTLsetnumberchars simply uses this function to set the current
number group character and decimal character.

X

\datatool_set_numberchars : nnnn/{ (format number group
char) } { (format decimal char) } { (parse number group char) } { (parse decimal char) }
variants: VVVV eeee

Allows alternative content to be used when formatting, but be aware that repeated parsing and
formatting will fail if the parsing and formatting characters are different.

For more complex parsing requirements, regular expressions can be provided to match the
number group character and decimal character sub-groups:

X

\datatool_set_numberchars_regex:nnnn{ (format number group
char) } { (format decimal char) } { (parse number group regex) } { (parse decimal regex) }
variants: VVnn Vnnn nvVnn

The final two arguments should be in a regular expression form. These will be embedded into the
main parsing regular expression with \ur.

42

2. Base Commands (datatool—base package)

\datatool_set_numberchars_regex_t1:nnnn{ (format number
group char) } { (format decimal char) } { (parse number group regex) } { (parse decimal
char) } variants: VVnn Vnnn nVnn nvnV nnnV

The third argument is a regular expression to match the number group character but the fourth is
just the decimal character.

——

X

\datatool_set_numberchars_tl_regex:nnnn{ (format number
group char) } { (format decimal char) } { (parse number group char) } { (parse decimal
regex) I variants: VVnn Vvnnn nvVvnn vnvVn nnvn

The third is just the decimal character but the fourth argument is a regular expression to match
the decimal character.
The following are just shortcuts that use one of the above.

X
\datatool_set_thinspace_group_decimal_char :n{(decimal
char) } variant: V

A special case for thin space number group separators. This command is similar to \dat a-
tool_set_numberchars:nn butuses \, (thin space) for the number group character
when formatting, and allows \ , or a normal space or the Unicode character U+2009 (thin space)
as the number group character when parsing. The decimal character for both formatting and
parsing is set to (decimal char).

D —

X

\datatool_set_underscore_group_decimal_char :n{(decimal
char)} variant: V

Similarly, but uses \ __ for the number group character when formatting but accepts both __ or
the underscore character when parsing.

X

\datatool_set_apos_group_decimal_char:n{(decimal char)}
variant:

Similarly, but uses an apostrophe (’) for the number group character when formatting but will
match on:

X

\c_datatool_apostrophe_regex

when parsing. This matches either the straight apostrophe (U+27) or the curly apostrophe
(U+2019).

43

2. Base Commands (datatool—base package)

\DTLsetdefaultcurrency{(ISO or symbol) }

Sets the default currency. If the argument is an ISO code, then the currency must have first
been defined with \DTLdefcurrency (see §2.6). This commands also defines \DTL-
CurrencyCode to expand to the associated ISO code and redefines \DTLfmtcurrency
to match the formatting associated with the currency.

(@]

=
To allow for backward-compatibility, if the argument hasn’t been identified with \DT L~

defcurrency thenit’s assumed to be just a currency symbol and \DTLCurrency—
Code will be defined to “XXX”. \DTLfmt currency won’t be changed. This form
is now discouraged and may be deprecated in future.

The region file should register the currency code with:

\datatool_register_regional_currency_code:nn
{(region-code) } { (currency-code) }

This makes it easier for the currency parser to check for currency symbols that are prefixed by the
region code (for example, US$ or GB£). Note that this check is only performed if the region file
defines:

X

\datatool(Region)symbolprefix{(rag)}

The prefix command allows the region code to be shown before the currency symbol, if applicable.
It may be used in the definition of the currency formatting command.

(@]

=
The naming of the \datat ool (Region)symbolprefix command is important as

the parser used by commands like \DTLparse will check for it and, if defined, will
also check for currency symbols prefixed by their region’s code.

The prefix command may either expand to nothing or to:

\datatool_currency_symbol_region_prefix:n{(tg)}

This uses \DTLcurrCodeOrSymOrChar to only show the tag when that command ex-
pands to its second or third argument. (Since the tag is typically the region code, it’s redundant to
insert it before the currency code.) The tag is formatted with:

44

2. Base Commands (datatool—base package)

\datatoolcurrencysymbolprefixfmt { (tag)}

This may be redefined, which will change the way the tag is formatted for all regions that support
it. For convenience, the numeric option region—currency—prefix may be used to
redefine this formatting command to use small caps.

Region files should provide a hook called

\datatool(Region)SetCurrency

where (Region) is the two letter uppercase region code. This command should check the boolean
variable:

X

\1l_datatool_region_set_currency_bool

(which corresponds to the region—currency numeric option). The hook should only set
the currency if this boolean value is true.
Similarly, a hook to set the current number group character and decimal character:

X
\datatool(Region)SetNumberChars
This command should check the boolean variable:
X
\1l_datatool_region_set_numberchars_bool

(which corresponds to the region—number—chars numeric option). The hook should
only set the number group and decimal characters if this boolean value is true.

If you simply want to typeset plain numbers as formatted numbers then consider using siunitx
instead. However you can use the following, which picks up the above settings.

X

\DTLdecimaltolocale{ (num)}{(cs)}

Converts a plain number (num) into a formatted number and stores the result in (cs). If a currency
symbol is required, use \DTLdecimaltocurrency instead. If \datatool_set_
numberchars:nnnn was used, the characters supplied with the (format number group
char) and (format decimal char) arguments will be used.

If the supplied value is not a plain number then a warning will occur and the result will be
a string. This is to allow for databases that contain missing value markup, such as “N/A” or
\textemdash.

45

2. Base Commands (datatool—base package)

\DTLdecimaltocurrency [{currency symbol)] { (num)} { (cs) }

Converts a plain number (num) into a formatted number (as above) with the currency symbol
supplied in the optional argument (or the default currency symbol if omitted) and stores the result
in (cs). The number of digits will be rounded according to:

X

\DTLCurrentLocaleCurrencyDP initial: 2

If the expansion text is empty then \DTLdecimaltocurrency won’t round the result.
Otherwise, the expansion text should be the number of decimal places to round to. This command
is redefined by localisation hooks.

For example

\documentclass{article}
\usepackage [en—-GB] {datatool-base}
\begin{document}
\DTLdecimaltocurrency{1234.5672}{\result}
% parse number

Result: \result.

Value: \DTLdatumvalue{\result}.
\end{document}

2.3.3. Lexicographical

The commands described in this section are used by string sorting and initial letter commands to
enable locale-sensitive functions to be used, if available.

X

\DTLCurrentLocaleWordHandler{(cs)}

This is the current locale word handler used by \DTLDefaultLocaleWordHandler.
If no localisation support is provided, this command does nothing. If localisation support is added,
this handler should make any appropriate adjustments to (cs) to convert its content to a byte
sequence that will ensure the string is correctly sorted according to the locale’s alphabet.

The handler definition will usually depend on the encoding. For example, datatool
—english-ut£8.1df defines \DTLenLocaleHandler and the following is added
(indirectly) to the language hook (see §2.3.5):

\let\DTLCurrentLocaleWordHandler\DTLenLocaleHandler

46

2. Base Commands (datatool—base package)

This allows accented characters, such as “A”, to be converted to non-accented Basic Latin charac-
ters, such as “A”. This command is also defined by datatool-english—latinl.1df
and datatool-english—ascii.ldf but has less support.

(@]

=
Remember that the purpose of the handler is to convert a string into a byte sequence that

reflects the desired ordering. This byte sequence is not intended to be typeset. It’s therefore
possible to use ASCII control characters to influence the order. This is the method used by
the marker commands, such as \datatoolpersoncomma.

7

For example, suppose you want to provide support for Icelandic, where A4, D, Eé, 1i, 06, U,
Yy, bp, £z and O6 are all distinct letters of the alphabet. This means that the method used by
the English hander isn’t appropriate.

As with the English handler, the punctuation characters can be adjusted to ensure that they are
placed before “A”. This means that the final uppercase letters “P”, “A” and “O” can be reassigned
to the character positions after “Z” and the lowercase “p”, “&” and “6” can be reassigned to the
character positions after “z” (similar to datatool—ang—-Latn. 1df). The other characters
need to be positioned between Basic Latin characters. For example, “A” needs to be between
“A” and “B”. This can be achieved by replacing uppercase “A” with “A” followed by the control
character 0x7F (which is the final ASCII character). Similarly lowercase “4” is replaced by “a”
followed by 0x7F and so on.

The language code for Icelandic is “is” so it will be used in the command names. Remem-
ber that \1_datatool_current_language_t1 will need to be redefined to match.
(Alternatively, “isl” or “ice” could also be used but the important thing is to be consistent in the

event that a region file tries searching for a command name to determine if it’s supported for the

current language.)

\ExplSyntaxOn
\newcommand {\DTLisLocaleHandler} [1]
{
\regex_replace_case_all:nN
{
{ A } { A\cI\x{7f} } { & } { a\cL\x{7f} }
{ B} { D\cL\x{7f} } { & } { d\cL\x{7f} }
{ E } { ENcI\x{7£f} } { €& } { e\cL\x{7f} }
{ T} { INcI\x{7£} } { 1 } { i\cL\x{7f} }
{ O} { O\cL\x{7f} } { & } { o\cL\x{7f} }
{ U} { UNcI\x{7f} } { G4 } { ul\cL\x{7f} }
{ Y} { Y\NeI\x{7£f} } { v } { y\cL\x{7f} }
{ B} { \cL\x{5b} } { b } { \cL\x{7b} }
{ E } { \cL\x{5c} } { & } { \cL\x{7c} }
{ O} { \cL\x{5d} } { 6 } { \cL\x{7d} }

47

210

2. Base Commands (datatool—base package)

% currency signs and punctuation
s [..]
t
#1
}
\ExplSyntaxOff

Substitutions for foreign language letters (such as replacing “B” with “ss”) should be added as
applicable. The currency signs and punctuation are as for \DTLenLocaleHandler, shown
earlier.

For example, the string “az” will be unchanged and has the byte sequence 0x61 0x7A. Whereas
the string “4a” will be converted by the above Icelandic handler to the byte sequence 0x61 0x7F
0x61. Since 0x7A is less than 0x7F, “az” comes before “4a”. With the English handler, “da” will
be converted to “aa” which has the byte sequence 0x61 0x61. Since 0x61 is less than 0x7A, “4a”
would come before “az”.

Note the use of \ cL to ensure that the replacement characters have a letter category code (even
though they’re not actually letters). This will allow the process to be reversed without changing
punctuation characters that were originally present in the sort string (see Example 12).

The language hook (see §2.3.5) then needs to set the locale handler:

=

\let\DTLCurrentLocaleWordHandler\DTLisLocaleHandler

You may prefer to use \ renewcommand if you want to provide options to adjust the handler
(aswithdatatool—ang—Runr.1ldf).
Example 10 uses the above to sort a list of words:

\newcommand{\mylist}

{békstafinn, vera, eda, ég, bysna,

pbtu, vakna, epli, bragds, aldar, bad, bolli, ymist, af,
badreidanleg, b&r, dalur, o&r, porn, pau, oktdber, esja,
6ngull, demi, ad, yfir, 6drum, ord, detta, ahrif, yngri
6vinur, xtlad}

\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Sorted list: \DTLformatlist{\mylist}.

48

2. Base Commands (datatool—base package)

£ Example 10: Icelandic Alphabetic NERE

Sorted list: ad, af, aldar, ahrif, bad, bolli, bokstafinn, bragds, bysna,
beer, dalur, detta, deemi, eda, epli, esja, ég, oktober, ord, 6areidanleg, évinur,
vakna, vera, yfir, yngri, ymist, pau, porn, pu, stlad, 6drum, éngull & or.

E3

\DTLCurrentLocaleGetGroupString{{(actual)} { (sort value)} { (cs) }

Thisisused by \DTLassignlettergroup toset (cs) (a token list variable) to the content
from which the letter group will be obtained (but only for string data types).

For example, datatool-english.1df sets (cs) to the sort value as this ensures that
any supported accented characters and ligatures will have already been converted to Basic Latin
characters.

However datatool—-ang-Latn.ldf anddatatool—-ang—Runr.1df can’'tdo
this as the construction of the sort value means that the characters in the sort value may be
significantly different from the actual letters. In this case, the original value must be used instead,
but it’s needs some processing to map extended characters to their equivalent sort group. For
example, “ZE” needs to be mapped to “ZE”. Additionally, the actual value is likely to need pre-
processing with \datatool_sort_preprocess:Nn.

X

\DTLCurrentLocaleGetInitiallLetter{(text)}{{cs)}

This is used by \DTLGetInitialLetter and \DTLassignlettergroup to ob-
tain the initial letter of the given text. The default definition just uses \datatool_get_
first_letter:nN which skips leading non-letters.

This command is intended for use with sorting functions to obtain the letter group, so the actual
letter returned may not be the initial letter. For example, if the word starts with the ligature “A”
then the localisation may return “A” rather than “Z”.

For example, datatool—-english. 1df defines:

\newcommand{\DTLenLocaleGetInitialletter}[2]{
\datatool_get_first_letter:nN { #1 } #2
\DTLenLocaleHandler #2
\int_compare:nNnT { \tl_count:N #2 } >

{ \c_one_int }

{
\exp_args:NV \datatool_get_first_

letter:nN #2 #2

t

49

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 10 Icelandic Alphabetic
% Label: "ex:icelandic"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{datatool-base}
\ExplSyntaxOn

\newcommand{\DTLisLocaleHandler}[1]{
 \regex_replace_case_all:nN
 {
 { Á } { A\cL\x{7f} }
 { á } { a\cL\x{7f} }
 { Ð } { D\cL\x{7f} }
 { ð } { d\cL\x{7f} }
 { É } { E\cL\x{7f} }
 { é } { e\cL\x{7f} }
 { Í } { I\cL\x{7f} }
 { í } { i\cL\x{7f} }
 { Ó } { O\cL\x{7f} }
 { ó } { o\cL\x{7f} }
 { Ú } { U\cL\x{7f} }
 { ú } { u\cL\x{7f} }
 { Ý } { Y\cL\x{7f} }
 { ý } { y\cL\x{7f} }
 { Þ } { \cL\x{5b} }
 { þ } { \cL\x{7b} }
 { Æ } { \cL\x{5c} }
 { æ } { \cL\x{7c} }
 { Ö } { \cL\x{5d} }
 { ö } { \cL\x{7d} }
 { ([[:punct:]]+) } { \cO"\1 }
 }
 #1
}

\ExplSyntaxOff

\let\DTLCurrentLocaleWordHandler\DTLisLocaleHandler

\newcommand{\mylist}{bókstafinn, vera, eða,
 ég, býsna, þú, vakna, epli, bragðs, aldar, bað, bolli, ýmist, af,
 óáreiðanleg, bær, dalur, ör, þorn, þau, október, esja, öngull, dæmi, að, yfir,
 öðrum, orð, detta, áhrif, yngri, óvinur, ætlað}
\begin{document}
\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Sorted list: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Icelandic Alphabetic (source code)
Example document demonstrating how support for the Icelandic alphabet can be provided for sorting. Typically the preamble code would be placed in a localisation file (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example010.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example010.pdf

2. Base Commands (datatool—base package)

and adds the following to the language hook:

\let\DTLCurrentlLocaleGetInitialletter
\DTLenlocaleGetInitialletter

(See §2.3.5 for further details.)
Example 11 has a possible implementation for Dutch that will search for “IJ” or “ij”:

\newcommand{\DTLdutchLocaleGetInitialletter}[2]{
\tl clear:N #2
\text_map_inline:nn { #1 }
{
\tl_if_empty:NTF #2
{
\datatool if letter:nT { ##1 }
{
\tl_set:Nn #2 { ##1 }
\tl if in:nnF { Ii } ##1
{ \text_map_break: }

}
}
{
\tl_if_in:nnT { Jj } { ##1 }
{
\tl_put_right:Nn #2 { ##1 }
}
\text_map_break:
}

}

(Note that this will also find “Ij” and “iJ”. Some adjustment is required to exclude those cases.)
Suppose that this has been implemented via a language hook (see §2.3.5):

\let\DTLCurrentlLocaleGetInitialletter
\DTLdutchLocaleGetInitialLetter

Then it will affect commands that fetch an initial letter, such as \DTLinitials:

IJsselmeer: \DTLinitials{IJsselmeer}
Industrieel: \DTLinitials{Industrieel}

50

2. Base Commands (datatool—base package)

""IJsselmeer'': \DTLinitials{ "IJsselmeer''}
" Industrieel'': \DTLinitials{ "Industrieel''}

The test for a letter (with \datatool_if_letter:nT) ensures that leading punctuation
is skipped.

N Example 11: 1J-Initial Support \EFE

IJsselmeer: 1J. Industrieel: 1. “IJsselmeer”: 1J. “Industrieel”: 1.

Remember that \DTLCurrentLocaleGetInitialLetter is also used to obtain
the letter group (but not the non-letter group) from sort values with \DTLsortwordlist.
Example 12 adapts the earlier Icelandic Example 10 to show the letter groups. Recall that
Example 10 substituted UTF-8 characters for ASCII characters with control codes or punctuation

(1=t bbl

characters used to influencing sorting. This means that, for example, “y” will be replaced with “y
followed by the control code 0x7F assigned with the letter category code.

The content used to obtain the group letter may be either the original (“actual”) string or
the sort value. This is determined by \DTLCurrentLocaleGetGroupString. For
example, datatool—-english.1df uses the sort value, since all the extended characters
are mapped to Basic Latin letters. In this case, we have some awkward control characters which
will mess up the letter group.

There are two ways of dealing with this. The first method is the case used by datatool
—ang-Latn.1df which defines \DTLangLatnLocaleGetGroupString. That
starts with the actual value and processes it with \datatool_sort_preprocess:Nn
and then replaces any leading accented character with the unaccented letter.

The second method is used here. This starts with the sort value and reverses the mapping applied
by the handler. In this case, a localisation file that provides \DTLisLocaleHandler
would also need to provide a way of reversing the substitutions for the letter groups. Since the
replacement (non-alphabetic) characters are assigned the letter category code, this makes them
easier to distinguish from actual punctuation characters.

\newcommand{\DTLisLocaleGetGroupString} [3]{
\tl_set:Nn #3 { #2 }
\regex_replace_case_once:nN

{
{ A\cL\x{7f} } { A } { a\cL\x{7f} } { & }
{ D\cL\x{7f} } { B } { d\cL\x{7f} } { & }
{ E\cI\x{7f} } { E } { e\cL\x{7f} } { & }
{ I\cL\x{7f} } { I } { i\cI\x{7f} } { 1 }
{ O\cL\x{7f} } { O } { o\cL\x{7f} } { & }
{ U\cL\x{7£} } { U } { u\cL\x{7f} } { 4 }

51

12

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 11 IJ-Initial Support
% Label: "ex:ijinitial"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\ExplSyntaxOn
 \newcommand{\DTLdutchLocaleGetInitialLetter}[2]{
 \tl_clear:N #2
 \text_map_inline:nn { #1 }
 {
 \tl_if_empty:NTF #2
 {
 \datatool_if_letter:nT { ##1 }
 {
 \tl_set:Nn #2 { ##1 }
 \tl_if_in:nnF { Ii } { ##1 } { \text_map_break: }
 }
 }
 {
 \tl_if_in:nnT { Jj } { ##1 }
 {
 \tl_put_right:Nn #2 { ##1 }
 }
 \text_map_break:
 }
 }
}
\ExplSyntaxOff

\let\DTLCurrentLocaleGetInitialLetter\DTLdutchLocaleGetInitialLetter
\begin{document}
IJsselmeer: \DTLinitials{IJsselmeer}
Industrieel: \DTLinitials{Industrieel}
``IJsselmeer'': \DTLinitials{``IJsselmeer''}
``Industrieel'': \DTLinitials{``Industrieel''}
\end{document}

Nicola Talbot
IJ-Initial Support (source code)
Example document demonstrating how IJ support can be added to commands that fetch an initial letter. Typically the preamble code would be placed in a localisation file (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example011.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example011.pdf

2. Base Commands (datatool—base package)

{ YNcL\x{7f} } { Y } { y\cL\x{7f} }

{ \cIL\x{5b} } { B } { \cL\x{7b} } {

{ \cL\x{5c} } { E } { \cL\x{7c} } {

{ \cL\x{5d} } { O } { \cL\x{7d} } {
b o#3

o8 O~
o e K

}

\.

Note that, unlike the handler function, this only needs to perform one replacement as we're

only

interested in the start of the string. Unlike the first method (used by \DTLangLatnLocale-
GetGroupString) we don’t need to worry about whether or not leading hyphens have been
stripped. Deciding which method to use comes down to whether it’s more complex to reverse the

mapping on the sort value or to process the actual value.
Suppose that this has been implemented via a language hook (see §2.3.5):

\let\DTLCurrentlLocaleGetInitialletter
\DTLisLocaleGetInitiallLetter

Example 10 can now be adapted to show the letter groups:

\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
\renewcommand{\DTLlistformatitem}[1]{#1 (\DTLsorted-
letter{#1})}

Sorted list: \DTLformatlist{\mylist}.

(A

“ Example 12: Icelandic Sorting and Letter Groups N\EXIE
Sorted list: ad (A), af (A), aldar (A), ahrif (A), bad (B), bolli (B), bok-

stafinn (B), bragds (B), bysna (B), beer (B), dalur (D), detta (D), deemi (D),
eda (E), epli (E), esja (E), ég (E), oktéber (O), ord (O), éareidanleg (O),
ovinur (O), vakna (V), vera (V), yiir (Y), yngri (Y), ymist (Y), bau (P),
born (P), bu (P), setlad (&), 60rum (O), éngull (O) & o6r (O).

X
\dtllettergroup{ (character)}

By default, this expands to \text_titlecase_first:n{(character)}. In the case of
Dutch, this would need to be changed to use \text_uppercase :n instead to ensure that

(139444

ij” becomes “1J” instead of “Ij”.

52

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 12 Icelandic Sorting and Letter Groups
% Label: "ex:icelandiclettergroup"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{datatool-base}
\ExplSyntaxOn

\newcommand{\DTLisLocaleHandler}[1]{
 \regex_replace_case_all:nN
 {
 { Á } { A\cL\x{7f} }
 { á } { a\cL\x{7f} }
 { Ð } { D\cL\x{7f} }
 { ð } { d\cL\x{7f} }
 { É } { E\cL\x{7f} }
 { é } { e\cL\x{7f} }
 { Í } { I\cL\x{7f} }
 { í } { i\cL\x{7f} }
 { Ó } { O\cL\x{7f} }
 { ó } { o\cL\x{7f} }
 { Ú } { U\cL\x{7f} }
 { ú } { u\cL\x{7f} }
 { Ý } { Y\cL\x{7f} }
 { ý } { y\cL\x{7f} }
 { Þ } { \cL\x{5b} }
 { þ } { \cL\x{7b} }
 { Æ } { \cL\x{5c} }
 { æ } { \cL\x{7c} }
 { Ö } { \cL\x{5d} }
 { ö } { \cL\x{7d} }
 { ([[:punct:]]+) } { \cO"\1 }
 }
 #1
}

\newcommand{\DTLisLocaleGetInitialLetter}[2]{
 \tl_set:Nn #2 { #1 }
 \regex_replace_case_all:nN
 {
 { A\cL\x{7f} } { Á } { a\cL\x{7f} } { á }
 { D\cL\x{7f} } { Ð } { d\cL\x{7f} } { ð }
 { E\cL\x{7f} } { É } { e\cL\x{7f} } { é }
 { I\cL\x{7f} } { Í } { i\cL\x{7f} } { í }
 { O\cL\x{7f} } { Ó } { o\cL\x{7f} } { ó }
 { U\cL\x{7f} } { Ú } { u\cL\x{7f} } { ú }
 { Y\cL\x{7f} } { Ý } { y\cL\x{7f} } { ý }
 { \cL\x{5b} } { Þ } { \cL\x{7b} } { þ }
 { \cL\x{5c} } { Æ } { \cL\x{7c} } { æ }
 { \cL\x{5d} } { Ö } { \cL\x{7d} } { ö }
 } #2
 \exp_args:No \datatool_get_first_letter:nN { #2 } #2
}

\ExplSyntaxOff

\let\DTLCurrentLocaleWordHandler\DTLisLocaleHandler \let\DTLCurrentLocaleGetInitialLetter\DTLisLocaleGetInitialLetter

\newcommand{\mylist}{bókstafinn, vera, eða,
 ég, býsna, þú, vakna, epli, bragðs, aldar, bað, bolli, ýmist, af,
 óáreiðanleg, bær, dalur, ör, þorn, þau, október, esja, öngull, dæmi, að, yfir,
 öðrum, orð, detta, áhrif, yngri, óvinur, ætlað}
\begin{document}
\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
\renewcommand{\DTLlistformatitem}[1]{#1 (\DTLsortedletter{#1})}
Sorted list: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Icelandic Sorting and Letter Groups (source code)
Example document demonstrating how support for the Icelandic alphabet can be provided for sorting and letter groups. Typically the preamble code would be placed in a localisation file (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example012.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example012.pdf

2. Base Commands (datatool—base package)

\dtlnonlettergroup{ (character)}

By default, this simply expands to (character). A language file may redefine this to produce a
textual title. For example, “Symbols”.

For the Icelandic word sort handler in Example 10, the (character) will always be the double-
quote " because of the final substitution case in the regular expression. For the handler provided
indatatool-english-ut£f8.1df (see §2.3.5), the character will either be a double-
quote " or a literal dollar $ (with category code other).

X

\dt lnumbergroup{ (num) }

(Only used with sort—datum={true}.) By default, this simply expands to (num). A
language file may redefine this to produce a textual title. For example, “Numbers”.

X

\dtlcurrencygroup{ (sym)} { (num)}

(Only used with sort-datum={true}.) By default, this simply expands to (sym). A
language file may redefine this to produce a textual title. For example, “Currency”.

2.3.4. Adding New Region Support

The language-independent region files are all bundled together in a single distribution datatool
—regions which is separate from the core datatool distribution and available on GitHub (https:
//github.com/nlct/datatool-regions). There are currently only a limited
number of regions supported but more can be added via a pull request and only the datatool
—regions collection need be uploaded, without the extra overhead of producing a new version of
datatool.

o

There is an interactive Perl script on GitHub that will create a dat at ool —(region) . 1df
file based on your responses.

The region file deals with setting the default currency, number group character and decimal
character, and also the numeric date formats for use with parse=region or parse=
iso+region. Note that any date formats that have textual parts (such as month names)
should be dealt with by the language support.

A more specific dat at ool —(lang)—(region) . 1 d £ file may be used to override any of these
settings but that file should be provided with the corresponding language support (see §2.3.5).
For example, datatool—english provides datatocol—en—CA. 1df to set the number group
character and decimal character since it varies according to the language for that region.

53

https://github.com/nlct/datatool-regions
https://github.com/nlct/datatool-regions

2. Base Commands (datatool—base package)

[For further details, see the datatool—regions documentation.

2.3.5. Adding New Language Support

The datatool—english package (distributed separately) may be used as an example. (The datatool
—english bundle includes databib—-english. 1df to provide localisation support for the
databib package, and person—english. 1df to provide localisation support for the person
package, see §§7.11 & 9.7.3 for further details.)

The datatool—english bundle also includes limited support for Old English (Anglo-Saxon)
for Latin and Runic scripts, which may be used as examples for extended Latin or non-Latin
languages.

The language file should be called datat ool —(language) . 1Ldf where (language) is the
root language label (tracklang label). Using the root language label ensures that it’s the last in
tracklang’s file search list, which means that it can be overridden by a more specific label, if
required. So in the event that there is some particular language setting that is specific to a particular
region, a language module may also include a file named datat ool —(lang)—(region) . 1Ldf
where (lang) is the language code (such as “fr”) and (region) is the region code (such as “CA”)..

For example:

\TrackLangProvidesResource{fr-CA}
\TrackLangRequireResource{french}
\ExplSyntaxOn
\newcommand\datatoolfrCASetNumberChars

{

\bool_if:NT \1l_datatool_region_set_numberchars_bool

\DTLsetnumberchars{.}{, }
% number group and decimal symbol

}
\newcommand\DTLfrCALocaleHook

{
\datatoolfrCASetNumberChars
}
\ExplSyntaxOff
\TrackLangAddToCaptions{\DTLfrCALocaleHook}

The datatool—english distribution provides a similar datatool—-en—CA. 1df file.

In the case of datatool—english, the root language label is “english” (even if the language
has been specified using a dialect label, such as “british”) so the filename is datatool
—english.1df. The file needs to identify itself (analogous to \ProvidesPackage for

54

2. Base Commands (datatool—base package)

packages):

\TrackLangProvidesResource {(language)}
[{yyyy)/ (mm)/{dd) ~(version)]

Although pdfIATEX now defaults to UTF-8, it can be helpful to provide some support for other

encodings. The document encoding (as detected by tracklang) can be obtained by expanding
\TrackLangEncodingName (\inputencoding isn’t guaranteed to be defined).

The datatool—english bundle includes (limited) support for ISO-8859-1 (Latin-1) and ASCII

in addition to UTF-8. The encoding support is provided in the files datatocol—-english

—latinl.1ldf, datatool-english—-ascii.ldf and datatool-english

—ut £8.1df. The following code will input the appropriate file or fallback on the ASCII file if

the encoding isn’t supported:

7~

\TrackLangRequestResource{english-\TrackLangEncoding-
Name }

{

\TrackLangRequireResource{english—-ascii}

}

Note the difference between requesting a resource and requiring it.
Compare this with the Anglo-Saxon support. The root language label is “anglosaxon” so there
is a file called datatool—-anglosaxon. 1df but because there are two different scripts

to cater for, it just ensures that the appropriate file is loaded.

\TrackLangProvidesResource{anglosaxon}
\TrackLangRequestResource
{ang-\CurrentTrackedDialectScript—-\TrackLang—
EncodingName }
{%
\PackageWarning{datatool—-anglosaxon}%
{%
No support for "anglosaxon' with script
"\CurrentTrackedDialectScript'
and encoding " \TrackLangEncodingName'%

o\°

}

}

This file is actually just a fallback as the filesdatatool—-ang—-Latn.ldfanddatatool
—ang—Runr. 1df should be found first. Note that the script indicates the script of the input
or source text. That is, the text used in the document source code, which may not correspond to
the glyphs visible in the PDF file.
For example, a package may provide a command called, say \ runic, which expects Latin
characters in the argument but the font encoding ensures that those characters appear as runes in

55

2. Base Commands (datatool—base package)

the PDF. In this case, the source is Latin and so “ang-Latn” is needed when specifying the locale.

If, however, the source code actually contains characters from the Runic Unicode block (with
an appropriate font that supports those characters), the source is Runic and so “ang-Runr” is
needed when specifying the locale.

The files datatool—-ang—Latn.ldf and datatool—-ang—-Runr. 1df are sim-
ilar to datatool—-english. 1df but, in these cases, there’s no fallback to ASCII as it
doesn’t cover all characters from the Latin script and doesn’t cover any for the Runic script.
Instead, if the encoding isn’t supported, then no localisation can be provided. For example,
datatool—-ang-Latn.1df starts with:

\TrackLangProvidesResource{ang-Latn}
\TrackLangRequestResource{ang-Latn-\TrackLang-
EncodingName }
{%
\PackageWarning{datatool-ang-Latn}%
{%
No support for "anglosaxon' with script "Latn'
and encoding ~\TrackLangEncodingName'.%
}%
\endinput
}

The code fordatatool—ang—Runr. 1df issimilar. Only UTF-8 is supported (datatool
—ang-Latn-utf8.1ldf anddatatool-ang—Runr—utf£8.1df), but this method
allows for other encodings to be added by simply creating a file with an appropriate name.
For both the English and Old English support, we will be using some ISIEX3 syntax, so the
appropriate category codes must be changed:

[\ExplSyntaxOn

The definition of \DTLenLocaleGetGroupString ensures that the letter group is
obtained from the sort value rather than the actual value:

\newcommand\DTLenLocaleGetGroupString[3]
{

\tl_set:Nn #3 { #2 }
t

This ensures that the accents are stripped, but it will mean that the currency and punctuation marks

will have their initial marker that’s inserted by the handler function \DTLenLocaleHan-
dler. Bear in mind that \DTLenLocaleGetGroupString is only used for values
that have been identified as strings. It’s not used by other data types. The non-letter characters
used to alter the order of currency and punctuation marks is usually not relevant, as the non-letter
group title (\dt lnonlettergroup) typically ignores the character.

56

2. Base Commands (datatool—base package)

This conveniently works for English, which just maps extended characters to Basic Latin letters
(A—Z, a—z), but will cause a problem for Anglo-Saxon, both Latin and Runic. In the case of
datatool-ang-Latn.1df, the extended characters P (wynn), D (eth), £ (AE-ligature),
P (thorn) are converted to the character codes following “Z” and, similarly, the lowercase p, 9, @,
p are converted to the character codes following “z”. This means that if the sort value is used to
obtain the letter group, then these extended characters will be assigned to the non-letter group.

Therefore, it’s necessary to use the actual value rather than the sort value, but some additional
processing is required to ensure that characters with diacritics are placed in the same group as the
unaccented character. For example, “Z&” needs to be mapped to “Z”. This is performed by a
low-level function that performs a regular expression substitution.

Note that this doesn’t take into account a sort handler that strips content, such as the letter
handler functions that remove spaces and hyphens. This will cause a problem for any words that
start with a hyphen. Since the handler function \DTLangLatnLocaleHandler inserts
a double-quote character in front of any punctuation, it’s possible to check if the actual value
starts with a hyphen and if the sort value starts with a double-quote then the hyphen likely wasn’t
stripped so it can be removed. This is done as follows:

\newcommand \DTLangLatnLocaleGetGroupString { 3 }
{
\tl_set:Nn #3 { #1 }
\datatool_angLatn_process_letter_group:N #3
\bool_lazy_and:nnT
{ \tl_if_head_eq charcode_p:nN { #1 } - }
{ \bool_not_p:n { \tl_if head_eqg_charcode_p:nN
{#2 } " } }
{
\exp_args:NNe \tl_set:Nn #3 { \tl_tail:N #3 }
t

}

In the case of datatool—-ang—Runr.1df there are no hyphens to worry about so it’s
far simpler to just assign the token list variable to the actual value. Any further processing is down
to whether or not the sort handler considers multiple runes to be considered equivalent for sorting
purposes.

For both English and the two different scripts of Old English, the support for \DTLCurrent-
LocaleGetInitialLetter is the same as the default definition provided by datatool

—base. For example, datatool—-english. 1df defines:

\newcommand \DTLenlLocaleGetInitialletter [2]

{
\datatool_get_first_letter:nN { #1 } #2

}

57

2. Base Commands (datatool—base package)

The only other support provided by datatool—-ang—Latn.1ldf and datatool
—ang-Runr. 1df is to redefine \DTLandname to use the Tironian et.

Returning to datatool—-english. 1df, support is provided to produce textual labels
for the non-letter group, number group, currency group and temporal group commands:

\newcommand \DTLenSetLetterGroups
{
\renewcommand \dtllettergroup [1]

{ \text_titlecase first:n { ##1 } }
\renewcommand \dtlnonlettergroup [1] { Symbols }
\renewcommand \dtlnumbergroup [1] { Numbers }
\renewcommand \dtlcurrencygroup [2] { Currency }
\renewcommand \dtldatetimegroup [1]

{ Timestamps }
\renewcommand \dtldategroup [1]
\renewcommand \dtltimegroup [1]

}

Aside from the above, the fixed-text commands for datatool—base are \DTLandname, \DTL-
datatypeunsetname, \DTLdatatypestringname, \DTLdatatypeinte-
gername, \DTLdatatypedecimalname, \DTLdatatypecurrencyname, \DTL-
datatypedatetimename, \DTLdatatypedatename, \DTLdatatypetime-
name, and \DTLdatatypeinvalidname.

(Some of the supplementary packages have additional fixed-text commands, but they are dealt
with in their own 1df files.) An intermediate command is defined to set \DTLandname:

Dates }
Times }

.

\newcommand \DTLenSetAndName

{

\renewcommand \DTLandname { and }

}

This makes it easier to for the supplied option to redefine it:

58

2. Base Commands (datatool—base package)

\datatool_locale_define_keys:nn { en }
{
and .choice:,
and / word .code:n =
{
\renewcommand \DTLenSetAndName
{
\renewcommand \DTLandname { and }
}
\tl_if_ eq:NnT \1l_datatool_current_language_t1l
{ en }
{ \DTLenSetAndName }
|
and / amp .code:n =
{
\renewcommand \DTLenSetAndName
{
\renewcommand \DTLandname { \& }
I3
\tl_if eq:NnT \1l_datatool_current_language_tl
{ en }
{ \DTLenSetAndName }
oy
}

This is added to the hook that sets all the datatool—base textual commands:

\newcommand \DTLenTranslations
{
\DTLenSetAndName
\renewcommand \DTLdatatypeunsetname { unset }
\renewcommand \DTLdatatypestringname { string }
\renewcommand \DTLdatatypeintegername { integer }
\renewcommand \DTLdatatypedecimalname { decimal }
\renewcommand \DTLdatatypecurrencyname { currency }

\renewcommand \DTLdatatypedatetimename { date-
time }

\renewcommand \DTLdatatypedatename { date }

\renewcommand \DTLdatatypetimename { time }

\renewcommand \DTLdatatypeinvalidname { invalid }

}

59

2. Base Commands (datatool—base package)

After that comes the support for date and time formatting, but it’s still experimental.
As with the region datatool—-GB. 1df file, describe in §2.3.4, a single intermediate
command is defined that will be added to the captions hook:

7~

\newcommand \DTLenLocaleHook
{
\renewcommand
\DTLCurrentLocaleWordHandler
{ \DTLenLocaleHandler }
\renewcommand
\DTLCurrentLocaleGetInitialLetter
{ \DTLenLocaleGetInitialLetter }
\renewcommand
\DTLCurrentLocaleGetGroupString
{ \DTLenLocaleGetGroupString }
\DTLenSetLetterGroups
% date and time assignments
[...]
\tl_set:Nn \1l_datatool_current_language_tl { en }
% Fixed text command:
\DTLenTranslations

o\

}
\ExplSyntaxOff
\TrackLangAddToCaptions{\DTLenLocaleHook}

If babel or polyglossia have been loaded, this willadd \DTLenLocaleHook tothe \captions-
(dialect) hook. The command will be implemented at this point as well, which will make it the
current setting if there’s no hook.

Note that each language file should ensure that the caption hook sets the token list variable:

b §
[\1l_datatool_current_language_tl initial: empty

to expand to the language code (as above). This may then be referenced by the region file, if
necessary. Note that it’s used for checking control sequence names to test if the language provides
support for particular settings, therefore don’t include a hyphen as it will make it harder to define
the appropriate commands. For example, datatool—-ang-Latn. 1df has:

\tl_set:Nn \1l_datatool_current_language_t1l
{ anglLatn }

and datatool—-ang—Runr.1ldf has:

60

2. Base Commands (datatool—base package)

\tl_set:Nn \1l_datatool_current_language_tl
{ angRunr }

The locale handlers are provided in the encoding files. For example, \DTLenLocaleHan-
dlerisprovidledindatatool-english-utf8.1df,datatool-english-latinl.1df
and datatool-english—-ascii.ldf. This is used to convert strings into byte se-
quences for lexicographical comparisons. For example, datatool-english-utf8.1df
replaces common extended Latin characters into the nearest ASCII equivalent, suitable for English
ordering. This can conveniently be done with regular expression replacement.

\cs_new:Npn \DTLenLocaleHandler #1
{

\regex_replace_case_all:nN

{

% alphabetical cases
[

]

{ (\ur{l_datatool_currencysigns_regex}) }

{ \cO\x{24}\1 }

o\

{7} { \cO"' }

{ “} { \cO" }

£ ¢“17) + { \cO"\cOo" }

{ (=1=) } { \cO"- }

{ ([[:punct:11+) } { \cO"\1 }
t
#1

}

The final substitutions are for currency and any punctuation and is designed to gather together
currency symbols and punctuation marks. (Otherwise they would be in their character code
order which would spread them before and after letters.) Note that character classes such as
[:punct:] and [:alpha:] only apply to Basic Latin characters. (The use of \cO
ensures that the next character has category code “other”.)

P !

A

The more complex the regular expression cases, the longer the document build time. There
needs to be a trade-off between likely characters to support and processing time.

In the case of a non-Latin script, such as Runic, the conversion simply ensures that the characters
follow the appropriate order when the character codes are compared. For example, datatool
—ang—Runr . 1df provides two different ways of ordering the runes. The first mostly follows
the order in the Runic Unicode block. So feoh (U+16A0) is mapped to character code 31, Runic
V (U+16A1) is mapped to character code 32, etc. The second follows the Old English rune poem
order (fuporc) so feoh (U+16A0) is mapped to character code 31, ur (U+16A2) is mapped to

61

2. Base Commands (datatool—base package)

character code 32, thorn (U+16A6) is mapped to character code 33, etc.

2.4. Conditionals

There are two types of conditional commands provided by datatool—base: those with { (true) }
{ (false) } arguments (suchas \DTL1ifint)or case arguments (suchas \DTLifcasedata-
type) and those that are designed to be used in the conditional part of \ifthenelse
(provided by the ifthen package). The first type have command names that start “DTL1if”
or “dt11if” and are described in §2.4.1, and the second type have command names starting
“DTLis” and are described in §2.4.2.

2.4.1. If-Else or Case Conditionals

The robust commands listed in §2.4.1.2, such as \DTL1i f st ringegq, treat their arguments as
strings. For example, \DTLifstringlt is a test if one string is lexicographical less than
another.

The robust numeric “DTL1i £ ” commands listed in §2.4.1.3, suchas \DTLi fnumeq, expect
formatted numbers or datum control sequences in the numeric arguments. If you know that all
your values are plain numbers, the “dt 11 £ ” listed in §2.4.1.4 commands are quicker.

Numeric commands listed in §2.4.1.4, such as \dt 11 fnumeq, don’t parse for the current
decimal character and number group character or for a currency symbol. They require a plain
number, either a bare integer (such as 12345) or a number with a decimal point (such as 1234.5).
These commands are listed as being provided by datatool—base, but are actually defined in the
maths processor file datat ool—(processor) . de f corresponding to the value of the math
package option. With math=13fp or math=1ua, these commands are expandable but with
math=fp or math=pgfmath they are robust. Note that the fp package doesn’t support
scientific notation.

The multi-type robust commands listed in §2.4.1.5, such as \DTL1i feq, parse the arguments
to determine the data type and then use the corresponding command from §2.4.1.3 or §2.4.1.2.

2.4.1.1. Data Type Conditionals

The commands described in this section test the data type of the argument according to the current
settings for the number group character and decimal character and recognised currency symbols.

(@]

=
Note that you can also use \DTLdatumt ype on a datum control sequence (obtained

with \DTLparse or \DTLxparse) to determine the data type.

\DTLifint{{arg)}{(true)} { (false)}

62

2. Base Commands (datatool—base package)

Parses (arg) and does (true) if (arg) is an integer formatted number, otherwise it does (false).
Note that if (arg) is a decimal or currency this command will do (false). The number group
character is optional but, if present, if must be at intervals of three digits (from the right). See
Example 13.

X

\DTLifreal{({arg)} {(true)} { (false) }

Parses (arg) and does (true) if (arg) is a real (decimal) formatted number or is in scientific
notation, otherwise it does (false). Note that if (arg) is an integer or currency this command will
do (false) (even though integers are technically a subset of real numbers). The number group
character is optional but, if present, if must be at intervals of three digits (left of the decimal
character). See Example 14.

X

\DTLifcurrency{{arg)} {(true) } { (false) }

Parses (arg) and does (frue) if (arg) is a currency formatted number, otherwise it does (false) (see
Example 15). Note that if (arg) is an integer or decimal without a currency prefix this command
will do (false).

X

\DTLifcurrencyunit{{arg)} {{(symbol)} { (true)} { (false) }

Parses (arg) and does (frue) if (arg) is a recognised currency formatted number and uses the
currency (symbol), otherwise it does (false) (see Example 15). Note that if (arg) is an integer or
decimal this command will do (false). Rather than repeatedly parsing the same (arg), you may
prefer touse \DTLparse.

X

\DTLifnumerical{{arg)} {(true)} { (false)}

Parses (arg) and does (frue) if (arg) is numerical, otherwise it does (false), where numerical
means a formatted number that may be an integer, real number, currency or temporal (see
Example 16).

X

\DTLiftemporal{{arg)}{(true)} { (false)}

Parses (arg) and does (true) if (arg) is temporal, otherwise it does (false), where temporal means
a timestamp (date, time and, optionally, a time zone), a date (year, month, and day) or time
(hours, minutes, and, optionally, seconds). Temporal types are considered numerical and may be
used in numerical calculations but the result will be in UTC+0 for timestamps.

I

\DTLifstring{(arg)} {(true)} { (false)}

63

2. Base Commands (datatool—base package)

Parses (arg) and does (true) if (arg) is a string, otherwise it does (false). This is essentially like
the reverse of \DTL1fnumerical except in the case of an empty argument, which has an
unknown type, and so is neither numerical nor a string. See Example 17.

X

\DTLifcasedatatype{(arg)} { (string case) } { (int case) } { (real
case) } { {currency case) }

This command parses (arg) and does (string case) if (arg) is a string, (int case) if (arg) is an
integer, (real case) if {arg) is a real number (decimal) or (currency case) if (arg) is a currency

(according to the current number group character, decimal character and known currency symbols).
Note that an empty argument, which has an unknown type, or a temporal value will do nothing.

See Example 18. This command is retained for backward-compatibility but lacks the ability to
detect new data types.

2.41.1.1. Test if Integer Example
Example 13 uses \DTL1 fint to determine if the argument is an integer according to the
current localisation setting.

,

2536: \DTLifint{2536}{integer}{not an integer}.

2536.0: \DTLifint{2536.0}{integer}{not an integer}.
2,536: \DTLifint{2,536}{integer}{not an integer}.
2,5,3,6: \DTLifint{2,5,3,6}{integer}{not an integer}
\DTLparse{\numA}{2, 536}

\numA: \DTLifint{\numA}{integer}{not an integer}.

\DTLsetnumberchars{.}{, }%
2,536: \DTLifint{2,536}{integer}{not an integer}.

2.536: \DTLifint{2.536}{integer}{not an integer}.

\numA: \DTLifint{\numA}{integer}{not an integer}.

64

213

2. Base Commands (datatool—base package)

£ Example 13: Test for Integer Value NERE

2536: integer.
2536.0: not an integer.
2,536: integer.
2,5,3,6: not an integer.
2,536: integer.
2,536: not an integer.
2.536: integer.
2,536: integer.

Note that the datum control sequence \ numaA is still identified as an integer after \DTLset-
numperchars even though it uses the original number group character and decimal character.
This is because once the datum control sequence has had its data type set there’s no need to
reparse its value.

2.4.1.1.2. Test if Decimal Example

Example 14 uses \DTL1ifreal to determine if the argument is a decimal according to the
current localisation setting. Note that although integers are a subset of real numbers, this test will
only be true if the argument has a fractional part or is in scientific notation.

214

1000.0: \DTLifreal{1000.0}{real}{not real}.
1,000: \DTLifreal{1l,000}{real}{not real}.
1,000.0: \DTLifreal{1,000.0}{real}{not real}.
le+3: \DTLifreal{le+3}{real}{not real}.

\DTLsetnumberchars{.}{, }%
1,000.0: \DTLifreal{1l,000.0}{real}{not real}.

1.000,0: \DTLifreal{1.000,0}{real}{not real}.

65

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 13 Test for Integer Value
% Label: "ex:ifint"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
2536: \DTLifint{2536}{integer}{not an integer}.

2536.0: \DTLifint{2536.0}{integer}{not an integer}.

2,536: \DTLifint{2,536}{integer}{not an integer}.

2,5,3,6: \DTLifint{2,5,3,6}{integer}{not an integer}.

\DTLparse{\numA}{2,536}
\numA: \DTLifint{\numA}{integer}{not an integer}.

\DTLsetnumberchars{.}{,}%
 2,536: \DTLifint{2,536}{integer}{not an integer}.

2.536: \DTLifint{2.536}{integer}{not an integer}.

\numA: \DTLifint{\numA}{integer}{not an integer}.
\end{document}

Nicola Talbot
Test for Integer Value (source code)
Example document illustrating integer tests (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example013.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example013.pdf

2. Base Commands (datatool—base package)

N Example 14: Test for Real Value NEFXE

1000.0: real.
1,000: not real.
1,000.0: real.
le+3: real.
1,000.0: not real.
1.000,0: real.

2.41.1.3. Test if Currency Example
Example 15 uses \DTLifcurrency and \DTLifcurrencyunit to determine if B
the argument is a currency value or a currency symbol according to the current localisation setting 15

and defined currency symbols.

\$5.99: \DTLifcurrency{\$5.99}{currency}
{not currency}.

\DTLcurrency{5.99}:
\DTLifcurrency{\DTLcurrency{5.99}}{currency}
{not currency}.

\pounds5.99:
\DTLifcurrency{\pounds5.99}{currency}{not currency}.

\textsterling5.99:
\DTLifcurrency{\textsterling5.99}{currency}
{not currency}.

\$6.99:
\DTLifcurrencyunit{\$6.99}{\$}{dollars}t{not dollars}

\newcommand{\cost}{\pounds10.50}%
\cost: \DTLifcurrencyunit{\cost}{\pounds}{pounds}
{not pounds}.

US\$5.99:
\DTLifcurrency{US\S$}{currency}{not currency}.

\DTLnewcurrencysymbol{US\S$}%

66

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 14 Test for Real Value
% Label: "ex:ifreal"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
1000.0: \DTLifreal{1000.0}{real}{not real}.

1,000: \DTLifreal{1,000}{real}{not real}.

1,000.0: \DTLifreal{1,000.0}{real}{not real}.

1e+3: \DTLifreal{1e+3}{real}{not real}.

\DTLsetnumberchars{.}{,}%
 1,000.0: \DTLifreal{1,000.0}{real}{not real}.

1.000,0: \DTLifreal{1.000,0}{real}{not real}.
\end{document}

Nicola Talbot
Test for Real Value (source code)
Example document illustrating decimal tests (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example014.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example014.pdf

2. Base Commands (datatool—base package)

US\$5.99:
\DTLifcurrency{US\$}{currency}{not currency}.
kN Example 15: Test for Currency \ER ISR AR

$5.99: currency.
$5.99: currency.
£5.99: currency.
£5.99: not currency.
$6.99: dollars.

£10.50: pounds.
US$5.99: not currency.
US$5.99: not currency.

2.4.1.1.4. Test if Numerical Example

Emmmb16uws\DTLifnumericaltodamnﬁmnfmemgmﬂanmnmﬂamm(mwgﬂ,[36
real or currency value) according to the current localisation setting and defined currency symbols. !

,
1,234:

\DTLifnumerical{l,234}{numeric}{not numeric}.

1,234.0: \DTLifnumerical{1l,234.0}{numeric}
{not numeric}.

\$1,234.0:
\DTLifnumerical{\$1,234.0}{numeric}{not numeric}.

1.234,0: \DTLifnumerical{1.234,0}{numeric}
{not numeric}.

\DTLsetnumberchars{.}{, }%

1.234,0: \DTLifnumerical{1.234,0}{numeric}
{not numeric}.

Empty: \DTLifnumerical{}{numeric}{not numeric}.

67

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 15 Test for Currency
% Label: "ex:ifcurr"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
\$5.99: \DTLifcurrency{\$5.99}{currency}{not currency}.

\DTLcurrency{5.99}: \DTLifcurrency{\DTLcurrency{5.99}}{currency}{not currency}.

\pounds5.99: \DTLifcurrency{\pounds5.99}{currency}{not currency}.

\textsterling5.99: \DTLifcurrency{\textsterling5.99}{currency}{not currency}.

\$6.99: \DTLifcurrencyunit{\$6.99}{\$}{dollars}{not dollars}.

\newcommand{\cost}{\pounds10.50}%
 \cost: \DTLifcurrencyunit{\cost}{\pounds}{pounds}{not pounds}.

US\$5.99: \DTLifcurrency{US\$}{currency}{not currency}.

\DTLnewcurrencysymbol{US\$}%
 US\$5.99: \DTLifcurrency{US\$}{currency}{not currency}.
\end{document}

Nicola Talbot
Test for Currency (source code)
Example document demonstrating tests for currency values (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example015.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example015.pdf

2. Base Commands (datatool—base package)

W LB A

£ Example 16: Test for Numerical

1,234: numeric.
1,234.0: numeric.
$1,234.0: numeric.
1.234,0: not numeric.
1.234,0: numeric.
Empty: not numeric.

2.41.1.5. Test if String Example
Example 17 uses \DTLifstring to test if the argument is considered a string (that is, not

numeric and not empty).

17

1,234:

\DTLifstring{l,234}{string}{not string}.

\$1,234.0:

\DTLifstring{\$1,234.0}{string}

{not string}.

1,2,3,4:

\DTLifstring{l,2,3,4}{string}{not string}.

Empty:

\DTLifstring{}{string}{not string}.

QPE B I3

4 Example 17: Test for Strings

1,234: not string.
$1,234.0: not string.
1,2,3,4: string.
Empty: not string.

2.4.1.1.6. Test Data Type Example
Example 18 uses \DTLifcasedatatype to determine the data type of its argument,

according to the current localisation setting and known currency symbols.

218

=

1,234: \DTLifcasedatatype{l,234}{string}{int}{real}
{currency}.

68

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 16 Test for Numerical
% Label: "ex:ifnum"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
1,234: \DTLifnumerical{1,234}{numeric}{not numeric}.

1,234.0: \DTLifnumerical{1,234.0}{numeric}{not numeric}.

\$1,234.0: \DTLifnumerical{\$1,234.0}{numeric}{not numeric}.

1.234,0: \DTLifnumerical{1.234,0}{numeric}{not numeric}.

\DTLsetnumberchars{.}{,}%
 1.234,0: \DTLifnumerical{1.234,0}{numeric}{not numeric}.

Empty: \DTLifnumerical{}{numeric}{not numeric}.
\end{document}

Nicola Talbot
Test for Numerical (source code)
Example document demonstrating tests for numeric values (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 17 Test for Strings
% Label: "ex:ifstr"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
1,234: \DTLifstring{1,234}{string}{not string}.

\$1,234.0: \DTLifstring{\$1,234.0}{string}{not string}.

1,2,3,4: \DTLifstring{1,2,3,4}{string}{not string}.

Empty: \DTLifstring{}{string}{not string}.
\end{document}

Nicola Talbot
Test for Strings (source code)
Example document demonstrating tests for string (non-numeric) values (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example016.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example016.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example017.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example017.pdf

2. Base Commands (datatool—base package)

1,234.0: \DTLifcasedatatype{1,234.0}{string}{int}
{real}{currency}.

\$1,234: \DTLifcasedatatype{\$1,234}{string}{int}
{real}l{currency}.

1,2,3,4: \DTLifcasedatatype{1,2,3,4}{string}{int}
{real}{currency}.

Empty: \DTLifcasedatatype{}{string}{int}{real}
{currency}.

4 Example 18: Test for Data Type R
1,234: int.
1,234.0: real.
$1,234: currency.
1,2,3,4: string.
Empty: .
2.4.1.2. String and List Conditionals
A

The implementation of these commands has changed in v3.0. You may find different
behaviour in certain cases. You can rollback if necessary (see §1.1). The datatool—base
package no longer loads the substr package. If you want to use any commands provided by
that package you will need to load it separately.

\DTLifinlist{(element)} {(list)} {(true)} { (false)}

Does (true) if (element) is an element of the CSV (list), otherwise does (false). The (list)

may be a command whose definition is a CSV list (see §2.9). No expansion on (element). See

Example 19.

The following comparison commands test for lexicographically equality, less than (comes
before) and greater than (comes after). The string arguments have a single expansion applied
on the first token and then they are expanded in the same way as for \dt 1compare and

\dt1licompare, taking into account the compare settings (see Example 20).

69

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 18 Test for Data Type
% Label: "ex:ifcasedata"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
1,234: \DTLifcasedatatype{1,234}{string}{int}{real}{currency}.

1,234.0: \DTLifcasedatatype{1,234.0}{string}{int}{real}{currency}.

\$1,234: \DTLifcasedatatype{\$1,234}{string}{int}{real}{currency}.

1,2,3,4: \DTLifcasedatatype{1,2,3,4}{string}{int}{real}{currency}.

Empty: \DTLifcasedatatype{}{string}{int}{real}{currency}.
\end{document}

Nicola Talbot
Test for Data Type (source code)
Example document demonstrating case tests for data type (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example018.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example018.pdf

2. Base Commands (datatool—base package)

—

X
\DTLifstringeq{ (strl)} {(str2) } { (true)} { (false) } modifier: *

Does (true) if (strl) is lexicographically equal to (st2). This command is robust. The starred
version ignores case (see Example 20).

X
\DTLifstringlt{(serl)}{(str2)} {(true)} { (false)} modifier: *

Does (true) if (strl) is lexicographically less than (comes before) (sr2). This command is robust.
The starred version ignores case (see Example 21).

D

X
\DTLifstringgt{(strl)} {(swr2)} {(true)} { (false)} modifier: *

Does (true) if (strl) is lexicographically greater than (comes after) (st2). This command is
robust. The starred version ignores case (see Example 22).

X

\DTLifstringopenbetween{ (str)}{(min)} { (min)} { (true) } { (false) }
modifier: *

Does (true) if (str) is lexicographically between (min) and (max), but is not equal to (min) or
(max). This command is robust. The starred version ignores case (see Example 23).

D

X

\DTLifstringclosedbetween{ (str)} { (min)} { (min)} { (true) } { (false) }
modifier: *

Does (true) if (str) is lexicographically between (min) and (max), inclusive. This command is
robust. The starred version ignores case (see Example 23).

X
\DTLifSubString{ (string)} { (fragment) } { (true) } { (false) } modifier: *

Does (true) if (fragment) is a substring of (string) otherwise does (false). This command
purifies the string and fragment before searching for the substring. This command is robust. The
starred version is case-insensitive. A space character, ~, \nobreakspace and \ space are
considered identical (see Example 24). Note that this does not take category codes into account.

X
\DTLifStartsWith{ (string) } { (fragment)} { (true) } { (false) } modifier: *

Similar to \DTLifSubString but tests if (string) starts with (fragment) (see Example 25).
Note that this does not take category codes into account.

70

2. Base Commands (datatool—base package)

(o]

= |
A bug in earlier versions of datatool—base meant that \DTLifStartsWith didn’t

ignore commands despite the documentation. This has now been corrected in v3.0.

X
\DTLifEndsWith({ (string)} { (fragment) } { (true) } { (false) } modifier: *

Similar to \DTLifSubString but tests if (string) ends with (fragment). The starred version
is case-insensitive. Note that this does not take category codes into account.

X

\DTLifAllUpperCase{ (string)} { (true) } { (false) }

Does (true) if (string) contains only uppercase characters (disregarding punctuation and spaces),
otherwise does (false). The (string) is expanded before testing. This command is robust (see
Example 26).

X

\DTLifAllLowerCase{ (string) } { (true) } { (false) }

Does (true) if (string) contains only lowercase characters (disregarding punctuation and spaces),
otherwise does (false). The (string) is expanded before testing. This command is robust.

o

Robust commands like \ emph are disregarded by the all upper/lower case conditionals,
as illustrated in Example 27.

2.41.21. Element in List Example
Example 19 defines the following commands:

319

\newcommand{\goose}{goose}
\newcommand{\mylist}{duck, \goose, {ant}, zebra}

\DTLifinlist isused to determine if certain items are the list:

“ant' in list? \DTLifinlist{ant}{\mylist}{true}
{false}.

The following tests if “goose” is an element of the list. This is false, because the actual element is
\goose. The \my1list command is only expanded once not fully.

71

2. Base Commands (datatool—base package)

,

‘goose' in list? \DTLifinlist{goose}{\mylist}{true}
{false}.

“\goose' in list? \DTLifinlist{\goose}{\mylist}
{true}{false}.

“duck' in list? \DTLifinlist{duck}{\mylist}{true}
{false}.

‘zebra' in list? \DTLifinlist{zebra}{\mylist}{true}
{false}.

N Example 19: Testing if an Element is in a Comma-Separated List N\EEE
‘ant’ in list? true.
‘goose’ in list? false.
‘goose’ in list? true.
‘duck’ in list? true.
‘zebra’ in list? true.

2.4.1.2.2. String Equality Example
Example 20 defines two commands that expand to “zebra” and “Zebra”.
Ej

\newcommand{\strA}{zebra}
\newcommand{\strB}{Zebra}

The initial first token expansion will expand these commands once before applying the rules

according to the current compare setting.
“\strA' is

\DTLifstringeg{\strA}{\strB}{the same}{not the same}
as “\strB' (case).

"\strA' 1is
\DTLifstringeg*{\strA}{\strB}{the same}{not the same}

as “\strB' (no case).

72

20

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 19 Testing if an Element is in a Comma-Separated List
% Label: "ex:DTLifinlist"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage{datatool-base}
\newcommand{\goose}{goose}
\newcommand{\mylist}{duck,\goose,{ant},zebra}
\begin{document}
 `ant' in list? \DTLifinlist{ant}{\mylist}{true}{false}.

`goose' in list? \DTLifinlist{goose}{\mylist}{true}{false}.

`\goose' in list? \DTLifinlist{\goose}{\mylist}{true}{false}.

`duck' in list? \DTLifinlist{duck}{\mylist}{true}{false}.

`zebra' in list? \DTLifinlist{zebra}{\mylist}{true}{false}.
\end{document}

Nicola Talbot
Testing if an Element is in a Comma-Separated List (source code)
Example document demonstrating \DTLifinlist highlighting when expansion occurs (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example019.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example019.pdf

2. Base Commands (datatool—base package)

"\strA' is
\DTLifstringeg{\strA}{zebra}{the same}{not the same}
as ~zebra' (case).

The command \ emph is robust so it won’t be expanded by the initial expand first token action
in the following:

=

“\emph{ant}' is
\DTLifstringeg{\emph{ant}}{ant}{the same}
{not the same}

as “ant'.

The default expand—-cs=false and skip-cs=false settings mean that commands
won’t be skipped in the comparison. Note the difference when the setting is changed:

\DTLsetup{compare={skip-cs}}

“\emph{ant}' is
\DTLifstringeg{\emph{ant}}{ant}{the same}
{not the same}

as ant' (skip cs).

Only the first token is expanded, so \ st rA isn’t expanded in the initial step:

Ej
“ant zebra' is
\DTLifstringeg{ant zebra}{ant \strA}{the same}
{not the same}

as “ant \strA' (no expansion).

With expand—cs=t rue, expansion will be applied in the second step:

\DTLsetup{compare={expand-cs}}

“ant zebra' is

\DTLifstringeg{ant zebra}l{ant \strA}{the same}
{not the same}

as “ant \strA' (expansion).

73

2. Base Commands (datatool—base package)

£ Example 20: String Equality Tests NERE

‘zebra’ is not the same as ‘Zebra’ (case).

‘zebra’ is the same as ‘Zebra’ (no case).

‘zebra’ is the same as ‘zebra’ (case).

‘ant’ is not the same as ‘ant’.

‘ant’ is the same as ‘ant’ (skip cs).

‘ant zebra’ is not the same as ‘ant zebra’ (no expansion).
‘ant zebra’ is the same as ‘ant zebra’ (expansion).

2.4.1.2.3. String Less Than Example
Example 21 uses \DTLifstringlt to determine if one string is “less than” (comes
before) another. Ex

,
‘aardvark' is \DTLifstringlt{aardvark}{Zebra}{before}
{after}

‘Zebra' (case).

‘aardvark' is \DTLifstringlt*{aardvark}{Zebra}
{beforel}l{after}
" Zebra' (no case).

4 Example 21: String Less Than \ER AR A

‘aardvark’ is after ‘Zebra’ (case).
‘aardvark’ is before ‘Zebra’ (no case).

2.4.1.2.4. String Greater Than Example
Example 22 produces the same result as Example 21 but tests for “greater than” (comes after) =
instead:

“aardvark' is \DTLifstringgt{aardvark}{Zebra}{after}
{before}

“Zebra' (case).

“aardvark' is \DTLifstringgt*{aardvark}{Zebra}{after}
{before}

74

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 20 String Equality Tests
% Label: "ex:streq"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\strA}{zebra}
\newcommand{\strB}{Zebra}
\begin{document}
`\strA' is \DTLifstringeq{\strA}{\strB}{the same}{not the same} as `\strB' (case).

`\strA' is \DTLifstringeq*{\strA}{\strB}{the same}{not the same} as `\strB' (no case).

`\strA' is \DTLifstringeq{\strA}{zebra}{the same}{not the same} as `zebra' (case).

`\emph{ant}' is \DTLifstringeq{\emph{ant}}{ant}{the same}{not the same} as `ant'.

\DTLsetup{compare={skip-cs}} `\emph{ant}' is \DTLifstringeq{\emph{ant}}{ant}{the same}{not the same} as `ant' (skip cs).

`ant zebra' is \DTLifstringeq{ant zebra}{ant \strA}{the same}{not the same} as `ant \strA' (no expansion).

\DTLsetup{compare={expand-cs}} `ant zebra' is \DTLifstringeq{ant zebra}{ant \strA}{the same}{not the same} as `ant \strA' (expansion).
\end{document}

Nicola Talbot
String Equality Tests (source code)
Example document demonstrating string equality commands (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 21 String Less Than
% Label: "ex:strlt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
`aardvark' is
\DTLifstringlt{aardvark}{Zebra}{before}{after}
`Zebra' (case).

`aardvark' is
\DTLifstringlt*{aardvark}{Zebra}{before}{after}
`Zebra' (no case).
\end{document}

Nicola Talbot
String Less Than (source code)
Example document demonstrating string less than command (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example020.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example020.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example021.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example021.pdf

2. Base Commands (datatool—base package)

“Zebra' (no case).

kN Example 22: String Greater Than \ER R AL

‘aardvark’ is after ‘Zebra’ (case).
‘aardvark’ is before ‘Zebra’ (no case).

2.41.2.5. String Between Two Strings Example
Example 23 tests if a string is lexicographically between two other strings:

(=23

“duck' lies between "Duck' and "Duckling’

(exclusive, case)?
\DTLifstringopenbetween{duck}{Duck}{Duckling}{true}
{false}.

"duck' lies between "Duck' and "Duckling’

(exclusive, no case)?
\DTLifstringopenbetween*{duck}{Duck}{Duckling}{true}
{false}.

“duck' lies between "Duck' and "Duckling’

(inclusive, case)?
\DTLifstringclosedbetween{duck}{Duck}{Duckling}{true}
{false}.

“duck' lies between "Duck' and "Duckling'

(inclusive, no case)?
\DTLifstringclosedbetween*{duck}{Duck}{Duckling}
{true}{false}.

J

kN Example 23: String Between Tests \ER R AL

Y

exclusive, case)? false
exclusive, no case)? false
inclusive, case)? false
inclusive, no case)? true

‘duck’ lies between ‘Duck’ and ‘Duckling
‘duck’ lies between ‘Duck’” and ‘Duckling
‘duck’ lies between ‘Duck’ and ‘Duckling
‘duck’ lies between ‘Duck’ and ‘Duckling

)

Y

(
(
" (
(

75

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 22 String Greater Than
% Label: "ex:strgt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
`aardvark' is
\DTLifstringgt{aardvark}{Zebra}{after}{before}
`Zebra' (case).

`aardvark' is
\DTLifstringgt*{aardvark}{Zebra}{after}{before}
`Zebra' (no case).
\end{document}

Nicola Talbot
String Greater Than (source code)
Example document demonstrating string greater than command (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 23 String Between Tests
% Label: "ex:strcmp"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
`duck' lies between `Duck' and `Duckling' (exclusive, case)?
\DTLifstringopenbetween{duck}{Duck}{Duckling}{true}{false}.

`duck' lies between `Duck' and `Duckling' (exclusive, no case)?
\DTLifstringopenbetween*{duck}{Duck}{Duckling}{true}{false}.

`duck' lies between `Duck' and `Duckling' (inclusive, case)?
\DTLifstringclosedbetween{duck}{Duck}{Duckling}{true}{false}.

`duck' lies between `Duck' and `Duckling' (inclusive, no case)?
\DTLifstringclosedbetween*{duck}{Duck}{Duckling}{true}{false}.
\end{document}

Nicola Talbot
String Between Tests (source code)
Example document demonstrating string between comparison commands (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example022.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example022.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example023.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example023.pdf

2. Base Commands (datatool—base package)

2.4.1.2.6. Substring Example
Example 24 defines some commands that expand to text with a normal space and with a
non-breakable space:

04

=

\newcommand{\strA}{An apple}
\newcommand{\strB}{n~ap}

The \DTL1ifSubString command is used to test if the second argument is a substring of

the first:

(First two arguments expanded) "~ \strB'
\DTLifSubString{\strA}{\strB}{is substring}
{isn't substring}

of “\strA'.

Tapp'

\DTLifSubString{An apple}{app}{is substring}
{isn't substring}

of "An apple'.

(Non-breakable space same as space) n~a'
\DTLifSubString{An apple}{n~a}{is substring}
{isn't substring}

of "An apple'.

(Robust commands stripped) " app'
\DTLifSubString{An \MakeUppercase{alpple}{app}
{is substring}{isn't substring}

of "An \MakeUppercase{alpple'.

(Grouping stripped) " app'

\DTLifSubString{An {ap}tple}l{applt{is substring}
{isn't substring}

of "An {apiple'.

(Case-sensitive) " app'

\DTLifSubString{An Apple}{app}{is substring}
{isn't substring}

of "An Apple'.

(Not case-sensitive) " app'

76

2. Base Commands (datatool—base package)

\DTLifSubString*{An Apple}{app}{is substring}
{isn't substring}
of "An Apple'.

(Leading space) = app'
\DTLifSubString{Anapple}{ app}{is substring}
{isn't substring}

of "Anapple'.

N Example 24: Substring Tests N\EEE

(First two arguments expanded) ‘n ap’ is substring of ‘An apple’.
‘app’ is substring of ‘An apple’.

(Non-breakable space same as space) ‘n a’ is substring of ‘An apple’.
(Robust commands stripped) ‘app’ is substring of ‘An Apple’.
(Grouping stripped) ‘app’ is substring of ‘An apple’.
(Case-sensitive) ‘app’ isn’t substring of ‘An Apple’.

(Not case-sensitive) ‘app’ is substring of ‘An Apple’.

(Leading space) ‘ app’ isn’t substring of ‘Anapple’.

2.41.2.7. String Prefix Example
Example 25 uses \DTLifStartsWith to test if the second argument is at the start (is a

prefix) of the first:

[Zr5

\newcommand{\strA}{An apple}
\newcommand{\strB}{n~ap}
\newcommand{\strC}{An~ap}

(First two arguments expanded) "~ \strB'
\DTLifStartsWith{\strA}{\strB}{is prefix}
{isn't prefix}

of “\strA'.

(First two arguments expanded) ~\strC'
\DTLifStartsWith{\strA}{\strC}{is prefix}
{isn't prefix}

of “\strA'.

(Non-breakable space same as space) An~a'

77

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 24 Substring Tests
% Label: "ex:substrif"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\strA}{An apple}
\newcommand{\strB}{n~ap}
\begin{document}
(First two arguments expanded) `\strB'
\DTLifSubString{\strA}{\strB}{is substring}{isn't substring}
of `\strA'.

`app'
\DTLifSubString{An apple}{app}{is substring}{isn't substring}
of `An apple'.

(Non-breakable space same as space) `n~a'
\DTLifSubString{An apple}{n~a}{is substring}{isn't substring}
of `An apple'.

(Robust commands stripped) `app'
\DTLifSubString{An \MakeUppercase{a}pple}{app}{is substring}{isn't substring}
of `An \MakeUppercase{a}pple'.

(Grouping stripped) `app'
\DTLifSubString{An {ap}ple}{app}{is substring}{isn't substring}
of `An {ap}ple'.

(Case-sensitive) `app'
\DTLifSubString{An Apple}{app}{is substring}{isn't substring}
of `An Apple'.

(Not case-sensitive) `app' \DTLifSubString*{An Apple}{app}{is substring}{isn't substring}
of `An Apple'.

(Leading space) ` app'
\DTLifSubString{Anapple}{ app}{is substring}{isn't substring}
of `Anapple'.
\end{document}

Nicola Talbot
Substring Tests (source code)
Example document demonstrating substring tests (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example024.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example024.pdf

2. Base Commands (datatool—base package)

\DTLifStartsWith{An apple}{An~a}{is prefix}
{isn't prefix}
of "An apple'.

(Robust commands stripped) " app'
\DTLifStartsWith{\MakeUppercase{alpple}{app}
{is prefix}{isn't prefix}

of “\MakeUppercase{al}lpple'.

(Case-sensitive) " app'
\DTLifStartsWith{Apple}{app}{is prefix}{isn't prefix}

of "Apple'.

(Ignore case) app'
\DTLifStartsWith*{Apple}{app}t{is prefix}
{isn't prefix}

of “Apple’'.

(Trailing space) an '

\DTLifStartsWith{an apple}{an }{is prefix}
{isn't prefix}

of “an apple'.

(Trailing space) an '
\DTLifStartsWith{anapple}{an }{is prefix}
{isn't prefix}

of “anapple'.

4 Example 25: Prefix Tests N\EEE

(First two arguments expanded) ‘n ap’ isn’t prefix of ‘An apple’.
(First two arguments expanded) ‘An ap’ is prefix of ‘An apple’.
(Non-breakable space same as space) ‘An a’ is prefix of ‘An apple’.
(Robust commands stripped) ‘app’ isn’t prefix of ‘Apple’.

(Case-sensitive) ‘app’ isn’t prefix of ‘Apple’.
(Ignore case) ‘app’ is prefix of ‘Apple’.
(Trailing space) ‘an ’ is prefix of ‘an apple’.
(Trailing space) ‘an ’ isn’t prefix of ‘anapple’.

78

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 25 Prefix Tests
% Label: "ex:prefixif"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\strA}{An apple}
\newcommand{\strB}{n~ap}
\newcommand{\strC}{An~ap}
\begin{document}
(First two arguments expanded) `\strB'
\DTLifStartsWith{\strA}{\strB}{is prefix}{isn't prefix}
of `\strA'.

(First two arguments expanded) `\strC'
\DTLifStartsWith{\strA}{\strC}{is prefix}{isn't prefix}
of `\strA'.

(Non-breakable space same as space) `An~a'
\DTLifStartsWith{An apple}{An~a}{is prefix}{isn't prefix}
of `An apple'.

(Robust commands stripped) `app'
\DTLifStartsWith{\MakeUppercase{a}pple}{app}{is prefix}{isn't prefix}
of `\MakeUppercase{a}pple'.

(Case-sensitive) `app'
\DTLifStartsWith{Apple}{app}{is prefix}{isn't prefix}
of `Apple'.

(Ignore case) `app'
\DTLifStartsWith*{Apple}{app}{is prefix}{isn't prefix}
of `Apple'.

(Trailing space) `an '
\DTLifStartsWith{an apple}{an }{is prefix}{isn't prefix}
of `an apple'.

(Trailing space) `an '
\DTLifStartsWith{anapple}{an }{is prefix}{isn't prefix}
of `anapple'.
\end{document}

Nicola Talbot
Prefix Tests (source code)
Example document demonstrating prefix tests (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example025.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example025.pdf

2. Base Commands (datatool—base package)

2.4.1.2.8. String Suffix Example
Example 26 uses \DTL1i fEndsWith to test if the second argument is at the end (is a suffix) B¢

of the first. It uses the same \ st rA and \ st rB as before:

=

\newcommand{\strA}{An apple}
\newcommand{\strB}{n~apple}

The tests are as follows:

(First two arguments expanded) ~\strB'
\DTLifEndsWith{\strA}{\strB}{is suffix}{isn't suffix}

of “\strA'.

(Non—-breakable space same as space) n~apple'
\DTLifEndsWith{An apple}{n~apple}{is suffix}
{isn't suffix}
of "An apple'.

(Robust commands stripped) " apple'’
\DTLifEndsWith{An \MakeUppercase{alpple}{apple}
{is suffix}{isn't suffix}

of "An \MakeUppercase{alpple'.

(Case—-sensitive) " apple'

\DTLifEndsWith{An Apple}{apple}{is suffix}
{isn't suffix}

of "An Apple'.

(Ignore case) apple'’

\DTLifEndsWith*{An Apple}{apple}{is suffix}
{isn't suffix}

of "An Apple’'.

(Leading space) = apple'
\DTLifEndsWith{anapple}{ apple}{is suffix}
{isn't suffix}

of “anapple'.

79

2. Base Commands (datatool—base package)

4 Example 26: Suffix Tests \EEE

(First two arguments expanded) ‘n apple’ is suffix of ‘An apple’.
(Non-breakable space same as space) ‘n apple’ is suffix of ‘An apple’.
(Robust commands stripped) ‘apple’ is suffix of ‘An Apple’.
(Case-sensitive) ‘apple’ isn’t suffix of ‘An Apple’.

(Ignore case) ‘apple’ is suffix of ‘An Apple’.

(Leading space) ‘ apple’ is suffix of ‘an apple’.

(Leading space) ¢ apple’ isn’t suffix of ‘anapple’.

2.4.1.2.9. String Case Example
Example 27 tests if the argument (once expanded and purified) is all the same case:

Er7

café: \DTLifAllUpperCase{café}{all caps}
{not all caps}.

Café: \DTLifAllUpperCase{Café}{all caps}
{not all caps}.

CAFE: \DTLifAllUpperCase{CAFE}{all caps}
{not all caps}.

café: \DTLifAllLowerCase{café}{all lower}
{not all lower}.

Café: \DTLifAllLowerCase{Café}{all lower}
{not all lower}.

CAFE: \DTLifAllLowerCase{CAFE}{all lower}
{not all lower}.

bric—-\"a-brac:
\DTLifAllLowerCase{bric-\ " a-brac}{all lower}
{not all lower}.

\emph{HORS D'\OE UVRE}:
\DTLifAllUpperCase{\emph{HORS D'\OE UVRE}}{all caps}
{not all caps}.

80

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 26 Suffix Tests
% Label: "ex:suffixif"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\strA}{An apple}
\newcommand{\strB}{n~apple}

\begin{document}
(First two arguments expanded) `\strB'
\DTLifEndsWith{\strA}{\strB}{is suffix}{isn't suffix}
of `\strA'.

(Non-breakable space same as space) `n~apple'
\DTLifEndsWith{An apple}{n~apple}{is suffix}{isn't suffix}
of `An apple'.

(Robust commands stripped) `apple'
\DTLifEndsWith{An \MakeUppercase{a}pple}{apple}{is suffix}{isn't suffix}
of `An \MakeUppercase{a}pple'.

(Case-sensitive) `apple'
\DTLifEndsWith{An Apple}{apple}{is suffix}{isn't suffix}
of `An Apple'.

(Ignore case) `apple'
\DTLifEndsWith*{An Apple}{apple}{is suffix}{isn't suffix}
of `An Apple'.

(Leading space) ` apple'
\DTLifEndsWith{an apple}{ apple}{is suffix}{isn't suffix}
of `an apple'.

(Leading space) ` apple'
\DTLifEndsWith{anapple}{ apple}{is suffix}{isn't suffix}
of `anapple'.
\end{document}

Nicola Talbot
Suffix Tests (source code)
Example document demonstrating suffix tests (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example026.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example026.pdf

2. Base Commands (datatool—base package)

N

£ Example 27: All Upper/Lower Case Tests \EEE

café: not all caps.

Café: not all caps.

CAFE: all caps.

café: all lower.

Café: not all lower.

CAFE: not all lower.
bric-a-brac: all lower.
HORS D’(EUVRE: all caps.

2.4.1.3. Formatted Number Conditionals

These commands expect formatted numbers or datum control sequences in the numerical argu-
ments and compare their values. They internally use the corresponding command from §2.4.1.4
after parsing to perform the actual comparison.

X

\DTLifnumeqg{ (numl)} { (num2)} { (true) } { (false) }

Does (true) if (numl) equals (num2) ((numl) = (num2)) otherwise does (false), where the
values are formatted numbers. This command is robust. Internally uses \dt 11 fnumeq after
parsing the values.

X

\DTLifnumlt {(numl)} { (num2)} { (true) } { {false) }

Does (true) if (numl) is less than (num?2) ((numl) < (num2)) otherwise does (false), where the
values are formatted numbers. This command is robust. Internally uses \dt 11 fnumlt after
parsing the values.

X

\DTLifnumgt {(numl)} { (num2) } { (true) } { (false) }

Does (true) if (numl) is greater than (num2) ((numl) > (num2)) otherwise does (false), where
the values are formatted numbers. This command is robust. Internally uses \dt 1i fnumgt
after parsing the values.

X

\DTLifnumopenbetween{ (num)} { (min)} { (min) } { (true) } { (false) }

Does (true) if (num) lies between (min) and (max), excluding the end points (that is, (min) <
(num) < (max)) otherwise does (false), where the values are formatted numbers. This command
is robust. Internally uses \dt 11 fnumopenbetween after parsing the values.

81

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 27 All Upper/Lower Case Tests
% Label: "ex:ifallcase"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage{datatool-base}
\begin{document}
café: \DTLifAllUpperCase{café}{all caps}{not all caps}.

Café: \DTLifAllUpperCase{Café}{all caps}{not all caps}.

CAFÉ: \DTLifAllUpperCase{CAFÉ}{all caps}{not all caps}.

café: \DTLifAllLowerCase{café}{all lower}{not all lower}.

Café: \DTLifAllLowerCase{Café}{all lower}{not all lower}.

CAFÉ: \DTLifAllLowerCase{CAFÉ}{all lower}{not all lower}.

bric-\`a-brac: \DTLifAllLowerCase{bric-\`a-brac}{all lower}{not all lower}.

\emph{HORS D'\OE UVRE}: \DTLifAllUpperCase{\emph{HORS D'\OE UVRE}}{all caps}{not all caps}.
\end{document}

Nicola Talbot
All Upper/Lower Case Tests (source code)
Example document demonstrating tests for all upper or lowercase (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example027.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example027.pdf

2. Base Commands (datatool—base package)

\DTLifnumclosedbetween{ (num)} { (min)} { (min)} { (true) } { (false) }

Does (true) if (num) lies between (min) and (max), including the end points (that is, (min) <
(num) < (max)) otherwise does (false), where the values are formatted numbers. This command
is robust. Internally uses \dt 11 fnumclosedbetween after parsing the values.

Note that the currency unit (if given) in the above comparisons is disregarded. Only the numeric
value obtained from parsing is considered. Example 28 uses the default mat h=13 fp setting.

$1,234.0=1234%$? \DTLifnumeq{1l,234.0}{1234}{true}
{false}.

$\$12.00=\pounds12$? \DTLifnumeg{\$12.00}{\poundsi2}
{true}t{false}.

$\$10.50<\pounds10$? \DTLifnumlt{\$10.50}{\poundsl10}
{true}{false}.

$1,000.0 > 1,000%$? \DTLifnumgt{1,000.0}{1,000}{true}
{false}.

$1000 < \$1,000.00 < 2000$>
\DTLifnumopenbetween{\$1,000.00}{1000}{2000}{true}
{false}.

$1000 \leg \$1,000.00 \leg 2000s>?
\DTLifnumclosedbetween{\$1,000.00}{1000}{2000}{true}
{false}.

+ Example 28: Numerical Comparisons (Parsed) NERXE

1,234.0 = 12347 true.

$12.00 = £127 true.

$10.50 < £107 false.
1,000.0 > 1,0007 false.

1000 < $1,000.00 < 20007 false.
1000 < $1,000.00 < 20007 true.

82

Zr8

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 28 Numerical Comparisons (Parsed)
% Label: "ex:DTLifnum"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage[math=l3fp]{datatool-base}
\begin{document}
$1,234.0 = 1234$? \DTLifnumeq{1,234.0}{1234}{true}{false}.

$\$12.00 = \pounds12$? \DTLifnumeq{\$12.00}{\pounds12}{true}{false}.

$\$10.50 < \pounds10$? \DTLifnumlt{\$10.50}{\pounds10}{true}{false}.

$1,000.0 > 1,000$? \DTLifnumgt{1,000.0}{1,000}{true}{false}.

$1000 < \$1,000.00 < 2000$? \DTLifnumopenbetween{\$1,000.00}{1000}{2000}{true}{false}.

$1000 \leq \$1,000.00 \leq 2000$? \DTLifnumclosedbetween{\$1,000.00}{1000}{2000}{true}{false}.
\end{document}

Nicola Talbot
Numerical Comparisons (Parsed) (source code)
Example document demonstrating numerical comparisons where the numeric value is obtained by parsing the arguments (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example028.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example028.pdf

2. Base Commands (datatool—base package)

2.4.1.4. Plain Number Conditionals

\dt1lifnumeqg{ (numl)} {(num2)} {(true)} { (false) }

Does (true) if (numl) equals (num2) otherwise does (false). The numbers must be plain numbers.
This command is expandable with math=13 fp and mat h=1ua and robust for mat h=fp
and math=pgfmath.

X

\dtlifnumlt {{(numl)}{{(num2)} { (true)} { (false)}

Does (true) if (numl) is less than (num2) otherwise does (false). The numbers must be plain
numbers. This command is expandable with math=13fp and math=1ua and robust for
math=fpand math=pgfmath.

X

\dtlifnumgt {{(numl)} { (num2)} { (true) } { {false)

Does (true) if (numl) is greater than (num2) otherwise does (false). The numbers must be plain
numbers. This command is expandable with math=13fp and math=1ua and robust for
math=fp and math=pgfmath.

X

\dtlifnumopenbetween{ (num)} {(min)} {(min)} { (true) } { (false) }

Does (true) if (num) lies between (min) and (max), excluding the end points (that is, (min) <
(num) < (max)) otherwise does (false). The numbers must be plain numbers.

I
\DTLifFPopenbetween{ (num)} {(min)} { (min) } { (true) } { (false) }
Synonym of \dt 1ifnumopenbetween.
I
\dtlifintopenbetween{ (num)} {(min)} {(min)} {(true)} { (false)}

As \dt1lifnumopenbetween but specifically for integers. This simply uses \ 1 fnum
for the comparisons and is not dependent on the mat h option.

X

\dtlifnumclosedbetween{ (num)} {(min)} {(min)} { (true)} { (false) }

Does (true) if (num) lies between (min) and (max), including the end points (that is, (min) <
(num) < (max)) otherwise does (false). The numbers must be plain numbers.

83

2. Base Commands (datatool—base package)

\DTLifFPclosedbetween{ (num)} { (min)} { (min) } { (true) } { (false) }

Synonym of \dt1ifnumclosedbetween.

\dtlifintclosedbetween{ (num)} {(min)} { (min)} { (true) } { (false) }

As \dt1lifnumclosedbetween but specifically for integers. This simply uses \ 1 fnum

for the comparisons and is not dependent on the mat h option.

24.1.4.1. Example (13£fp)

Example 29 uses \ ede f (which defines a command with its provided definition expanded) and
\meaning (which writes the command’s definition to the PDF) to demonstrate commands that
can expand. Compare the results with using mat h=fp (Example 31) and math=pgfmath

(Example 32).

\usepackage [math=13fp] {datatool-base}

\newcommand{\numducks}{4}

\begin{document}

\edef\test{There
\dtlifnumeg{\numducks}{1}{is 1 duck}

{are \numducks\space ducks}.}

\texttt{\meaning\test}

Test text: \test

\edef\test{There are
\dtlifnumlt{\numducks}{10}{less than}{not less than}

10 ducks.}
\texttt{\meaning\test}

Test text: \test

\edef\test{There are
\dt1lifnumgt{\numducks}{10}{more than}{not more than}

10 ducks.}
\texttt{\meaning\test}

Test text: \test

84

ER9

2. Base Commands (datatool—base package)

\edef\test {There
\dtlifnumopenbetween{\numducks}{4}{10}{are}{are not}

between 4 and 10 ducks (exclusive) .}
\texttt{\meaning\test}

Test text: \test

\edef\test{There
\dtlifnumclosedbetween{\numducks}{4}{10}{are}
{are not}
between 4 and 10 ducks (inclusive) .}
\texttt{\meaning\test}

Test text: \test
\end{document}

4 Example 29: Conditionals (13 fp) \ER ISR A

macro:->There are 4 ducks.

Test text: There are 4 ducks.

macro:->There are less than 10 ducks.

Test text: There are less than 10 ducks.

macro:->There are not more than 10 ducks.

Test text: There are not more than 10 ducks.

macro:->There are not between 4 and 10 ducks (exclusive).
Test text: There are not between 4 and 10 ducks (exclusive).
macro:->There are between 4 and 10 ducks (inclusive).
Test text: There are between 4 and 10 ducks (inclusive).

2.4.1.4.2. Example (1ua)
Example 30 is the same as Example 29 except that it uses mat h=1ua (and so requires

LualSTiX): =30
B

\usepackage [math=1lua] {datatool-base}

2.4.1.4.3. Example (£p)

Example 31 is the same as Example 29 except that it uses mat h==£fp: 251

85

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 29 Conditionals (l3fp)
% Label: "ex:l3fpif"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=l3fp]{datatool-base}
\newcommand{\numducks}{4}
\begin{document}
\edef\test{There
 \dtlifnumeq{\numducks}{1}{is 1 duck}{are \numducks\space ducks}.}
\texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumlt{\numducks}{10}{less than}{not less than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumgt{\numducks}{10}{more than}{not more than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumopenbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (exclusive).} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumclosedbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (inclusive).} \texttt{\meaning\test}

Test text: \test
\end{document}

Nicola Talbot
Conditionals (l3fp) (source code)
Example document with LaTeX3 conditionals (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example029.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example029.pdf

2. Base Commands (datatool—base package)

N Example 30: Conditionals (1ua) NERE

macro:->There are 4 ducks.

Test text: There are 4 ducks.

macro:->There are less than 10 ducks.

Test text: There are less than 10 ducks.

macro:->There are not more than 10 ducks.

Test text: There are not more than 10 ducks.

macro:->There are not between 4 and 10 ducks (exclusive).
Test text: There are not between 4 and 10 ducks (exclusive).
macro:->There are between 4 and 10 ducks (inclusive).
Test text: There are between 4 and 10 ducks (inclusive).

Bl

\usepackage [math=fp] {datatool-base}

However, note that commands like \dt 1 i fnumeq are now robust and so can’t expand (but
\numducks does expand).

4 Example 31: Conditionals (£p) \EF ISR A

macro:->There \dtlifnumeq {4}{1}{is 1 duck}{are 4 ducks}.

Test text: There are 4 ducks.

macro:->There are \dtlifnumlt {4}{10}{less than}{not less than}
10 ducks.

Test text: There are less than 10 ducks.

macro:->There are \dtlifnumgt {4}{10}{more than}{not more than}
10 ducks.

Test text: There are not more than 10 ducks.

macro:->There \dtlifnumopenbetween {4}{4}{10}{are}{are not} between
4 and 10 ducks (exclusive).

Test text: There are not between 4 and 10 ducks (exclusive).

macro:->There \dtlifnumclosedbetween {4}{4}{10}{are}{are not}
between 4 and 10 ducks (inclusive).

Test text: There are between 4 and 10 ducks (inclusive).

2.4.1.4.4. Example (pgfmath)

Example 32 is the same as for Example 29 except that it uses mat h=pgfmath: .

86

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 30 Conditionals (lua)
% Label: "ex:luaif"
% arara: lualatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=lua]{datatool-base}
\newcommand{\numducks}{4}
\begin{document}
\edef\test{There
 \dtlifnumeq{\numducks}{1}{is 1 duck}{are \numducks\space ducks}.}
\texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumlt{\numducks}{10}{less than}{not less than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumgt{\numducks}{10}{more than}{not more than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumopenbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (exclusive).} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumclosedbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (inclusive).} \texttt{\meaning\test}

Test text: \test
\end{document}

Nicola Talbot
Conditionals (lua) (source code)
Example document with Lua conditionals (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 31 Conditionals (fp)
% Label: "ex:fpif"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=fp]{datatool-base}
\newcommand{\numducks}{4}
\begin{document}
\edef\test{There
 \dtlifnumeq{\numducks}{1}{is 1 duck}{are \numducks\space ducks}.}
\texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumlt{\numducks}{10}{less than}{not less than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumgt{\numducks}{10}{more than}{not more than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumopenbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (exclusive).} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumclosedbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (inclusive).} \texttt{\meaning\test}

Test text: \test
\end{document}

Nicola Talbot
Conditionals (fp) (source code)
Example document with fp conditionals (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example030.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example030.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example031.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example031.pdf

2. Base Commands (datatool—base package)

B

[\usepackage [math=pgfmath] {datatool-base}

However, note that commands like \ dt 11 fnumeq are now robust and so can’t expand (but
\numducks does expand).

4 Example 32: Conditionals (pgfmath) N\ERE

macro:->There \dtlifnumeq {4}{1}{is 1 duck}{are 4 ducks}.

Test text: There are 4 ducks.

macro:->There are \dtlifnumlt {4}{10}{less than}{not less than}
10 ducks.

Test text: There are less than 10 ducks.

macro:->There are \dtlifnumgt {4}{10}{more than}{not more than}
10 ducks.

Test text: There are not more than 10 ducks.

macro:->There \dtlifnumopenbetween {4}{4}{10}{are}{are not} between
4 and 10 ducks (exclusive).

Test text: There are not between 4 and 10 ducks (exclusive).

macro:->There \dtlifnumclosedbetween {4}{4}{10}{are}{are not}
between 4 and 10 ducks (inclusive).

Test text: There are between 4 and 10 ducks (inclusive).

2.4.1.5. String or Number Conditionals

The commands listed in this section parse the (argl) and (arg2) arguments to determine whether
to use the applicable string (§2.4.1.2) or numeric (§2.4.1.3) command. Those arguments may
also be datum control sequences.

X
\DTLifeqg{(argl)} {(arg2)} {(true)} { (false)} modifier: *

If (argl) and (arg2) are both numeric (formatted numbers) then \DTLifnumeq is used
otherwise \DTL1 fst ringeqisused. The starred version is only applicable for string equality
and will ignore the case. This command is robust.

X
\DTLiflt{(argl)}{(arg2)} {(true)} { (false)} modifier: *

If (argl) and (arg2) are both numeric (formatted numbers) then \DTLifnumlt is used
otherwise \DTLifstringlt is used. The starred version is only applicable for a string
comparison and will ignore the case. This command is robust.

87

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 32 Conditionals (pgfmath)
% Label: "ex:pgfmathif"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=pgfmath]{datatool-base}
\newcommand{\numducks}{4}
\begin{document}
\edef\test{There
 \dtlifnumeq{\numducks}{1}{is 1 duck}{are \numducks\space ducks}.}
\texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumlt{\numducks}{10}{less than}{not less than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There are
 \dtlifnumgt{\numducks}{10}{more than}{not more than}
 10 ducks.} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumopenbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (exclusive).} \texttt{\meaning\test}

Test text: \test

\edef\test{There
 \dtlifnumclosedbetween{\numducks}{4}{10}{are}{are not}
 between 4 and 10 ducks (inclusive).} \texttt{\meaning\test}

Test text: \test
\end{document}

Nicola Talbot
Conditionals (pgfmath) (source code)
Example document with fp conditionals (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example032.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example032.pdf

2. Base Commands (datatool—base package)

X
\DTLifgt{{argl)}{(arg2)} { (true)} { (false) } modifier: *

If (argl) and (arg2) are both numeric (formatted numbers) then \DTLifnumgt is used
otherwise \DTL1ifstringgt is used. The starred version is only applicable for a string
comparison and will ignore the case. This command is robust.

X
\DTLifopenbetween{ (value)} { (min)} { (min) } { (true) } { (false) } modifier: *

If (value), (min) and (max) are all numeric (formatted numbers) then \DTLi fnumopen-
between isused otherwise \DTLifstringopenbetween isused. The starred version
is only applicable for a string comparison and will ignore the case. This command is robust.

7

\DTLifclosedbetween{ (value)} { (min)} { (min) } { (true) } { (false) }
modifier: *

If (value), (min) and (max) are all numeric (formatted numbers) then \DTLifnumclosed-
between is used otherwise \DTLifstringclosedbetween is used. The starred
version is only applicable for a string comparison and will ignore the case. This command is
robust.

Example 33 uses the above conditional commands that determine from the arguments whether

to use string or numeric comparisons:

lp = 1.0p? (string) \DTLifeqg{lp}{l1.0pl{true}{false}.

1 = 1.0? (numeric) \DTLifeg{1}{1.0}{true}{false}.

2 1t 10? (numeric) \DTLiflt{2}{10}{true}{false}.
A2 1t A10? (string) \DTLiflt{A2}{Al10}{true}{false}.
2.0 gt 10.0? (numeric) \DTLifgt{2}{10}{true}{false}.

A2.0 gt A10.0? (string) \DTLifgt{A2.0}{A10.0}{true}
{false}.

10 between 1 and 20 (numeric, exclusive)?
\DTLifopenbetween{10}{1}{20}{true}{false}.

10p between 1p and 20p (string, exclusive)?
\DTLifopenbetween{10p}{1lp}{20p}{true}{false}.

88

233

2. Base Commands (datatool—base package)

1 between 1.0 and 2 (numeric, inclusive)?
\DTLifclosedbetween{1}{1.0}{2}{true}{false}.

1 between 1.0 and 2A (string, inclusive)?
\DTLifclosedbetween{1}{1.0}{2A}{true}{false}.

4 Example 33: Numerical/String Comparisons \ER IR I

1 = 1.07 (numeric) true.

Ip = 1.0p? (string) false.

2 1t 10?7 (numeric) true.

A2 1t A107 (string) false.

2.0 gt 10.07 (numeric) false.

A2.0 gt A10.07 (string) true.

10 between 1 and 20 (numeric, exclusive)? true.
10p between 1p and 20p (string, exclusive)? false.
1 between 1.0 and 2 (numeric, inclusive)? true.

1 between 1.0 and 2A (string, inclusive)? false.

2.4.2. ifthen conditionals

The commands described in §2.4.1 can not be used in the conditional part of the \ i fthenelse
or \whiledo commands provided by the ifthen package. This section describes analogous
commands which may only be in the conditional part of the \ifthenelse or \whiledo.
These may be used with the boolean operations \not, \and and \ or provided by the ifthen
package. See the ifthen documentation for further details.

texdoc ifthen

T
Be aware of protected expansion in the argument of commands like \ifthenelse
that can cause a different result from using \DTL1i s... compared to the corresponding
\DTL1if... (see Example 34).

\DTLisint{{arg)}

As \DTLifint but for use in ifthen conditionals (see Example 2.4.2.1).

&9

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 33 Numerical/String Comparisons
% Label: "ex:DTLif"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage[math=l3fp]{datatool-base}
\begin{document}
1 = 1.0? (numeric) \DTLifeq{1}{1.0}{true}{false}.

1p = 1.0p? (string) \DTLifeq{1p}{1.0p}{true}{false}.

2 lt 10? (numeric) \DTLiflt{2}{10}{true}{false}.

A2 lt A10? (string) \DTLiflt{A2}{A10}{true}{false}.

2.0 gt 10.0? (numeric) \DTLifgt{2}{10}{true}{false}.

A2.0 gt A10.0? (string) \DTLifgt{A2.0}{A10.0}{true}{false}.

10 between 1 and 20 (numeric, exclusive)?
\DTLifopenbetween{10}{1}{20}{true}{false}.

10p between 1p and 20p (string, exclusive)?
\DTLifopenbetween{10p}{1p}{20p}{true}{false}.

1 between 1.0 and 2 (numeric, inclusive)?
\DTLifclosedbetween{1}{1.0}{2}{true}{false}.

1 between 1.0 and 2A (string, inclusive)?
\DTLifclosedbetween{1}{1.0}{2A}{true}{false}.
\end{document}

Nicola Talbot
Numerical/String Comparisons (source code)
Example document demonstrating comparisons where the arguments are parsed to determine the comparison type (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example033.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example033.pdf
https://www.tug.org/texdoc/

2. Base Commands (datatool—base package)

b §
\DTLisreal{(arg)}
As \DTL1ifreal but for use in ifthen conditionals (see Example 2.4.2.1).
b §
\DTLiscurrency{(arg)}

As \DTLi fcurrency but for use in ifthen conditionals. Note that \DTLfmt curr, \DTL-
fmtcurrency and \DTLcurrency are designed to expand so if you have data that
contains those commands it’s better to use \DTL1ifcurrency (see Example 2.4.2.1).

b §
[\DTLiscurrencyunit{(arg)}
As \DTLifcurrencyunit but for use in ifthen conditionals (see Example 2.4.2.1).
b §
\DTLisnumerical{(arg)}
As \DTLifnumerical but for use in ifthen conditionals (see Example 2.4.2.1).
b §
\DTLisstring{(arg)}
As \DTL1ifstring but for use in ifthen conditionals (see Example 2.4.2.1).
X
\DTLiseq{(argl)} {(arg2)}
As the unstarred \DTL1 feq but for use in ifthen conditionals (see Example 2.4.2.2).
) §
\DTLisieq{({argl)}{{arg2)}
As the starred \DTL1 feqg* but for use in ifthen conditionals (see Example 2.4.2.2).
b §
\DTLisnumeq{(argl)} {(arg2)}
As \DTL1 fnumeq but for use in ifthen conditionals.
) §
\DTLisFPeq{{argl)}{{arg2)}

Synonym of \DTL1isnumeq.

90

2. Base Commands (datatool—base package)

X
\DTLislt{({(argl)}{(arg2)}
As the unstarred \DTL1i £ 1t but for use in ifthen conditionals (see Example 2.4.2.2).
b §
\DTLisilt{({argl)}{(arg2)}
As the starred \DTL1 £ 1t * but for use in ifthen conditionals (see Example 2.4.2.2).
L2
\DTLisnumlt {(argl)} {{(arg2)}
As \DTLifnumlt but for use in ifthen conditionals.
b §
\DTLisFP1lt{(argl)}{{arg2)}
Synonym of \DTLisnumlt.
X

[\DTLisnumlteqg{(argl)}{(arg2)}

There isn’ta \DTL1 f... direct equivalent of this command, except using \DTL1 fnumgt with
the final two arguments flipped. Evaluates to true if (argl) < (arg2), where the arguments are
formatted numbers.

) §
\DTLisFPlteq{(argl)} {(arg2)}
Synonym of \DTLisnumltedq.
b §
\DTLisgt {{argl)}{({arg2)}
As the unstarred \DTL1i fgt but for use in ifthen conditionals (see Example 2.4.2.2).
X
[\DTLisigt{({argl)}{{arg2)}
As the starred \DTL1 fgt * but for use in ifthen conditionals (see Example 2.4.2.2).
b §
\DTLisnumgt {(argl)} {{(arg2)}

As \DTL1i fnumgt but for use in ifthen conditionals.

91

2. Base Commands (datatool—base package)

I
\DTLisFPgt{(argl)}{{arg2)}
Synonym of \DTLisnumgt.
I

\DTLisnumgteqg{(argl)}{(arg2)}

There isn’ta \DTL1 f... direct equivalent of this command, except using \DTL1i fnumlt with
the final two arguments flipped. Evaluates to true if (argl) > (arg2), where the arguments are

formatted numbers.

X
\DTLisFPgteq{(argl)} {(arg2)}
Synonym of \DTLisnumgtedq.
X
\DTLisopenbetween{ (num)} { (min) } { (min) }
As the unstarred \DTLi fopenbetween but for use in ifthen conditionals.
X
\DTLisiopenbetween{ (num)} { (min)} { (min)}
As the starred \DTL1ifopenbetween* but for use in ifthen conditionals.
X
\DTLisnumopenbetween{ (num)} { (min)} { (min)}
As \DTL1ifnumopenbetween but for use in ifthen conditionals.
b §
\DTLisFPopenbetween{ (num)} {(min)} { (min)}
Synonym of \DTLisnumopenbetween.
X
\DTLisclosedbetween{ (num)} {(min)} { (min)}
As the unstarred \DTLifclosedbetween but for use in ifthen conditionals.
X

\DTLisiclosedbetween{ (num)} {(min)} { (min)}

As the starred \DTL1fclosedbetween* but for use in ifthen conditionals.

92

2. Base Commands (datatool—base package)

X
\DTLisnumclosedbetween{ (num)} { (min)} { (min) }
As \DTLifnumclosedbetween but for use in ifthen conditionals.
X
\DTLisFPclosedbetween{ (num)} { (min)} { (min)}
Synonym of \DTLisnumclosedbetween.
X
\DTLisinlist {(element)} {(list)}
As \DTLifinlist but for use in ifthen conditionals (see Example 36).
X

\DTLisSubString{ (string)} { (fragment)}

As the unstarred \DTL1i fSubSt ring but for use in ifthen conditionals (see Example 36).

X

[\DTLisiSubString{ (sring) } { (fragment)}

As the starred \DTL1fSubString* but for use in ifthen conditionals (see Example 36).

I

\DTLisPrefix{(string)} {(fragment)}

As the unstarred \DTLifStart sWith but for use in ifthen conditionals (see Example 36).

X

\DTLisiPrefix{(sring)}{(fragment)}

As the starred \DTLifStartsWith* but for use in ifthen conditionals (see Example 36).

X

\DTLisSuffix{(swring)} {(fragment)}

As the unstarred \DTL1i fEndsWith but for use in ifthen conditionals (see Example 36).

X

\DTLisiSuffix{(sring)} {(fragment)}

As the starred \DTL1fEndsWith* but for use in ifthen conditionals (see Example 36).

93

2. Base Commands (datatool—base package)

2.4.2.1. Data Type Conditionals Example

Example 34 tests for the data type of the given argument, which will be parsed according to the
current locale settings.

,
1,234.0: \ifthenelse{\DTLisint{1,234.0}}{int}
{not int}.

(234

1,234: \ifthenelse{\DTLisint{1l,234}}{int}{not int}.

1,234.0: \ifthenelse{\DTLisreal{1l,234.0}}{real}
{not real}.

1,234: \ifthenelse{\DTLisreal{1l,234}}{real}{not real}

Compare:

\$1,234: \DTLifcurrency{\$1,234}{currency}

{not currency}.

With: \$1,234: \ifthenelse{\DTLiscurrency{\$1,234}}
{currency}{not currency}.

\DTLnewcurrencysymbol{\protect\$}%
\$1,234: \ifthenelse{\DTLiscurrency{\$1,234}}
{currency}{not currency}.

1.234,0: \ifthenelse{\DTLisnumerical{1.234,0}}
{numerical}{not numerical};
\ifthenelse{\DTLisstring{1.234,0}}{string}
{not string}.

\DTLsetnumberchars{.}{, }%

1.234,0: \ifthenelse{\DTLisnumerical{1.234,0}}
{numerical}{not numerical};
\ifthenelse{\DTLisstring{1.234,0}}{string}
{not string}.

Empty: \ifthenelse{\DTLisnumerical{}}{numerical}
{not numerical};
\ifthenelse{\DTLisstring{}}{string}{not string}.

Note the difference between \DTLifcurrencyand \DTLiscurrency. Thisis because
\ifthenelse causes \ $ toexpand to \protect \$, which isn’t recognised as a currency

94

2. Base Commands (datatool—base package)

unit by default.

1,234: not real.

Compare: $1,234: currency. With: $1,234: not currency.
$1,234: currency.

1.234,0: not numerical; string.

1.234,0: numerical; not string.

Empty: not numerical; not string.

£ Example 34: Data Type Conditionals for use with ifthen E LR
1,234.0: not int.
1,234: int.
1,234.0: real.

2.4.2.2. Order Conditionals Example

Example 35 demonstrates the order conditionals in \i fthenelse:

$1 = 1.08?
\ifthenelse{\DTLiseqg{1}{1.0}}{true}t{false}.

duck = Duck? (case—-sensitive)
\ifthenelse{\DTLiseg{duck}{Duck}}{true}{false}.

duck = Duck? (ignore case)
\ifthenelse{\DTLisieg{duck}{Duck}}{true}{false}.

$2 < 10$? \ifthenelse{\DTLislt{2}{10}}{true}{false}.

a before 7Z? (case—-sensitive)
\ifthenelse{\DTLislt{a}l{Z}}{true}{false}.

a before Z? (ignore case)
\ifthenelse{\DTLisi11lt{2}{10}}{true}{false}.

$1.5 > 1872
\ifthenelse{\DTLisgt{1.5}{1}}{truelt{false}.

a after 7Z? (case—-sensitive)
\ifthenelse{\DTLisgt{a}{z}}{true}{false}.

95

535

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 34 Data Type Conditionals for use with ifthen
% Label: "ex:DTListype"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
1,234.0: \ifthenelse{\DTLisint{1,234.0}}{int}{not int}.

1,234: \ifthenelse{\DTLisint{1,234}}{int}{not int}.

1,234.0: \ifthenelse{\DTLisreal{1,234.0}}{real}{not real}.

1,234: \ifthenelse{\DTLisreal{1,234}}{real}{not real}.

Compare: \$1,234: \DTLifcurrency{\$1,234}{currency}{not currency}. With: \$1,234: \ifthenelse{\DTLiscurrency{\$1,234}}{currency}{not currency}.

\DTLnewcurrencysymbol{\protect\$}%
 \$1,234: \ifthenelse{\DTLiscurrency{\$1,234}}{currency}{not currency}.

1.234,0: \ifthenelse{\DTLisnumerical{1.234,0}}{numerical}{not numerical}; \ifthenelse{\DTLisstring{1.234,0}}{string}{not string}.

\DTLsetnumberchars{.}{,}%
 1.234,0: \ifthenelse{\DTLisnumerical{1.234,0}}{numerical}{not numerical}; \ifthenelse{\DTLisstring{1.234,0}}{string}{not string}.

Empty: \ifthenelse{\DTLisnumerical{}}{numerical}{not numerical}; \ifthenelse{\DTLisstring{}}{string}{not string}.
\end{document}

Nicola Talbot
Data Type Conditionals for use with ifthen (source code)
Example document demonstrating data type conditionals for use in commands like \ifthenelse (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example034.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example034.pdf

2. Base Commands (datatool—base package)

a after Z? (ignore case)
\ifthenelse{\DTLisigt{2}{10}}{true}t{false}.

4 Example 35: Order Conditionals for use with ifthen \ERE

1 =1.07 true.

duck = Duck? (case-sensitive) false.
duck = Duck? (ignore case) true.

2 < 107 true.

a before Z7 (case-sensitive) false.

a before Z7? (ignore case) true.

1.5 > 17 true.

a after Z7 (case-sensitive) true.

a after Z7 (ignore case) false.

2.4.2.3. List Element and Substring Conditionals Example

Example 36 uses the list element conditional and substring conditionals: 236

"goose' element of list "ant,duck,goose'?
\ifthenelse{\DTLisinlist{goose}{ant,duck,goose}}
{true}{false}.

"o0' element of list "“ant,duck,goose'?
\ifthenelse{\DTLisinlist{oo}{ant,duck, goose}}{true}

{false}.
"oo' in “goose'?

\ifthenelse{\DTLisSubString{goose}{oo}t}{true}{false}

"oo' in “GOOSE' (case—sensitive)?
\ifthenelse{\DTLisSubString{GOOSE}{oo}}{true}t{false}

"oo' in "GOOSE' (ignore case)?
\ifthenelse{\DTLisiSubString{GOOSE}{oco}}{true}{false}

96

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 35 Order Conditionals for use with ifthen
% Label: "ex:DTLiscmp"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
$1 = 1.0$? \ifthenelse{\DTLiseq{1}{1.0}}{true}{false}.

duck = Duck? (case-sensitive) \ifthenelse{\DTLiseq{duck}{Duck}}{true}{false}.

duck = Duck? (ignore case) \ifthenelse{\DTLisieq{duck}{Duck}}{true}{false}.

$2 < 10$? \ifthenelse{\DTLislt{2}{10}}{true}{false}.

a before Z? (case-sensitive) \ifthenelse{\DTLislt{a}{Z}}{true}{false}.

a before Z? (ignore case) \ifthenelse{\DTLisilt{2}{10}}{true}{false}.

$1.5 > 1$? \ifthenelse{\DTLisgt{1.5}{1}}{true}{false}.

a after Z? (case-sensitive) \ifthenelse{\DTLisgt{a}{Z}}{true}{false}.

a after Z? (ignore case) \ifthenelse{\DTLisigt{2}{10}}{true}{false}.
\end{document}

Nicola Talbot
Order Conditionals for use with ifthen (source code)
Example document demonstrating order conditionals for use in commands like \ifthenelse (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example035.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example035.pdf

2. Base Commands (datatool—base package)
"go' prefix of “goose'?
\ifthenelse{\DTLisPrefix{goose}{go}t}{true}{false}.

"go' prefix of "GOOSE' (case—-sensitive)?
\ifthenelse{\DTLisPrefix{GOOSE}{go}t}{true}{false}.

"go' prefix of "GOOSE' (ignore case)?
\ifthenelse{\DTLisiPrefix{GOOSE}{go}}{true}{false}.

"se' suffix of “goose'?
\ifthenelse{\DTLisSuffix{goose}{se}}{true}{false}.

"se' suffix of "GOOSE' (case—-sensitive)?
\ifthenelse{\DTLisSuffix{GOOSE}{se}}{truelt{false}.

"se' suffix of "GOOSE' (ignore case)?
\ifthenelse{\DTLis1iSuffix{GOOSE}{se}}{true}{false}.

+ Example 36: Substring Conditionals for use with ifthen PE X2 A

‘goose’ element of list ‘ant,duck,goose’? true.
‘00’ element of list ‘ant,duck,goose’? false.
‘00’ in ‘goose’? true.

‘00" in ‘GOOSE’ (case-sensitive)? false.

‘00" in ‘GOOSE’ (ignore case)? true.

‘go’ prefix of ‘goose’? true.

‘go’ prefix of ‘GOOSE’ (case-sensitive)? false.
‘g0’ prefix of ‘GOOSE’ (ignore case)? true.
‘se” suffix of ‘goose’? true.

‘se’ suffix of ‘GOOSE’ (case-sensitive)? false.
‘se’ suffix of ‘GOOSE’ (ignore case)? true.

2.5. Decimal Functions

Commands with a name prefixed with “dt 1 ” (such as \dt 1 add) that are described in §2.5.1
don’t parse for the current decimal character and number group character or for a currency symbol.
They require a plain number, either a bare integer (such as 12345) or a number with a decimal
point (such as 1234.5). The definition of these commands depends on the value of the math
package option.

Commands with a name prefixed with “DTL” (such as \DTLadd) that are described in
§2.5.2 expect formatted numbers in the supplied values. These commands are provided by

97

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 36 Substring Conditionals for use with ifthen
% Label: "ex:DTLissubstr"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
`goose' element of list `ant,duck,goose'?
\ifthenelse{\DTLisinlist{goose}{ant,duck,goose}}{true}{false}.

`oo' element of list `ant,duck,goose'?
\ifthenelse{\DTLisinlist{oo}{ant,duck,goose}}{true}{false}.

`oo' in `goose'?
\ifthenelse{\DTLisSubString{goose}{oo}}{true}{false}.

`oo' in `GOOSE' (case-sensitive)?
\ifthenelse{\DTLisSubString{GOOSE}{oo}}{true}{false}.

`oo' in `GOOSE' (ignore case)?
\ifthenelse{\DTLisiSubString{GOOSE}{oo}}{true}{false}.

`go' prefix of `goose'?
\ifthenelse{\DTLisPrefix{goose}{go}}{true}{false}.

`go' prefix of `GOOSE' (case-sensitive)?
\ifthenelse{\DTLisPrefix{GOOSE}{go}}{true}{false}.

`go' prefix of `GOOSE' (ignore case)?
\ifthenelse{\DTLisiPrefix{GOOSE}{go}}{true}{false}.

`se' suffix of `goose'?
\ifthenelse{\DTLisSuffix{goose}{se}}{true}{false}.

`se' suffix of `GOOSE' (case-sensitive)?
\ifthenelse{\DTLisSuffix{GOOSE}{se}}{true}{false}.

`se' suffix of `GOOSE' (ignore case)?
\ifthenelse{\DTLisiSuffix{GOOSE}{se}}{true}{false}.
\end{document}

Nicola Talbot
Substring Conditionals for use with ifthen (source code)
Example document demonstrating substring conditionals for use in commands like \ifthenelse (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example036.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example036.pdf

2. Base Commands (datatool—base package)

datatool-base and use \DTLconverttodecimal to convert the supplied values to plain
numbers.

2.5.1. Plain Numbers

o

If you have complex calculations, you may prefer to use If[[EX3 commands directly, as
shown in Example 3. Alternatively, if you are using LualfIEX, you may prefer to use
\directlua, as shown in Example 4.

Commands with a CSV list argument, such as \dt 1addall, will do at least one expansion.
The math=13fp and math=1ua options will fully expand (num list), but the mat h=fp
and math=pgfmath options will only do a single expansion. This is different to most CSV
list arguments provided by datatool—base (see §2.9). Since the list is expected to only contain
comma-separated plain numbers there should be no expansion issues. Avoid empty elements.

X

\dt lpadleadingzeros{ (num-digits) } { (value) }

Expands to a plain number that is the supplied (value) padded with leading zeros to the number of
digits identified in the (num-digits) argument. Both arguments must be plain numbers. The (num-
digits) argument should lie between 1 and 7. No error will occur if (num-digits) is outside that
range. This command is primarily designed for sorting where the numbers are mixed with strings
where a character code comparison will be used, and so is expandable. Unlike \two@digits,
the (value) may be a decimal.

X
\dtlpadleadingzerosminus initial: —
This will be inserted by \dt 1padleadingzeros if the value is negative.
X
\dtlpadleadingzerosplus initial: empty

This will be inserted by \dt 1padleadingzeros if the value is positive. Note that this
expands to nothing by default. This is because the plus (+) character has a lower character code
than the hyphen-minus (—) character, which would put positive numbers before negative numbers
in a character code sort.

X

\dtladd{(cs)}{ (numl)} { (num2)}

Calculates (numl) + (num?2) (addition) and stores the result in the control sequence (cs), where
the numbers are plain numbers.

98

2. Base Commands (datatool—base package)

\dtladdall{(cs)}{ (num list)}

Adds all the numbers in the comma-separated list (num list) and stores the result in the control
sequence (cs), where the numbers are plain numbers.

The number list should not contain empty elements.

\dtlsub{{cs)}{ (numl)} { (num2)}

Calculates (numl) — (num2) (subtraction) and stores the result in the control sequence (cs), where
the numbers are plain numbers.

X

\dt1lmul{{cs)} { (numl)} { (num?2)}

Calculates (numl) x (num2) (multiplication) and stores the result in the control sequence (cs),
where the numbers are plain numbers.

X

\dt1div{{(cs)}{ (numl)} { (num2)}

Calculates (numl) = (num?2) (division) and stores the result in the control sequence (cs), where
the numbers are plain numbers.

X

\dtlsqgrt{{cs)}{(num)}

Calculates the square root of (num) and stores the result in the control sequence (cs), where the
number is a plain number.

X

\dtlroot{(cs)}{(num)} {(n)}

Calculates the (n)th root of (num) and stores the result in the control sequence (cs), where the
number is a plain number.

X

\dt lround{{cs)} { (num)} { (dp)}

Rounds (num) to (dp) decimal places and stores the result in the control sequence (cs), where the
number is a plain number.

99

2. Base Commands (datatool—base package)

\dtltrunc{{cs)}{ (num)} {{dp)}

Truncates (num) to (dp) decimal places and stores the result in the control sequence (cs), where
the number is a plain number.

X

\dtlclip{(cs)}{(num)}

Removes redundant trailing zeros from (num) and stores the result in the control sequence (cs),
where the number is a plain number.

X

[\dt1lmin{{cs)} { (numl)} { (num?2)}

Defines the control sequence (cs) to the smaller of the two numbers, where the numbers are plain
numbers.

X

\dt1lminall{{cs)} { (num list)}

Defines the control sequence (cs) to the minimum value in the given comma-separated list
(num-list) of numbers, where the numbers are plain numbers.

A
The number list should not contain empty elements.
) §
\dt1lmax{{(cs)} { (numl)} { (num2)}

Defines the control sequence (cs) to the larger of the two numbers, where the numbers are plain
numbers.

X

\dtlmaxall{(cs)}{ (num list)}

Defines the control sequence (cs) to the maximum value in the given comma-separated list
(num-list) of numbers, where the numbers are plain numbers.

The number list should not contain empty elements.

\dtlabs{{(cs)} {(num)}

100

2. Base Commands (datatool—base package)

Defines the control sequence (cs) to the absolute value of the number (num), where the number
is a plain numbers.

X

[\dtlneg{(cs)} { (num)}

J

Defines the control sequence (cs) to the negative of the number (num), where the number is a
plain numbers.

X

\dtlmeanforall{{cs)} { (num list)}

Calculates the mean (average) of all the numbers in the comma-separated list (num list) and
stores the result in the control sequence (cs), where the numbers are plain numbers.

A
The number list should not contain empty elements.
) §
\dtlvarianceforall [(mean)] {{cs)} { (num list) }

Calculates the variance of all the numbers in the comma-separated list (num list) and stores the
result in the control sequence (cs), where the numbers are plain numbers. If the mean has already
been calculated, it can be supplied in the optional argument (mean). If omitted, the mean will be
calculated before calculating the variance.

A

The number list should not contain empty elements.
X

\dtlsdforall [(mean)] {{cs)} { (num list) }

Calculates the standard deviation of all the numbers in the comma-separated list (num list) and
stores the result in the control sequence (cs), where the numbers are plain numbers. If the mean
has already been calculated, it can be supplied in the optional argument (mean). If omitted, the
mean will be calculated before calculating the standard deviation. If you have already calculated
the variance you can simply use \dt 1 sgrt.

A

|

The number list should not contain empty elements.

L

101

2. Base Commands (datatool—base package)

25.1.1. Example (13£fp)

Example 37 explicitly sets the processor to 1 3 £p, which uses ISTEX3 floating point commands.
This is now the default setting unless Lual&TEX is used. ey

,

\documentclass{article}

\usepackage [math=13fp] {datatool-base}
\newcommand{\numA}{1023.5}
\newcommand{\numB}{54.75000}
\newcommand{\numC}{-20648.68}
\newcommand{\numlist}{32.456,0.15,-25,48.7,92}
\begin{document}
\dtladd{\result}{\numA}{\numB}

S\numA + \numB = \results$.

\dtladd{\result}{\result}{\numC}
Add νmC to previous result.
Updated result: \result.

\dtladdall{\result}{\numlist}
Sum of all numbers in the set S\ {\numlist\}$: \result.

\dtlsub{\result}{\numA}{\numB}
S\numA — \numB = \result$.

\dtlsub{\result}{\result}{\numC}
Subtract νmC from previous result.
Updated result: \result.

\dtlmul{\result}{\numA}{\numB}
S\numA \times \numB = \resultS$s.

\dtImul{\result}{\result}{\numC}
Multiply previous result by νmCS.
Updated result: \result.

\dtldiv{\result}{\numA}{\numB}
S\numA \div \numB = \results§$.

\dtldiv{\result}{\result}{\numC}
Divide previous result by S$\numCS.
Updated result: \result.

102

2. Base Commands (datatool—base package)

\dtlsgrt{\result}{\numA}
S\sgrt{\numA} = \result$S.

\dtlsgrt{\result}{9}
S\sqrt{9} = \resultS$S.

\dtlroot{\result}{\numA} {3}
S\sgrt [3]{\numA} = \resultS$S.

\dtlroot{\result}{8}{3}
S\sqrt [3]{8} = \resultsS.

\dtlround{\result}{\numB}{1}
Round νmBS to 1dp: \result.

\dtltrunc{\result}{\numB}{1}
Truncate νmB to 1dp: \result.

\dtlclip{\result}{\numB}
Clip νmBS: \result.

\dtImin{\result}{\numA}{\numB}
Minimum of \numZASS and $\numBS: \result.

\dtlminall{\result}{\numlist}
Minimum value in the set S$\{\numlist\}$: \result.

\dtImax{\result}{\numA}{\numB}
Maximum of S$S\numAS$ and S\numBS$: \result.

\dtlmaxall{\result}{\numlist}
Maximum value in the set S$\{\numlist\}$: \result.

\dtlabs{\result}{\numC}
Absolute value of νmCSS: \result.

\dtlneg{\result}{\numC}
Negate value of νmC: \result.

\dtlmeanforall{\meanvalue}{\numlist}

Mean of all numbers in the set S\{\numlist\}S$:
\meanvalue.

103

2. Base Commands (datatool—base package)

\dtlvarianceforall [\meanvalue] {\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$
(using previously calculated mean): \result.

\dtlvarianceforall{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$
(not using previously calculated mean): \result.

\dtlsdforall [\meanvalue] {\result}{\numlist}
Standard deviation of all numbers in the set

S\{\numlist\}$

(using previously calculated mean) : \result.

\dtlsdforall{\result}{\numlist}

Standard deviation of all numbers in the set
S\{\numlist\}$

(not using previously calculated mean) : \result.
\end{document}

2.5.1.2. Example (1lua)

Example 38 uses the 1ua processor, which uses \direct lua to perform the calculations,

and so requires Lual&TEX. The only difference to Example 37 is the package option: =8

=

[\usepackage [math=1lua] {datatool-base}

(and the need to use Lual&TEX).

Note that this produces slightly different results from examples 37 & 39. For the division
1023.5 +54.75000, mat h=1ua produces 18.694063926941 whereas mat h=1 3 £p produces
the result 18.69406392694064. This is due to rounding when the result from Lua is input into
the TEX stream. With math=£p the result is 18.694063926940639269, which has even more
sgmﬁamt&gw.Onﬂwoﬂwrhdebrmeammenmtv@amiammrmn@@Jnachlep
produces integers 3 and 2, mat h=1ua returns equivalent decimals 3.0 and 2.0 but math=£fp
has rounding errors.

2.5.1.3. Example (£p)

Example 39 is almost identical to Example 37 but uses the £ p processor, which uses the commands
provided by the fp package. Note that the results have trailing redundant zeros and there are
rounding errors for V9 and /8.

(239

104

2. Base Commands (datatool—base package)

+ Example 37: Decimal Functions (13 fp) NERIE

1023.5 4+ 54.75000 = 1078.25.

Add —20648.68 to previous result. Updated result: -19570.43.

Sum of all numbers in the set {32.456,0.15, —25,48.7,92}: 148.306.

1023.5 — 54.75000 = 968.75.

Subtract —20648.68 from previous result. Updated result: 21617.43.

1023.5 x 54.75000 = 56036.625.

Multiply previous result by —20648.68. Updated result: -1157082337.905.

1023.5 + 54.75000 = 18.69406392694064.

Divide previous result by —20648.68. Updated result: -0.0009053394176741874.

V/1023.5 = 31.99218654609278.

V9 =3.

v/1023.5 = 10.07772760987407.

V8 =2.

Round 54.75000 to 1dp: 54.8.

Truncate 54.75000 to 1dp: 54.7.

Clip 54.75000: 54.75.

Minimum of 1023.5 and 54.75000: 54.75.

Minimum value in the set {32.456,0.15, —25,48.7,92}: -25.

Maximum of 1023.5 and 54.75000: 1023.5.

Maximum value in the set {32.456,0.15, —25,48.7,92}: 92.

Absolute value of —20648.68: 20648.68.

Negate value of —20648.68: 20648.68.

Mean of all numbers in the set {32.456,0.15, —25,48.7,92}: 29.6612.

Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (using pre-
viously calculated mean): 1623.03410176.

Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (not using
previously calculated mean): 1623.03410176.

Standard deviation of all numbers in the set {32.456,0.15, —25,48.7, 92}
(using previously calculated mean): 40.28689739555529.

Standard deviation of all numbers in the set {32.456,0.15, —25,48.7, 92}
(not using previously calculated mean): 40.28689739555529.

105

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 37 Decimal Functions (l3fp)
% Label: "ex:l3fpcalc"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=l3fp]{datatool-base}
\newcommand{\numA}{1023.5}
\newcommand{\numB}{54.75000}
\newcommand{\numC}{-20648.68}
\newcommand{\numlist}{32.456,0.15,-25,48.7,92}
\begin{document}
\dtladd{\result}{\numA}{\numB}
$\numA + \numB = \result$.

\dtladd{\result}{\result}{\numC}
Add νmC to previous result. Updated result: \result.

\dtladdall{\result}{\numlist}
Sum of all numbers in the set $\{\numlist\}$: \result.

\dtlsub{\result}{\numA}{\numB}
$\numA - \numB = \result$.

\dtlsub{\result}{\result}{\numC}
Subtract νmC from previous result. Updated result: \result.

\dtlmul{\result}{\numA}{\numB}
$\numA \times \numB = \result$.

\dtlmul{\result}{\result}{\numC}
Multiply previous result by νmC. Updated result: \result.

\dtldiv{\result}{\numA}{\numB}
$\numA \div \numB = \result$.

\dtldiv{\result}{\result}{\numC}
Divide previous result by νmC. Updated result: \result.

\dtlsqrt{\result}{\numA}
$\sqrt{\numA} = \result$.

\dtlsqrt{\result}{9}
$\sqrt{9} = \result$.

\dtlroot{\result}{\numA}{3}
$\sqrt[3]{\numA} = \result$.

\dtlroot{\result}{8}{3}
$\sqrt[3]{8} = \result$.

\dtlround{\result}{\numB}{1}
Round νmB to 1dp: \result.

\dtltrunc{\result}{\numB}{1}
Truncate νmB to 1dp: \result.

\dtlclip{\result}{\numB}
Clip νmB: \result.

\dtlmin{\result}{\numA}{\numB}
Minimum of νmA and νmB: \result.

\dtlminall{\result}{\numlist}
Minimum value in the set $\{\numlist\}$: \result.

\dtlmax{\result}{\numA}{\numB}
Maximum of νmA and νmB: \result.

\dtlmaxall{\result}{\numlist}
Maximum value in the set $\{\numlist\}$: \result.

\dtlabs{\result}{\numC}
Absolute value of νmC: \result.

\dtlneg{\result}{\numC}
Negate value of νmC: \result.

\dtlmeanforall{\meanvalue}{\numlist}
Mean of all numbers in the set $\{\numlist\}$: \meanvalue.

\dtlvarianceforall[\meanvalue]{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlvarianceforall{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.

\dtlsdforall[\meanvalue]{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlsdforall{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.
\end{document}

Nicola Talbot
Decimal Functions (l3fp) (source code)
Example document demonstrating decimal functions using LaTeX3 floating point commands (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example037.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example037.pdf

2. Base Commands (datatool—base package)

4 Example 38: Decimal Functions (1ua) NEXE

1023.5 4 54.75000 = 1078.25.

Add —20648.68 to previous result. Updated result: -19570.43.

Sum of all numbers in the set {32.456,0.15, —25,48.7,92}: 148.306.

1023.5 — 54.75000 = 968.75.

Subtract —20648.68 from previous result. Updated result: 21617.43.

1023.5 x 54.75000 = 56036.625.

Multiply previous result by —20648.68. Updated result: -1157082337.905.

1023.5 + 54.75000 = 18.694063926941.

Divide previous result by —20648.68. Updated result: -0.0009053394176742.

v/1023.5 = 31.992186546093.

V9 = 3.0.

v/1023.5 = 10.077727609874.

V8 = 2.0.

Round 54.75000 to 1dp: 54.8.

Truncate 54.75000 to 1dp: 54.7.

Clip 54.75000: 54.75.

Minimum of 1023.5 and 54.75000: 54.75.

Minimum value in the set {32.456,0.15, —25,48.7,92}: -25.

Maximum of 1023.5 and 54.75000: 1023.5.

Maximum value in the set {32.456,0.15, —25,48.7,92}: 92.

Absolute value of —20648.68: 20648.68.

Negate value of —20648.68: 20648.68.

Mean of all numbers in the set {32.456,0.15, —25,48.7,92}: 29.6612.

Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (using pre-
viously calculated mean): 1623.03410176.

Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (not using
previously calculated mean): 1623.03410176.

Standard deviation of all numbers in the set {32.456,0.15, —25,48.7,92}
(using previously calculated mean): 40.286897395555.

Standard deviation of all numbers in the set {32.456,0.15, —25,48.7,92}
(not using previously calculated mean): 40.286897395555.

106

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 38 Decimal Functions (lua)
% Label: "ex:luacalc"
% arara: lualatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=lua]{datatool-base}
\newcommand{\numA}{1023.5}
\newcommand{\numB}{54.75000}
\newcommand{\numC}{-20648.68}
\newcommand{\numlist}{32.456,0.15,-25,48.7,92}
\begin{document}
\dtladd{\result}{\numA}{\numB}
$\numA + \numB = \result$.

\dtladd{\result}{\result}{\numC}
Add νmC to previous result. Updated result: \result.

\dtladdall{\result}{\numlist}
Sum of all numbers in the set $\{\numlist\}$: \result.

\dtlsub{\result}{\numA}{\numB}
$\numA - \numB = \result$.

\dtlsub{\result}{\result}{\numC}
Subtract νmC from previous result. Updated result: \result.

\dtlmul{\result}{\numA}{\numB}
$\numA \times \numB = \result$.

\dtlmul{\result}{\result}{\numC}
Multiply previous result by νmC. Updated result: \result.

\dtldiv{\result}{\numA}{\numB}
$\numA \div \numB = \result$.

\dtldiv{\result}{\result}{\numC}
Divide previous result by νmC. Updated result: \result.

\dtlsqrt{\result}{\numA}
$\sqrt{\numA} = \result$.

\dtlsqrt{\result}{9}
$\sqrt{9} = \result$.

\dtlroot{\result}{\numA}{3}
$\sqrt[3]{\numA} = \result$.

\dtlroot{\result}{8}{3}
$\sqrt[3]{8} = \result$.

\dtlround{\result}{\numB}{1}
Round νmB to 1dp: \result.

\dtltrunc{\result}{\numB}{1}
Truncate νmB to 1dp: \result.

\dtlclip{\result}{\numB}
Clip νmB: \result.

\dtlmin{\result}{\numA}{\numB}
Minimum of νmA and νmB: \result.

\dtlminall{\result}{\numlist}
Minimum value in the set $\{\numlist\}$: \result.

\dtlmax{\result}{\numA}{\numB}
Maximum of νmA and νmB: \result.

\dtlmaxall{\result}{\numlist}
Maximum value in the set $\{\numlist\}$: \result.

\dtlabs{\result}{\numC}
Absolute value of νmC: \result.

\dtlneg{\result}{\numC}
Negate value of νmC: \result.

\dtlmeanforall{\meanvalue}{\numlist}
Mean of all numbers in the set $\{\numlist\}$: \meanvalue.

\dtlvarianceforall[\meanvalue]{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlvarianceforall{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.

\dtlsdforall[\meanvalue]{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlsdforall{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.
\end{document}

Nicola Talbot
Decimal Functions (lua) (source code)
Example document demonstrating decimal functions using Lua floating point commands (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example038.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example038.pdf

2. Base Commands (datatool—base package)

B
[\usepackage [math=fp] {datatool-base}
4 Example 39: Decimal Functions (£p) N\ERE

1023.5 + 54.75000 = 1078.250000000000000000.
Add —20648.68 to previous result. Updated result: -19570.430000000000000000.
Sum of all numbers in the set {32.456,0.15, —25,48.7,92}: 148.306000000000000000.
1023.5 — 54.75000 = 968.750000000000000000.
Subtract —20648.68 from previous result. Updated result: 21617.430000000000000000.
1023.5 x 54.75000 = 56036.625000000000000000.
Multiply previous result by —20648.68. Updated result: -1157082337.905000000000000000.
1023.5 = 54.75000 = 18.694063926940639269.
Divide previous result by —20648.68. Updated result: -0.000905339417674187.
v/1023.5 = 31.992186546092781616.
V9 = 2.999999999999999972.
v/1023.5 = 10.077727609874069159.
V/8 = 1.999999999999999990.
Round 54.75000 to 1dp: 54.8.
Truncate 54.75000 to 1dp: 54.7.
Clip 54.75000: 54.75.
Minimum of 1023.5 and 54.75000: 54.75000.
Minimum value in the set {32.456,0.15, —25,48.7,92}: -25.
Maximum of 1023.5 and 54.75000: 1023.5.
Maximum value in the set {32.456,0.15, —25,48.7,92}: 92.
Absolute value of —20648.68: 20648.680000000000000000.
Negate value of —20648.68: 20648.680000000000000000.
Mean of all numbers in the set {32.456, 0.15, —25,48.7,92}: 29.661200000000000000.
Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (using pre-
viously calculated mean): 1623.034101760000000000.
Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (not using
previously calculated mean): 1623.034101760000000000.
Standard deviation of all numbers in the set {32.456,0.15, —25,48.7,92}
(using previously calculated mean): 40.286897395555294372.
Standard deviation of all numbers in the set {32.456,0.15, —25,48.7,92}
(not using previously calculated mean): 40.286897395555294372.

2.5.1.4. Example (pgfmath)

If Example 37 is modified to use the pgfmath processor, which uses the commands provided
by the pgfmath package, then the IXIEX run will fail with the error:

107

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 39 Decimal Functions (fp)
% Label: "ex:fpcalc"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=fp]{datatool-base}
\newcommand{\numA}{1023.5}
\newcommand{\numB}{54.75000}
\newcommand{\numC}{-20648.68}
\newcommand{\numlist}{32.456,0.15,-25,48.7,92}
\begin{document}
\dtladd{\result}{\numA}{\numB}
$\numA + \numB = \result$.

\dtladd{\result}{\result}{\numC}
Add νmC to previous result. Updated result: \result.

\dtladdall{\result}{\numlist}
Sum of all numbers in the set $\{\numlist\}$: \result.

\dtlsub{\result}{\numA}{\numB}
$\numA - \numB = \result$.

\dtlsub{\result}{\result}{\numC}
Subtract νmC from previous result. Updated result: \result.

\dtlmul{\result}{\numA}{\numB}
$\numA \times \numB = \result$.

\dtlmul{\result}{\result}{\numC}
Multiply previous result by νmC. Updated result: \result.

\dtldiv{\result}{\numA}{\numB}
$\numA \div \numB = \result$.

\dtldiv{\result}{\result}{\numC}
Divide previous result by νmC. Updated result: \result.

\dtlsqrt{\result}{\numA}
$\sqrt{\numA} = \result$.

\dtlsqrt{\result}{9}
$\sqrt{9} = \result$.

\dtlroot{\result}{\numA}{3}
$\sqrt[3]{\numA} = \result$.

\dtlroot{\result}{8}{3}
$\sqrt[3]{8} = \result$.

\dtlround{\result}{\numB}{1}
Round νmB to 1dp: \result.

\dtltrunc{\result}{\numB}{1}
Truncate νmB to 1dp: \result.

\dtlclip{\result}{\numB}
Clip νmB: \result.

\dtlmin{\result}{\numA}{\numB}
Minimum of νmA and νmB: \result.

\dtlminall{\result}{\numlist}
Minimum value in the set $\{\numlist\}$: \result.

\dtlmax{\result}{\numA}{\numB}
Maximum of νmA and νmB: \result.

\dtlmaxall{\result}{\numlist}
Maximum value in the set $\{\numlist\}$: \result.

\dtlabs{\result}{\numC}
Absolute value of νmC: \result.

\dtlneg{\result}{\numC}
Negate value of νmC: \result.

\dtlmeanforall{\meanvalue}{\numlist}
Mean of all numbers in the set $\{\numlist\}$: \meanvalue.

\dtlvarianceforall[\meanvalue]{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlvarianceforall{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.

\dtlsdforall[\meanvalue]{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlsdforall{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.
\end{document}

Nicola Talbot
Decimal Functions (fp) (source code)
Example document demonstrating decimal functions using fp.sty floating point commands (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example039.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example039.pdf

2. Base Commands (datatool—base package)

! Dimension too large \

Example 40 has the commands \numA, \numB and \ numC defined to smaller numbers. The
rest of the document is as Example 37.

B

\usepackage [math=pgfmath] {datatool-base}
\newcommand{\numA}{10.235}
\newcommand{\numB}{0.5475000}
\newcommand{\numC}{-206.4868}

Note that there are rounding errors.

2.5.2. Formatted Numbers

The commands listed in this section expect formatted numbers in the values according to the
current number group character and decimal character settings. Use \DTLsetnumber-
chars to set these first. In general, if calculations are required, it’s better to store the values as
plain numbers if possible and only format them (for example, using siunitx) when they need to be
typeset. That way the formatted values don’t need to be repeatedly parsed.

(@]

| Sl
Commands that have a (num list) argument, such as \DTLaddall, expect a CSV list

or a command with a CSV list definition (see §2.9). The argument isn’t fully expanded to
allow for non-robust currency symbols. Any elements that aren’t numeric will be treated as
Zero.

\DTLadd{ (cs) } { (numl) } { (num2) }

Converts the formatted numbers (numl) and (num2) to plain numbers and adds them together
((numl) + (num2)). If parsing determines that both (numl) and (num?2) are integers, integer
arithmetic is performed with \numexpr otherwise \dt 1add is used. The result is stored as
a formatted number in the command (cs).

X
\DTLgadd{ {(cs)} { (numl) } { (num2)}
As \DTLadd but globally sets (cs).
X
\DTLaddall({{cs)} { (num list)}

108

2. Base Commands (datatool—base package)

4 Example 40: Decimal Functions (pgfmath) N\EFiE

10.235 4 0.5475000 = 10.7825.

Add —206.4868 to previous result. Updated result: -195.7043.

Sum of all numbers in the set {32.456,0.15, —25,48.7,92}: 148.30598.

10.235 — 0.5475000 = 9.6875.

Subtract —206.4868 from previous result. Updated result: 216.1743.

10.235 x 0.5475000 = 5.60367.

Multiply previous result by —206.4868. Updated result: -1157.08351.

10.235 + 0.5475000 = 18.69524.

Divide previous result by —206.4868. Updated result: -0.09055.

v10.235 = 3.19921.

V9 = 3.00000.

v/10.235 = 2.17104.

V8 = 1.9999.

Round 0.5475000 to 1dp: 0.5.

Truncate 0.5475000 to 1dp: 0.5.

Clip 0.5475000: 0.5475.

Minimum of 10.235 and 0.5475000: 0.5475.

Minimum value in the set {32.456,0.15, —25,48.7,92}: -25.0.

Maximum of 10.235 and 0.5475000: 10.235.

Maximum value in the set {32.456,0.15, —25,48.7,92}: 92.0.

Absolute value of —206.4868: 206.4868.

Negate value of —206.4868: 206.4868.

Mean of all numbers in the set {32.456,0.15, —25,48.7,92}: 29.6612.

Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (using pre-
viously calculated mean): 1623.03413.

Variance of all numbers in the set {32.456,0.15, —25,48.7,92} (not using
previously calculated mean): 1623.03413.

Standard deviation of all numbers in the set {32.456,0.15, —25,48.7,92}
(using previously calculated mean): 40.28689.

Standard deviation of all numbers in the set {32.456,0.15, —25,48.7,92}
(not using previously calculated mean): 40.28689.

109

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 40 Decimal Functions (pgfmath)
% Label: "ex:pgfmathcalc"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[math=pgfmath]{datatool-base}
\newcommand{\numA}{10.235}
\newcommand{\numB}{0.5475000}
\newcommand{\numC}{-206.4868}
\newcommand{\numlist}{32.456,0.15,-25,48.7,92}
\begin{document}
\dtladd{\result}{\numA}{\numB}
$\numA + \numB = \result$.

\dtladd{\result}{\result}{\numC}
Add νmC to previous result. Updated result: \result.

\dtladdall{\result}{\numlist}
Sum of all numbers in the set $\{\numlist\}$: \result.

\dtlsub{\result}{\numA}{\numB}
$\numA - \numB = \result$.

\dtlsub{\result}{\result}{\numC}
Subtract νmC from previous result. Updated result: \result.

\dtlmul{\result}{\numA}{\numB}
$\numA \times \numB = \result$.

\dtlmul{\result}{\result}{\numC}
Multiply previous result by νmC. Updated result: \result.

\dtldiv{\result}{\numA}{\numB}
$\numA \div \numB = \result$.

\dtldiv{\result}{\result}{\numC}
Divide previous result by νmC. Updated result: \result.

\dtlsqrt{\result}{\numA}
$\sqrt{\numA} = \result$.

\dtlsqrt{\result}{9}
$\sqrt{9} = \result$.

\dtlroot{\result}{\numA}{3}
$\sqrt[3]{\numA} = \result$.

\dtlroot{\result}{8}{3}
$\sqrt[3]{8} = \result$.

\dtlround{\result}{\numB}{1}
Round νmB to 1dp: \result.

\dtltrunc{\result}{\numB}{1}
Truncate νmB to 1dp: \result.

\dtlclip{\result}{\numB}
Clip νmB: \result.

\dtlmin{\result}{\numA}{\numB}
Minimum of νmA and νmB: \result.

\dtlminall{\result}{\numlist}
Minimum value in the set $\{\numlist\}$: \result.

\dtlmax{\result}{\numA}{\numB}
Maximum of νmA and νmB: \result.

\dtlmaxall{\result}{\numlist}
Maximum value in the set $\{\numlist\}$: \result.

\dtlabs{\result}{\numC}
Absolute value of νmC: \result.

\dtlneg{\result}{\numC}
Negate value of νmC: \result.

\dtlmeanforall{\meanvalue}{\numlist}
Mean of all numbers in the set $\{\numlist\}$: \meanvalue.

\dtlvarianceforall[\meanvalue]{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlvarianceforall{\result}{\numlist}
Variance of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.

\dtlsdforall[\meanvalue]{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (using previously calculated mean): \result.

\dtlsdforall{\result}{\numlist}
Standard deviation of all numbers in the set $\{\numlist\}$ (not using previously calculated mean): \result.
\end{document}

Nicola Talbot
Decimal Functions (pgfmath) (source code)
Example document demonstrating decimal functions using pgfmath.sty floating point commands (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example040.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example040.pdf

2. Base Commands (datatool—base package)

Converts all the formatted numbers in the comma-separated list to plain numbers, adds them all,
and stores the result as a formatted number in the command (cs).

X
\DTLgaddall{{cs)}{ (num list)}
As \DTLaddall but globally sets {cs).
X
\DTLsub/{ {(cs) } { (numl) } { (num?2)}

Converts the formatted numbers (numl) and (num?2) to plain numbers and subtracts (num?2) from
(numl) ((numl) — (num2)). If parsing determines that both (numl) and (num?2) are integers,
integer arithmetic is performed with \numexpr otherwise \dt 1 sub is used. The result is
stored as a formatted number in the command (cs).

X
\DTLgsub{{(cs) } { (numl) } { (num2) }
As \DTLsub but globally sets (cs).
X
\DTLmul {{(cs) } { (numl) } { (num2) }

Converts the formatted numbers (numl) and (num2) to plain numbers and multiplies them
((numl) x (num2)). If parsing determines that both (numl) and (num?2) are integers, integer
arithmetic is performed with \numexpr otherwise \dt 1mul is used. The result is stored as
a formatted number in the command (cs).

X
\DTLgmul {{(cs) } { (numl) } { (num?2)}
As \DTLmul but globally sets (cs).
X
\DTLdiv{{cs)}{ (numl)} { (num2)}

Converts the formatted numbers (numl) and (num?2) to plain numbers and divides them ({(num1)-
(num2)) using \dt 1div. The result is stored as a formatted number in the command (cs).

X
\DTLgdiv{{cs)} {(numl)} { (num2)}
As \DTLd1iv but globally sets (cs).
X
\DTLabs{{(cs) } { (num) }

110

2. Base Commands (datatool—base package)

Converts the formatted numbers (num) to a plain number and stores the absolute value as a
formatted number in the command (cs). If parsing determines that (num) is an integer then
\ifnumand \numexpr are used to negate the number if it’s negative. If (num) is determined
to be a decimal or currency, then \dt 1abs is used.

X
\DTLgabs{(cs)} { (num) }
As \DTLabs but globally sets (cs).
X
\DTLneg{(cs)} { (num) }

Converts the formatted numbers (num) to a plain number and stores the negation (— (num)) as
a formatted number in the command (cs). If parsing determines that (num) is an integer then
\numexpr is used to negate the number. If (num) is determined to be a decimal or currency,
then \dt 1neq is used.

I
\DTLgneg{{(cs) } { (num) }
As \DTLneg but globally sets (cs).
I
\DTLsqgrt {{(cs)} { (num) }

Converts the formatted numbers (num) to a plain number and stores the square root (v/(num)) as
a formatted number in the command (cs). The square root is calculated using \dt 1 sgrt.

X

\DTLgsqart{{cs) } { (num) }

As \DTLsqgrt but globally sets (cs).

(@]

=
There is no equivalent to \dt Lroot. If an arbitrary root is required for a formatted

number, you will have to convert the formatted number to a plain number with \DTL—
converttodecimal anduse \dtlroot.

\DTLround{{cs) } { (num) } { (num digits) }

Converts the formatted numbers (num) to a plain number, rounds it to (num digits) (using
\dt 1round), and stores the result as a formatted number in the command (cs).

111

2. Base Commands (datatool—base package)

X
\DTLground{ (cs) } { (num) } { (num digits) }
As \DTLround but globally sets (cs).
X
\DTLtrunc{{cs) } { (num) } { (num digits) }

Converts the formatted numbers (num) to a plain number, truncates it to (num digits) (using
\dtltrunc), and stores the result as a formatted number in the command (cs).

X
\DTLgtrunc{{cs)} { (num) } { (num digits) }
As \DTLt runc but globally sets (cs).
X
\DTLclip{{cs)}{(num)}

Converts the formatted numbers (num) to a plain number, clips it (using \dt 1c1lip), and
stores the result as a formatted number in the command (cs).

X
\DTLgclip{{cs)}{ (num)}
As \DTLc11ip but globally sets (cs).
A

When finding the maximum or minimum of formatted numbers the parsing of the values
and formatting of the result may lead the result to have a different appearance to its original
formatted value.

\DTLmin{{cs)} { (numl) } { (num?2)}

Converts the formatted numbers (numl) and (num2) to plain numbers and determines the
minimum. If parsing determines that (numl) and (num?2) are integers then \ 1 fnum is used
otherwise \dt 1min is used. The result is stored as a formatted number in the command (cs).

A

The number list should not contain empty elements.

\DTLgmin{ {cs) } { (numl) } { (num?2)}

112

2. Base Commands (datatool—base package)

As \DTLmin but globally sets (cs).

\DTLminall({{cs)} { (num list) }

Converts all the formatted numbers in the comma-separated list (num list) to plain numbers and
determines the minimum (using \ dt 1min). The result is stored as a formatted number in the
command (cs).

X

\DTLgminall{{cs)}{ (num list)}

As \DTLminall but globally sets {cs).

\DTLmax{{(cs) } { (numl) } { (num2)}

Converts the formatted numbers (numl) and (num2) to plain numbers and determines the
maximum. If parsing determines that (numl) and (num?2) are integers then \ 1 fnum is used
otherwise \dt 1max is used. The result is stored as a formatted number in the command (cs).

—

X
\DTLgmax{{(cs) } { (numl) } { (num2) }
As \DTLmax but globally sets (cs).
X

\DTLmaxall{{cs)}{ (num list)}

Converts all the formatted numbers in the comma-separated list (num list) to plain numbers and
determines the maximum (using \ dt 1max). The result is stored as a formatted number in the
command (cs).

X
\DTLgmaxall{{cs)}{ (num list)}
As \DTLmaxall but globally sets (cs).
X
\DTLmeanforall{{cs)}{ (num list)}

Converts all the formatted numbers in the comma-separated list (num list) to plain numbers and
determines the mean (average) value. The result is stored as a formatted number in the command

(cs).

e

X

\DTLgmeanforall{{cs)}{ (num list)}

113

2. Base Commands (datatool—base package)

As \DTLmeanforall but globally sets (cs).

\DTLvarianceforall{{cs)}{ (num list)}

Converts all the formatted numbers in the comma-separated list (num list) to plain numbers and
determines the variance. The result is stored as a formatted number in the command (cs).

X

\DTLgvarianceforall{{cs)}{ (num list)}

As\DTLvarianceforall but globally sets (cs).

\DTLsdforall{{(cs)}{ (num list)}

Converts all the formatted numbers in the comma-separated list (num list) to plain numbers and
determines the standard deviation. The result is stored as a formatted number in the command

(cs).

X

\DTLgsdforall{(cs)}{ (num list)}

As \DTLsdforall but globally sets (cs).

2.6. Currency

The currency data type is represented by a currency symbol and a numerical value. There is
no provision for exchange rates. Commands such as \DTLadd parse their arguments (which
are provided as formatted numbers) to obtain the actual numerical value, which can then be
passed to commands like \ dt 1add, which expect plain number arguments. The result is then
formatted to match the dominant data type in the arguments. This means that if one or more of
the arguments is a currency value, then the result will use the same currency symbol. Parsing is
performed using the same method as \DTLparse.

In order for the parser to determine the difference between a currency value and a string (see
§2.2), datatool—base needs to know the currency symbols. As from version 3.0, datatool—base
can now load region files that setup the currency associated with the region.

(@]

—

If you don’t want the default currency to change when the language changes, use:

\DTLsetup{numeric={region-currency=false}}

114

2. Base Commands (datatool—base package)

As described in §2.3.2, a plain number can be converted to a formatted currency with \DTL-
decimaltocurrency. The formatting of the number is performed in the same manner as
with \DTLdecimaltolocale. The way that the currency symbol is formatted in relation
to the formatted number depends on the currency formatting style.

Example 41 has a simple document with no localisation support:

\documentclass{article}
\usepackage{datatool-base}

First the default currency code and symbol are displayed:

Currency code: \DTLCurrencyCode.
Currency symbol: \DTLCurrencySymbol.

Then a plain number is converted to a formatted currency:

\DTLdecimaltocurrency{12345.678}{\formattedresult}
Formatted: \formattedresult.
(Numeric value: \DTLdatumvalue{\formattedresult}.)

B - B - R

This will use the current number group character and decimal character to format the value and
the current currency symbol and style to format the currency unit.

Next a formatted currency (using the current number group character and decimal character
settings) is added to a formatted number. Note that the symbol doesn’t need to match the current

currency symbol:

\$1,234.57 add 1,236.59:
\DTLadd{\total}{\$1,234.57}{1,236.59}
Total: \total.

1,234.57 add £1,236.59:
\DTLadd{\total}{1,234.57}{£1,236.59}
Total: \total.

The symbol is ignored during the arithmetic computation. The result is formatted according to
the current settings.

Rounding is determined by \DTLCurrentLocaleCurrencyDP which is adjusted by
regional support.

115

2. Base Commands (datatool—base package)

€48,236.59 multiplied by 0.5:
\DTLmul{\result}{€48,236.59}{0.5}
\result\, (\DTLdatumvalue{\result}).

_ B

Note that the rounding only affects the formatting, not the value stored within the datum control

sequence.
To demonstrate currency parsing, \DTLparse is used to parse to different currencies. The

first has a Euro symbol:

\DTLparse\parsed{€19,234.56}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

The second has a pound symbol:

\DTLparse\parsed{£28,342.64}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

_ B L B

Note that even though these symbols don’t match the current default currency symbol, they are
still recognised as currency.
The symbol may also occur after the value:

\DTLparse\parsed{19,234.56€}

String value: \parsed.

Data type:

Numeric value: \DTLdatumvalue{\parsed}.

B

The currency style formatting is described in more detail later in this section, but \DTLfmt-
currency can be used to apply the current formatting style to the currency symbol provided
in the first argument and the formatted number provided in the second argument. Note that this is
just a style command, and doesn’t parse or format the value. (It’s redefined whenever the default
currency setting is changed.) This means that the following works fine even though it’s using
different number group character and decimal character to the current default:

Formatting specific currency symbol:
\DTLfmtcurrency{\texteuro}{12.345,65}

_ B

116

2. Base Commands (datatool—base package)

The command \DTLcurrency is simply a shortcut that uses \DTLfmt currency with
the current default currency symbol:

=

Formatting default currency symbol:
\DTLcurrency{12 345,65}

Again, the value argument is expected to be in the correct format.

The above uses the formatting style for the current default currency, but if a currency has been
defined with a three-letter currency code, then \DTLfmt curr may be used to format the
currency according to the style and symbol associated with that currency code. Again, the value
argument is expected to be in the correct format:

=

Formatting EUR:
\DTLfmtcurr{EUR}{12.345, 65}

The “EUR” currency code is predefined by datatool—base as it covers an number of regions
(although any region that sets “EUR” as the currency should also redefine \DTLdefaultEUR-
currencyfmt as applicable). Other currency codes need regional support to provide them,
which will be covered in the next example.

N Example 41: Formatting and Parsing Currency (No Region) E LR

Currency code: XXX. Currency symbol: $.
Formatted: $12,345.68. (Numeric value: 12345.678.)
$1,234.57 add 1,236.59: Total: $2,471.16.

1,234.57 add £1,236.59: Total: £2,471.16.
€48,236.59 multiplied by 0.5: €24,118.30 (24118.295).
String value: €19,234.56. Numeric value: 19234.56.
String value: £28,342.64. Numeric value: 28342.64.
String value: 19,234.56€. Numeric value: 19234.56.
Formatting specific currency symbol: €12.345,65
Formatting default currency symbol: $12 345,65
Formatting EUR: €12.345,65

Example 42 requires datatool—regions to be installed. The region needs to be established. This
can be done by loading a language package first, where the dialect has an associated region. For
example:

\usepackage [british] {babel}
\usepackage{datatool-base}

117

(242

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 41 Formatting and Parsing Currency (No Region)
% Label: "ex:noregioncurrency"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
Currency code: \DTLCurrencyCode. Currency symbol: \DTLCurrencySymbol.

\DTLdecimaltocurrency{12345.678}{\formattedresult}
Formatted: \formattedresult.
(Numeric value: \DTLdatumvalue{\formattedresult}.)

\$1,234.57 add 1,236.59:
\DTLadd{\total}{\$1,234.57}{1,236.59}
Total: \total.

1,234.57 add £1,236.59:
\DTLadd{\total}{1,234.57}{£1,236.59}
Total: \total.

€48,236.59 multiplied by 0.5:
\DTLmul{\result}{€48,236.59}{0.5}
\result\ (\DTLdatumvalue{\result}).

\DTLparse\parsed{€19,234.56}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

\DTLparse\parsed{£28,342.64}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

\DTLparse\parsed{19,234.56€}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

Formatting specific currency symbol: \DTLfmtcurrency{\texteuro}{12.345,65}

Formatting default currency symbol: \DTLcurrency{12 345,65}

Formatting EUR: \DTLfmtcurr{EUR}{12.345,65}
\end{document}

Nicola Talbot
Formatting and Parsing Currency (No Region) (source code)
Example document that formats and parses currency without regional support (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example041.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example041.pdf

2. Base Commands (datatool—base package)

Or if just the root language is specified, Locales may be used to add the region to the
language:

\usepackage[english] {babel}
\usepackage[locales=GB] {datatool-base}

In this example, I'm not using a language package so I need to use the 1 ocales option with
both the language and region in the tag:

\usepackage[locales={en-GB}] {datatool-base}

First the default currency code and symbol are displayed:

Currency code: \DTLCurrencyCode.
Currency symbol: \DTLCurrencySymbol.

_ B LB

As with the previous example, I can use \DTLdecimaltocurrency to convert a plain
number into formatted currency using the current style settings:

\DTLdecimaltocurrency{12345.678}{\formattedresult}
Formatted: \formattedresult.
(Numeric value: \DTLdatumvalue{\formattedresult}.)

As before, currency can be parsed.

\DTLparse\parsed{£28,342.64}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

B L B

The currency symbol needs to be known but doesn’t need to be the current default. However, the
number group character and decimal character must match the current setting.

\DTLparse\parsed{€19,234.56}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

__ B

A region may provide its own settings. For example, the GB region support provides different
number styles: of ficial (the default), educat ion (a thin space for the number group

118

2. Base Commands (datatool—base package)

character) or o1d (a mid-dot for the decimal character). There is also an option to prefix the
currency symbol with the region code:

\DTLsetLocaleOptions{GB}{
number—-style=o0ld,
currency-symbol-prefix

}

(GB settings: number-style=old,

currency-symbol-prefix=true.)

This affects the formatting:

=

\DTLdecimaltocurrency{12345.678}{\formattedresult}
Formatted: \formattedresult.
(Numeric value: \DTLdatumvalue{\formattedresult}.)

The o1 d number style uses \textperiodcentered when formatting but allows \text-
periodcentered or a mid-dot character or a normal dot when parsing:

=

\DTLparse\parsed{£28,342.648}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

Note that this doesn’t round the value or format it. The formatted string is simply parsed to
determine its type, numeric value and currency symbol.

The aut o-reformat option will make \DTLpar se automatically reformat the string
value and, since GBP supports a regional prefix, region—currency-prefix may be

used to alter the prefix format:

\DTLsetup{
numeric={
auto-reformat,
region—-currency-prefix=smallcaps
}
}

(Numeric settings: auto-reformat,
region—-currency-prefix=smallcaps.)

Note that the prefix isn’t included with the currency symbol obtained with \DTLdatum-
currency.

119

2. Base Commands (datatool—base package)

\DTLparse\parsed{£28,342.648}

String value: \parsed.

Numeric value: \DTLdatumvalue{\parsed}.
Currency symbol: \DTLdatumcurrency{\parsed}.

4 Example 42: Currency Formats (GB Region) N\ERE

Currency code: GBP. Currency symbol: £.

Formatted: £12,345.68. (Numeric value: 12345.678.)

String value: £28,342.64. Numeric value: 28342.64.

String value: €19,234.56. Numeric value: 19234.56.

(GB settings: number-style=old, currency-symbol-prefix=true.)

Formatted: GB£12,345 - 68. (Numeric value: 12345.678.)

String value: £28,342.648. Numeric value: 28342.648.

(Numeric settings: auto-reformat, region-currency-prefix=smallcaps.)

String value: GB#28,342 - 65. Numeric value: 28342.648. Currency sym-
bol: £.

Example 43 has two regions: GB and IE but the same language for both. No language package
is loaded. This means that the region hook must be explicitly used to switch between the two
regions. The locales are identified:

=

\usepackage[locales={en-GB,en-IE}]{datatool-base}

For the GB region, I'm going to use the “education” number style, which uses a thin space for the
number group character when formatting. For parsing, it allows either a thin space or a normal
space:

=

\DTLsetLocaleOptions{GB}{ number-style = education }

I'm also going to switch on the aut o—reformat option:

\DTLsetup{numeric={auto-reformat}}

Switch to the GB region:

120

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 42 Currency Formats (GB Region)
% Label: "ex:regionGBcurrency"
% arara: xelatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[locales={en-GB}]{datatool-base}

\begin{document}
Currency code: \DTLCurrencyCode.
Currency symbol: \DTLCurrencySymbol.

\DTLdecimaltocurrency{12345.678}{\formattedresult}
Formatted: \formattedresult.
(Numeric value: \DTLdatumvalue{\formattedresult}.)

\DTLparse\parsed{£28,342.64}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

\DTLparse\parsed{€19,234.56}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

\DTLsetLocaleOptions{GB}{
 number-style=old,
 currency-symbol-prefix
}
(GB settings: number-style=old, currency-symbol-prefix=true.)

\DTLdecimaltocurrency{12345.678}{\formattedresult}
Formatted: \formattedresult.
(Numeric value: \DTLdatumvalue{\formattedresult}.)

\DTLparse\parsed{£28,342.648}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.

\DTLsetup{
 numeric={
 auto-reformat,
 region-currency-prefix=smallcaps
 }
}
(Numeric settings: auto-reformat, region-currency-prefix=smallcaps.)

\DTLparse\parsed{£28,342.648}
String value: \parsed.
Numeric value: \DTLdatumvalue{\parsed}.
Currency symbol: \DTLdatumcurrency{\parsed}.
\end{document}

Nicola Talbot
Currency Formats (GB Region) (source code)
Example document that formats currencies according to GB region (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example042.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example042.pdf

2. Base Commands (datatool—base package)

\DTLGBLocaleHook

and display the currency code and symbol:

Currency code: \DTLCurrencyCode.
Currency symbol: \DTLCurrencySymbol.

Convert a plain number to a formatted currency:

\DTLdecimaltocurrency{12345.678}{\GBformattedresult}
Formatted: \GBformattedresult.
(Numeric value: \DTLdatumvalue{\GBformattedresult}.)

Parse a formatted currency:

D LB L0 B

Parsing £12 345.67.
\DTLparse\GBparsed{£12 345.67}

Parsed: \GBparsed.
(Numeric value: \DTLdatumvalue{\GBparsed}.)

Since the aut o—reformat option is on, the string value will be reformatted to use a thin
space, instead of the normal space used in the original.
The code is similar for the IE region:

\DTLIELocaleHook
Currency code: \DTLCurrencyCode.
Currency symbol: \DTLCurrencySymbol.

\DTLdecimaltocurrency{12345.678}{\IEformattedresult}
Formatted: \IEformattedresult.
(Numeric value: \DTLdatumvalue{\IEformattedresult}.)

Note that the number group character has been changed to a comma. The decimal character has
been set to a dot, which is the same as before.

121

2. Base Commands (datatool—base package)

Parsing €12,345.67.
\DTLparse\IEparsed{€12,345.67}

Parsed: \IEparsed.
(Numeric value: \DTLdatumvalue{\IEparsed}.)

The package-wide settings are changed:

\DTLsetup{numeric={currency-symbol-style=iso}}

Both the GB and IE regions support the currency—-symbol—-position setting:

=

\DTLsetLocaleOptions{GB, IE}
{currency-symbol-position=after}

The datum control sequences are redisplayed:

\begin{enumerate}

\item \GBformattedresult.
\item \GBparsed.

\item \IEformattedresult.
\item \IEparsed.
\end{enumerate}

Note that although this has changed the way that the currency symbol is formatted in relation to
the value, the formatting of the value hasn’t changed.

122

2. Base Commands (datatool—base package)

N

£ Example 43: Currency Formats (GB and IE Regions) \EEE

Currency code: GBP. Currency symbol: £.
Formatted: £12345.68. (Numeric value: 12345.678.)
Parsing £12 345.67.

Parsed: £12345.67. (Numeric value: 12345.67.)
Currency code: EUR. Currency symbol: €.
Formatted: €12,345.68. (Numeric value: 12345.678.)
Parsing €12,345.67.

Parsed: €12,345.67. (Numeric value: 12345.67.)

1. 12345.68 GBP.
2. 12345.67 GBP.
3. 12,345.68 EUR.
4. 12,345.67 EUR.

If there is no support for your region, or if you are using a currency that’s not connected to
your region (for example, Bitcoin), then you can use the commands described below to define a
currency (if not already provided by datatool—base) and to switch to a previously defined currency.

X

\DTLnewcurrencysymbol{(symbol)}

This adds (symbol) to the list of known currencies (if not already in the list).

) A

Be careful of non-robust currency symbol commands. If these are expanded before the
parser scans the value, the symbol won’t be detected and the value will be deemed a string
instead. (See Example 34.) However, many commands that were previously partially
expandable, and therefore susceptible to this problem, have been made robust with recent
KATEX kernels.

7

The set of known currencies is initialised to contain common currency symbols supported by
the document encoding, and the currency commands: \ $, \pounds, \texteuro, \text-
dollar, \textsterling, \textyen, \textwon, and \textcurrency.

The known currency list simply assists parsing, but it’s also possible to define a currency with
a corresponding ISO code and alternative representation to adjust the way a currency value is
formatted.

X

\DTLdefcurrency [(fmt)] { (ISO)} { (symbol) } { (string) }

123

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 43 Currency Formats (GB and IE Regions)
% Label: "ex:multiregioncurrency"
% arara: xelatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[locales={en-GB,en-IE}]{datatool-base}
\DTLsetLocaleOptions{GB}{ number-style = education }
\DTLsetup{numeric={auto-reformat}}
\begin{document}
\DTLGBLocaleHook
Currency code: \DTLCurrencyCode.
Currency symbol: \DTLCurrencySymbol.

\DTLdecimaltocurrency{12345.678}{\GBformattedresult}
Formatted: \GBformattedresult.
(Numeric value: \DTLdatumvalue{\GBformattedresult}.)

Parsing £12 345.67.
\DTLparse\GBparsed{£12 345.67}

Parsed: \GBparsed.
(Numeric value: \DTLdatumvalue{\GBparsed}.)

\DTLIELocaleHook
Currency code: \DTLCurrencyCode.
Currency symbol: \DTLCurrencySymbol.

\DTLdecimaltocurrency{12345.678}{\IEformattedresult}
Formatted: \IEformattedresult.
(Numeric value: \DTLdatumvalue{\IEformattedresult}.)

Parsing €12,345.67.
\DTLparse\IEparsed{€12,345.67}

Parsed: \IEparsed.
(Numeric value: \DTLdatumvalue{\IEparsed}.)

\DTLsetup{numeric={currency-symbol-style=iso}}
\DTLsetLocaleOptions{GB,IE}{currency-symbol-position=after}
\begin{enumerate}
\item \GBformattedresult.
\item \GBparsed.
\item \IEformattedresult.
\item \IEparsed.
\end{enumerate}
\end{document}

Nicola Talbot
Currency Formats (GB and IE Regions) (source code)
Example document that formats currencies according to GB and IE regions (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example043.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example043.pdf

2. Base Commands (datatool—base package)

This locally defines a new currency (or redefines an existing currency) identified by the given ISO
code. The (symbol) argument is the currency symbol using ISTEX markup, such as \pounds or
\'$, and the (char) argument is a string (non-command) representation of the currency symbol,
such as £ or $. (Note that $ will have category code “other” within the (char) argument.)

(@]

=
The (char) argument is expanded when the currency is defined. The (symbol) argument

isn’t expanded.

J

The optional argument (fimt) indicates how this currency should be formatted and should end
with (or solely consist of) a command that takes two arguments { (sym) } { (value) }. The default
is\dtlcurrdefault fmt (see below).

The following command is defined by \DTLdefcurrency:

\DTLcurr(ISO)

which expands to:

\dtltexorsort
{\DTLcurrCodeOrSymOrChar{(ISO)} { (symbol) } { {char) } }
{ (string) }

where (string) is the detokenized (char). Additionally, \DTLde fcurrency automatically
implements:

\DTLnewcurrencysymbol {{(symbol)}
\DTLnewcurrencysymbol { (string) }
\DTLnewcurrencysymbol{\DTLcurr(ISO)}

This ensures that the parser can identify (symbol), (string) and \DTLcurx (ISO) as currency
symbols. For example, the file datatool-GB. 1df (provided with datatool—regions) in-
cludes the equivalent to:

=

\DTLdefcurrency[\datatoolGBcurrencyfmt] {GBP}{\pounds}
{£}

(where \datatoolGBcurrencyfmt is also provided.) This locally defines a currency
identified as GBP, with the associated symbol \pounds and character alternative “ £ ”. It
also defines the command \DTLcurrGBP, and adds \DTLcurrGBP to the set of known
currencies (“£ ” and \pounds should typically already be in the set). So the above essentially
does (where the second argument of \dt 1texorsort has been detokenized):

124

2. Base Commands (datatool—base package)

\def\DTLcurrGBP{%
\dtltexorsort{\DTLcurrCodeOrSymOrChar{GBP}{\pounds}

{£}H{L£}}

\DTLnewcurrencysymbol{\pounds}% redundant
\DTLnewcurrencysymbol{£}

\DTLnewcurrencysymbol {\DTLcurrGBP}

As well as setting the format for the GBP currency to \datatoolGBcurrencyfmt.

(@]

=
\DTLdefcurrency doesn’t change the default currency (see Example 44). It simply

defines a currency.

The underlying function used by \DTLdefcurrency is:

X

\datatool_def_currency:nnnn {(fmt)} {(ISO)} {(symbol)}
{ (string) } variants: nnnV nnne

Note that, unlike \DTLdefcurrency, this doesn’t perform any category code change or
expansion for the final argument. (If expansion is needed, one of the variants may be used.) For
example, the file datatool—-CA. 1df has:

\datatool_def_currency:nnnV
\datatoolCAcurrencyfmt
CAD
\'$

\c_dollar_str

There is a shortcut that sets the format to \dtlcurrdefault fmt:

7

\datatool_def_currency:nnn {(ISO)} {(symbol)} {(string)}
variants: nnV nne

This internally calls the \datatool_def_currency:nnnn function.
The symbol associated with a defined currency may be changed with:

X

\datatool_set_currency_symbol:nn {{ISO)} {(symbol)}
variants: NV ne

Note that this also adds the symbol with \DTLnewcurrencysymbol but does not remove
the previous symbol from the set of known currency symbols.

125

2. Base Commands (datatool—base package)

The symbol and associated string value for a currency that has been defined can be obtained
with:

X

\DTLcurrSym{ (ISO) }

Expands to the symbol (such as \ $ or \pounds) associated with currency (ISO) or to nothing
if not defined.

X

\DTLcurrChar{(ISO)}

Expands to the character associated with currency (ISO) or to nothing if not defined (for example
$orf).

2

X

\DTLcurrStr{(ISO)}

Expands to the detokenised string value associated with currency (ISO) or to nothing if not
defined.

If you don’t know whether or not \DTLcurr (ISO) has been defined for a given (ISO) code,
you can use:

X

\DTLcurr{(ISO)}

This command will expand to \DTLcurr(ISO), if defined, otherwise it will expand to (ISO).
(The datatooltk application uses this for currency symbols when importing data that has
been given an associated currency code.)

If you want to switch to a previously defined currency, you need touse \DTLsetdefault-
currency. For example:

B

[\DTLsetdefaultcurrency{GBP}

This is done by datatool—-GB. 1df in the language hook.

If no localisation file has been loaded (see §2.3), then the default is ISO code “XXX” and
symbol \ $. (The default symbol is for backward-compatibility, and \ $ was one of the few
currency commands guaranteed to be defined when the first version of datatool was written.)

The following currencies are defined by datatool—base: “XXX” (associated command \DTL-
currXXX), “XBT” (associated command \DTLcurrXBT), “EUR” (associated command
\DTLcurrEUR).

The “XXX” and “XBT” currencies use the default currency formatting command \dt lcurzr-
defaultfmt but the “EUR” currency is associated with:

126

2. Base Commands (datatool—base package)

\DTLdefaultEURcurrencyfmt

The default definition is just \dt Lcurrdefault fmt but this makes it possible to vary the
format of EUR specifically without affecting other currencies.
If you prefer a different symbol, youcanuse \datatool_set_currency_symbol :nn.

For example:
\newfontfamily\liberationserif{Liberation Serif}
\NewDocumentCommand{\bitcoin}{}{{\liberationserif B}}

\ExplSyntaxOn
\datatool_set_currency_symbol:nn { XBT } { \bitcoin }

\ExplSyntaxOff

The currency string depends on the file encoding (see §2.3.1).

\DTLCurrencySymbol

This command is simply defined to the internal command used to store the default currency
symbol. It’s provided to allow access to the currency symbol without having to switch category
code. Redefining this command will not change the default currency symbol. The command
\DTLCurrencySymbol is not automatically added to the list of known currency symbols.
[i

=
If you want to change the default currency, use \DTLsetdefaultcurrency.

Don’t redefine placeholder commands, such as \DTLCurrencySymbol and \DTL—
CurrencyCode.

\DTLCurrencyCode

This command is redefined by \DTLsetdefaultcurrency to expand to the associated
ISO code.

X

\DTLfmtcurrency{(symbol)} { (value) }

This command is redefined by \DTLsetdefaultcurrency to expand to the associated
currency formatting code (as supplied in the (fmt) optional argument of \DTLdefcurrency).
The (symbol) argument doesn’t need to have been identified as a known currency symbol, but

127

2. Base Commands (datatool—base package)

the (value) must be a formatted number with the correct rounding that uses the current number
group character and decimal character.
The default definition of \DTLfmt currency just does:

X
\dtlcurrdefaultfmt { (symbol)} { (value) }
which is defined to use the following command.
X
\dtlcurrprefixfmt { (symbol)} { (value)}
This internally uses:
X
\datatool_prefix_adjust_sign:nnn {(symbol)} {(sep)}
{(value) }

(where the separator is \dt 1 curr fmt sep) which tests if (value) starts with a plus (+) or
minus (—) and, if so, shifts the sign in front of the symbol and encapsulates it with:

) §
\datatool_adjust_sign_fmt :n{(sign)}
This will convert the hyphen-minus sign (-) to \textminus if not in math mode.
For currencies that have the symbol at the end:
X
\dtlcurrsuffixfmt {(symbol)} {(value)}
This internally uses:
b §

\datatool_suffix_adjust_sign:nnn {{symbol)} {(sep)}
{(value) }

(where the separator is \dt 1 curr fmt sep) which similarly adjusts the leading sign (if present)
but in this case puts the separator and symbol after the value.
Both \dtlcurrprefixfmt and \dtlcurrsuffixfmt use:

\dtlcurrfmtsep

128

2. Base Commands (datatool—base package)

as the separator. This defaults to:

\DTLcurrCodeOrSymOrChar
{~}
{\dtlcurrfmtsymsep}
{\dtlcurrfmtsymsep}

This expands to a space with currency—-symbol-style=1so, otherwise to:

X

\dtlcurrfmtsymsep inifial: empty
region-sensitive

This should be redefined by region files.
Since \DTLfmt currency will change its format according to the current localisation
settings, which may not be appropriate, you may prefer to use:

X

\DTLfmt curr{{currency-code) } { (value) }

This will use the format associated with the given currency code. If the currency code hasn’t been
defined, then this simply expands to \DTLcurrency { (num)} instead.

Region files may provide their own format that inserts a tag before the currency symbol. For
example, datatool—-GB. 1df provides:

\newcommand\datatoolGBcurrencyfmt [2]{%
\dtlcurrprefixfmt
{\datatoolGBsymbolprefix{GB}#1}% symbol
{#2}% value
t

The default definition of \datatoolGBsymbolprefix does nothing, but the region
provides an option to redefine this command to \datatool_currency_symbol_
region_prefix:n.

Note that \DTLfmt currency requires the currency symbol as an argument, which doesn’t
have to be the default symbol (or even a recognised currency symbol). If you want the default
symbol without having to specify it, you can use:

X

\DTLcurrency({ (value) }

This expands to \DTLfmtcurrency{(sym)}{(value)} where (sym) is the default cur-
rency symbol, which is initially \ $ but will be changed to \DTLcurr(ISO) by \DTLset-
defaultcurrency{(ISO)}.

129

2. Base Commands (datatool—base package)

\DTLcurrCodeOrSymOrChar{(ISO)} { (symbol) } { (character) }

This is used in both \DTLcurr(ISO) and \dt 1currfmt sep and should be defined to
expand to one of its arguments (ignoring the other two). The default is to expand to (symbol). This
means that \DTLcurrency will use the symbol command associated with the default currency.
You can redefine \DTLcurrCodeOrSymOrChar to expand to a different argument if

you prefer. The numeric option currency-symbol—-style redefines \DTLcurr-
CodeOrSymOrChar

(@]

=
\DTLdecimaltocurrency internally uses \DTLfmtcurrency with the

value rounded to the decimal places specified by \DTLCurrentLocale-
CurrencyDP and formatted according to the current number group character and
decimal character. The optional argument to \DTLdecimaltocurrency is used
in the (symbol) argument of \DTLfmtcurrency.

7

The datatool—-GB. 1df file provided with datatool—regions provides the GBP currency.
The example below is provided to demonstrate how to define currencies and modify the formatting.
If you want to add support for your region, there is a Perl script in the datatool—regions GitHub
repository that can get you started. You can then add your region file via a pull request. See
the “README” file at https://github.com/nlct/datatool-regions for
further details.

Example 44 ensures that \DTLcurrGBP, \pounds and £ are all recognised as currency
symbols when parsing currency values (although \pounds and £ are recognised by default).
However, it’s necessary to explicitly change the default currency for instances where the currency

symbol is omitted:

Default currency: \DTLCurrencyCode.
\DTLdecimaltocurrency{1234.567}{\result}
Formatted value: \result.

£1.99:
\DTLifcurrency{£1.99}{currency}{not currency};
\DTLfmtcurrency{£}{1.99}:

\DTLifcurrency{\DTLfmtcurrency{£}{1.99}}{currency}
{not currency}.

Defining GBP.
\DTLdefcurrency{GBP}{\pounds}{£f}
Default currency: \DTLCurrencyCode.

130

(244

https://github.com/nlct/datatool-regions

2. Base Commands (datatool—base package)

£1.99:
\DTLifcurrency{£1.99}{currency}{not currency}.

Switching to GBP.\DTLsetdefaultcurrency{GBP}
Default currency: \DTLCurrencyCode.

\DTLdecimaltocurrency{1234.567}{\result}
Formatted value: \result.

\renewcommand{\dtlcurrdefaultfmt}{\dtlcurrsuffixfmt}
\renewcommand{\DTLcurrCodeOrSymOrChar} [3]{#1}
Formatted value: \result.

\DTLaddall{\result}
{\pounds2.50, \DTLcurrGBP 1.25,£0.25}
Formatted value: \result.

“ Example 44: Defining a Currency \EEE

Default currency: XXX. Formatted value: $1,234.57.
£1.99: currency; £1.99: currency

Defining GBP. Default currency: XXX.

£1.99: currency.

Switching to GBP. Default currency: GBP.
Formatted value: £1,234.57.

Formatted value: 1,234.57 GBP.

Formatted value: 4.00 GBP.

Note that \result is defined as a datum control sequence. This means that the resulting

command doesn’t need to be reparsed to obtain its numerical value.

In the case of \DTLaddall the symbol from the final currency in the list is used (the
character “ £ 7). So the final \result (indirectly) expands to \DTLfmtcurrency{£f}
{4 }. This now shows the currency unit as a suffix because of the redefinition of \dt 1curr-

defaultfmt.

2.7. Dates and Times

The temporal data types (datetime, date, and time) were only added to datatool—base version
3.0 and are still experimental so this feature is off by default. Parsing can be enabled with the

datet ime option.

Options that govern date and time parsing can be set within the datet ime setting value.

131

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 44 Defining a Currency
% Label: "ex:defcurr"
% arara: xelatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
% This is an example document to demonstrate provided commands
 % To create your own region ldf file, see https://github.com/nlct/datatool-regions
 \usepackage{datatool-base}

\begin{document}
Default currency: \DTLCurrencyCode.
\DTLdecimaltocurrency{1234.567}{\result}
Formatted value: \result.

£1.99: \DTLifcurrency{£1.99}{currency}{not currency};
\DTLfmtcurrency{£}{1.99}: \DTLifcurrency{\DTLfmtcurrency{£}{1.99}}{currency}{not currency}.

Defining GBP.
\DTLdefcurrency{GBP}{\pounds}{£}
Default currency: \DTLCurrencyCode.

£1.99: \DTLifcurrency{£1.99}{currency}{not currency}.

Switching to GBP.\DTLsetdefaultcurrency{GBP}
Default currency: \DTLCurrencyCode.

\DTLdecimaltocurrency{1234.567}{\result}
Formatted value: \result.

\renewcommand{\dtlcurrdefaultfmt}{\dtlcurrsuffixfmt} \renewcommand{\DTLcurrCodeOrSymOrChar}[3]{#1} Formatted value: \result.

\DTLaddall{\result}{\pounds2.50,\DTLcurrGBP 1.25,£0.25}
Formatted value: \result.
\end{document}

Nicola Talbot
Defining a Currency (source code)
Example document that defines GBP currency (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example044.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example044.pdf

2. Base Commands (datatool—base package)

For example:

[\DTLsetup{ datetime={parse=auto-reformat} }

Available options are listed below.

--—
—a

=
parse=(value) initial: false

Determines whether or not to check for temporal values when parsing. The default is:

©

\DTLsetup{
datetime={
parse=isotregion,
auto-reformat=false,
parse=false
}
}

l

parse=false

Don’t check for temporal values when parsing. (The default.)

]

parse=true

Check for temporal values when parsing. This switches on parsing without altering any of the
other settings.

]

parse=parse-only

Check for temporal values when parsing but don’t alter the original. This is equivalent to parse
=true, auto-reformat=false.

<]

parse=auto-reformat

Check for temporal values when parsing and reformat the original. This is equivalent to parse
=true, auto-reformat=true.
[

| S

parse=iso—-only

Check for temporal values when parsing but only check for ISO formatted dates and times.

132

2. Base Commands (datatool—base package)

For example, 2025-01-14 (date)or 16:25:02 (time) or 2025-01-14T16:25:02
(timestamp with no offset) or 2025-01-14T16:25:02+01 : 00 (timestamp with offset).

B

| S

parse=region-only

Check for temporal values when parsing but only parse the current region’s date and time format-
ting. This requires localisation support. See §2.3.
E
(A

parse=iso+region

First check for ISO format then check for current region’s format. If there is no localisation
support provided, this will be equivalent to parse=1so-only
=

=
auto-reformat=(value) initial: false

If temporal parsing is on, this option determines whether or not the original value should be
reformatted.

L9
This option has no effect with csv—content=no—-parse as the values aren’t parsed.
Use convert—numbers instead.

(>

auto—-reformat=false

If temporal parsing is on, don’t reformat the original.

3

auto-reformat=true

If temporal parsing is on, reformat the original according to the current settings. (According to
the auto—reformat-types setting.)

<]

auto-reformat=region

If temporal parsing is on, reformat the original according to the region settings. (Provided the
temporal type is included in the aut o—reformat—types setting.) This essentially does

133

2. Base Commands (datatool—base package)

\DTLsetup{datetime=auto-reformat=true}
\renewcommand\DataToolDateFmt {%
\DTLCurrentLocaleFormatDate}
\renewcommand\DataToolTimeFmt {%
\DTLCurrentLocaleFormatTime}
\renewcommand\DataToolTimeZoneFmt{%
\DTLCurrentLocaleFormatTimeZone}
\renewcommand\DataToolTimeStampWithZoneFmt{%
\DTLCurrentLocaleFormatTimeStampWithZone}
\renewcommand\DataToolTimeStampNoZoneFmt{%
\DTLCurrentLocaleFormatTimeStampNoZone}
\renewcommand\DataToolTimeStampFmtSep{%
\DTLCurrentLocaleTimeStampFmtSep}

Note that regional support may simply defer to datetime2, if it has been installed, or may just use
the ISO numeric format. See the applicable localisation documentation for further details. For
example,

texdoc datatool-regions

<] 03

auto—-reformat=iso

If temporal parsing is on, redefine the formatting commands to use the ISO numeric format.

(Provided the temporal type is included in the auto—reformat—-types setting.)

]

auto—-reformat=datetime2

If temporal parsing is on, redefine the formatting commands to use the applicable datetime2
formatting commands. (Provided the temporal type is included in the auto—-reformat
—types setting.)

Note that this will require datetime2 to be loaded and you will need to set the style using
datetime2’s interface.

i)

[The datetime2 style defaults to ISO unless regional support has been requested and provided.

Example 45 illustrates the different settings:

=

Parsing off by default.
\DTLparse\result{2025-01-09}

134

https://www.tug.org/texdoc/

2. Base Commands (datatool—base package)

String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{2025-01-09T14:42:01}
String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{2025-01-09T15:42:01+01:00}
String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{14:42:01}

String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLsetup{datetime={parse}}

Parsing on.
\DTLparse\result{2025-01-09}

String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{2025-01-09T14:42:01}
String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{2025-01-09T15:42:01+01:00}
String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{14:42:01}

String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

135

2. Base Commands (datatool—base package)

£ Example 45: Parsing Dates and Times NERE

Parsing off by default.

String value: 2025-01-09. Data type: 0. Value: .

String value: 2025-01-09T14:42:01. Data type: 0. Value: .

String value: 2025-01-09T15:42:01+01:00. Data type: 0. Value: .

String value: 14:42:01. Data type: 0. Value: .

Parsing on.

String value: 2025-01-09. Data type: 5. Value: 2460685.

String value: 2025-01-09T14:42:01. Data type: 4. Value: 2460685.112511574.
String value: 2025-01-09T15:42:01+01:00. Data type: 4. Value: 2460685.112511574
String value: 14:42:01. Data type: 6. Value: 0.1125115740740741.

Example 46 loads datetime2 and not only parses but also reformats the string representation.
(Advanced users: the ISO string can be extracted with \datatool_extract_time-
stamp : NN, see §2.2.4.)

,

\usepackage [en—-GB] {datetime?2}
\usepackage{datatool-base}
\begin{document}
\DTLsetup{datetime={parse=auto-reformat}}
\DTLparse\result{2025-01-09}

String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{2025-01-09T14:42:01}
String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{2025-01-09T15:42:01+01:00}
String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\DTLparse\result{14:42:01}

String value: \result.

Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\end{document}

Note that datatool—base will automatically pick up datetime2’s regional setting. This will
require not only datetime2 but also datetime2—english (which will be implicitly loaded by date-
time2 if it is installed).

136

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 45 Parsing Dates and Times
% Label: "ex:parsetemporal"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
Parsing off by default.

\DTLparse\result{2025-01-09}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{2025-01-09T14:42:01}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{2025-01-09T15:42:01+01:00}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{14:42:01}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLsetup{datetime={parse}}
Parsing on.

\DTLparse\result{2025-01-09}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{2025-01-09T14:42:01}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{2025-01-09T15:42:01+01:00}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{14:42:01}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\end{document}

Nicola Talbot
Parsing Dates and Times (source code)
Example document illustrating date and time parsing (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example045.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example045.pdf

2. Base Commands (datatool—base package)

N

4 Example 46: Parsing Dates and Times and Reformatting \EEE

String value: 9th January 2025. Data type: 5. Value: 2460685.

String value: 9th January 2025 2:42pm GMT. Data type: 4. Value:
2460685.112511574.

String value: 9th January 2025 3:42pm BST. Data type: 4. Value:
2460685.112511574.

String value: 2:42pm. Data type: 6. Value: 0.1125115740740741.

The aut o—-reformat=t rue setting will cause commands like \DTLparse to replace
the original string with the applicable commands listed below. These commands will be redefined
by settings such as aut o—reformat=1iso or you can redefine them yourself.

X

\DataToolDateTimeFmt { (date-specs) } { (time-specs) } { {offset-specs) }

Use to format timestamps (datetime date types). Any of the arguments may be empty, which
indicates to omit that part, but if not empty the arguments should be in the appropriate format to
pass to \DataToolDateFmt ((date-specs) should be {(year)}{(month)}{(day)}{{dow)}),
\DataToolTimeFmt ({fime-specs) should be { (hour) }{ (minute) }{ (second)})and \Dat a-
ToolTimeZoneFmt ({(offset-specs) should be {(izh)}{(1zm)}).

If both the (date-specs) and (time-specs) are non-empty then, if (offset-specs) is empty \Dat a-
ToolTimeStampNoZoneFmt will be used or if (offset-specs) is not empty \DataTool-
TimeStampWithZoneFmt will be used.

X

\DataToolTimeStampNoZoneFmt {(year)} { (month)} { (day) } { (dow) }
{{hour) } { (minute) } { (second) }

Formats the date and time. The default definition is touse \DTLCurrentLocaleFormat
TimeStampNoZone, which may be redefined by localisation support.

X
\DataToolTimeStampWithZoneFmt {(year)} { (month)} { (day) } { (dow) }
{(hour) } { (minute) } { (second) } { {tzh) } { (tzm) }

Formats the date, time and time zone. The default definitionis touse \DTLCurrentLocale-
FormatTimeStampWithZone, which may be redefined by localisation support.
The above commands may use:

\DataToolTimeStampFmtSep

This is placed between the date and time. The default definition simply expands to \DTL-
CurrentLocaleTimeStampFmtSep.

137

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 46 Parsing Dates and Times and Reformatting
% Label: "ex:parsetemporalreformat"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
% This will not only require datetime2.sty to be installed
 % but also datetime2-english should be installed
 \usepackage[en-GB]{datetime2}
\usepackage{datatool-base}
\begin{document}
\DTLsetup{datetime={parse={auto-reformat}}}

\DTLparse\result{2025-01-09}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{2025-01-09T14:42:01}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{2025-01-09T15:42:01+01:00}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.

\DTLparse\result{14:42:01}
String value: \result.
Data type: \DTLdatumtype{\result}.
Value: \DTLdatumvalue{\result}.
\end{document}

Nicola Talbot
Parsing Dates and Times and Reformatting (source code)
Example document illustrating date and time parsing with auto-reformatting on (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example046.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example046.pdf

2. Base Commands (datatool—base package)

\DataToolDateFmt {(year)} { (month)} {{day)} { (dow)}

Formats the date. The default definition is to use \DTLCurrentLocaleFormatDate,
which may be redefined by localisation support. Note that the (dow) argument may be empty.
Otherwise, all arguments must be integers.

X

\DataToolTimeFmt { (hour)} { (minute) } { (second) }

Formats the time. The default definition is to use \DTLCurrentLocaleFormatTime,
which may be redefined by localisation support. Note that the (second) argument may be empty.
Otherwise, all arguments must be integers.

7

\DataToolTimeZoneFmt {(tzh) } { (rzm)}

Formats the time zone offset. The default definition is to use \DTLCurrentLocale-
FormatTimeZone, which may be redefined by localisation support. All arguments must be
integers.

2.8. Strings
A

The string related code provided by datatool—base has been rewritten in v3.0. This means
that there may be some differences in the results from earlier versions. You may need to
use rollback if this causes a problem for existing documents.

The string data type is any non-empty content that can’t be parsed as a number (or currency).
For more information on data types, see §2.2. For conditionals, see §2.4. For CSV lists, see
§2.9. The commands described below assume that the text arguments are strings without parsing
them to determine their data type. Unexpected results may occur if the text includes math-mode
content.

2.8.1. Substitution and String Splitting

\DTLsubstitute{{cs)} {(original) } { (replacement) }

Substitutes the first occurrence of (original) with (replacement) within the expansion text of the
command (cs).

138

2. Base Commands (datatool—base package)

\DTLsubstituteall{{cs)} {(original) } { (replacement) }

Substitutes all occurrences of (original) with (replacement) within the expansion text of the
command (cs).

X

\DTLsplitstring{ (string)} { (split text) } { (before cmd) } { {after cmd) }

Splits (string) at (split text) and defines (before cmd) to the pre-split text and (after cmd) to the
post-split text. Note that (string) and (split text) are not expanded.

X

\DTLxsplitstring{ (string) } { (split text) } { (before cmd) } { (after cmd) }

As \DTLsplitstring butexpands (string) and (split text) once.
Note that in each case the change is localised to the current scope. Example 47 demonstrates
this by adding grouping to limit the effect of the change.

\newcommand{\test}
{The goose looked at a book and said \emph{ooh}.}
{% local scope
Original: \test
\DTLsubstitute{\test}{oo}{ee}
Substituted first: \test
t

{% local scope
Original: \test
\DTLsubstituteall{\test}{oo}{ee}
Substituted all: \test

t

Split on "~ looked' (no expansion)
\DTLsplitstring{\test}{looked}{\before}{\after}

Before: "~ \before'. After: " \after'

Split on "~ looked' (with expansion)
\DTLxsplitstring{\test}{looked}{\before}{\after}

Before: "“\before'. After: “\after'

139

2. Base Commands (datatool—base package)

Note that the “00” in \emph { ooh } isn’t substituted as it’s inside a group, which hides it from
the search.
)

“ Example 47: String Substitution and Splitting N\EFIE

Original: The goose looked at a book and said ooh. Substituted first:
The geese looked at a book and said ooh.

Original: The goose looked at a book and said ooh. Substituted all: The
geese leeked at a beek and said ooh.

Split on ‘looked’ (no expansion)

Before: ‘The goose looked at a book and said ooh.”. After: *’

Split on ‘looked’ (with expansion)

Before: ‘The goose . After: ‘ at a book and said ooh.’

For more complex substitutions, including replacing commands or command arguments, use
IATEX3 regular expressions (see §1.2.1).

2.8.2. Initial Letters

\DTLinitials{(fext)}

This is simply a shortcut that uses \DTLstoreinitials to obtain the initials and then
displays the result.

X

\xDTLinitials{(fext)}

Designed for use with placeholder commands, this expands the first token in its argument before
passingitto \DTLinitials.

X

\DTLstoreinitials{(text)} {{cs)}

Splits (zext) into words and stores the initial of each word in the control sequence (cs). Normal
space characters, the hyphen character (—), non-breakable spaces (~) and space commands
\nobreakspace and \ space are all considered word boundaries. Words broken by an
apostrophe are also detected but by default the apostrophe and following initial are ignored. For
example, “O’Brien” will become just “O” (followed by a dot) but it will actually be converted to:

[\DTLaposinitialpunc{O}{B} {{(punc)}

Only the first apostrophe in the word is treated in this way. If a word has multiple apostrophes,
such as “fo’c’s’le” in the example below, then the word will be split on the first apostrophe (“fo”,

140

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 47 String Substitution and Splitting
% Label: "ex:subsplitstr"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
\newcommand{\test}{The goose looked at a book and said \emph{ooh}.}
{% local scope
 Original: \test
\DTLsubstitute{\test}{oo}{ee}
Substituted first: \test }

{% local scope
 Original: \test
 \DTLsubstituteall{\test}{oo}{ee}
 Substituted all: \test }

Split on `looked' (no expansion)
\DTLsplitstring{\test}{looked}{\before}{\after}

Before: `\before'. After: `\after'

Split on `looked' (with expansion)
\DTLxsplitstring{\test}{looked}{\before}{\after}

Before: `\before'. After: `\after'
\end{document}

Nicola Talbot
String Substitution and Splitting (source code)
Example document illustrating string substitution and splitting (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example047.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example047.pdf

2. Base Commands (datatool—base package)

which has the initial “f” and “c’s’le”, which has the initial “c”). An apostrophe at the end of a
word is considered trailing punctuation.
Once the supplied (fext) has been split into words, \DTLstoreinitials uses:

\DTLStoreInitialGetLetter{(word)}{(cs)}

to get the initial letter of each word. The default definition just uses \DTLGetInitial-
Letter which means that the results can vary if localisation support is provided. Ordinarily, this
should produce at least one letter, but it’s possible for \DTLStoreInitialGetLetter
to set the control sequence (cs) to expand to nothing. If this occurs, \DTLstoreinitials
will usually skip the initial and the following punctuation. The exception is where a word is split
by an apostrophe.

In the case of (head) ' (tail), where (H) indicates the initial for (head) and (T indicates the
initial for (zail) (as obtained by \DTLStoreInitialGetLetter), thenif (H) and (T)
are both empty, the initials and following punctuation are omitted. If (H) is empty but (7') isn’t
then \DTLinitialpunc{(T)}{(punc)} is used, otherwise (regardless of whether or not
(T)isempty) \DTLaposinitialpunc{(H)}{(T)}{{(punc)} is used.

X

\DTLinitialpunc{ (letter)} { (punc)}

This command is used to encapsulate each initial (except in the case of a word containing an
apostrophe) and the following period/full stop. The first argument (letter) is the initial that was
obtained by \DTLStoreInitialGetLetter and the second argument (punc) is the
command that may expand to the trailing punctuation character (see below).

X

\DTLaposinitialpunc{(H)}{(T)}{ (punc)}

This command is used to encapsulate an initial in a word split by an apostrophe in the form
(head) ' (tail). The first argument (H) is the initial for (head) and the second argument (7) is
the initial for (tail). The final argument (punc) is as for \DTLinitialpunc. By default this
just expands to (H)(punc) (that is, the initial following the apostrophe is ignored).

The following commands are used for the punctuation.

X

\DTLbetweeninitials initial: .
Placed between initials.

I

\DTLafterinitials initial: .

Placed after the initials (that is, at the end after the final initial).

141

2. Base Commands (datatool—base package)

b §

\DTLafterinitialbeforehyphen initial: .
Placed after an initial before a hyphen.

X

\DTLinitialhyphen initial: —

Placed where a hyphen occurs. Note that this isn’t included in the final argument of \DTL-
initialpuncor \DTLaposinitialpunec.

A
\DTLstoreinitials is designed for text consisting of words with possible leading
or trailing punctuation. Aside from apostrophes and hyphens, mid-word punctuation
isn’t supported. This is demonstrated in Example 48 where the sequence “+12x, y” is
skipped.

J

If you want to remove the dots, you can either redefine \DTLbetweeninitials, \DTL-
afterinitialsand \DTLafterinitialbeforehyphen to do nothing or rede-
fine \DTLinitialpuncand \DTLaposinitialpunc to ignore the final argument.
If you want to remove the hyphen then you need to redefine \DTLinitialhyphen todo
nothing.

X

\DTLGetInitialLetter{(text)}{(cs)}

Obtains the first letter of (fext) and stores it in the control sequence (cs). This is intended for use
in commands that need initials or letter groups and is governed by the initial-purify
option.

The initial-purify=early setting makes \DTLGetInitialLetter purify
the (fext) argument (that is, expand and remove functions in (zext)) before applying the initial
letter algorithm. With initial-purify=1late, the (text) argument won’t be expanded
until content is passed to \DTLCurrentLocaleGetInitialLetter (steps 3 or4).
Note that if initial-purify=early then step 3 in the algorithm below won’t apply
since any commands will have already been stripped or replaced.

The algorithm used by \DTLGet InitialLetter{(text)} {(cs)} is as follows:

1. if (text) is blank (empty or spaces) then (cs) is set to empty;

2. if (text) starts with a group, the content of the group is assumed to be an initial letter (even
if it consists of multiple letter or non-letter characters) and (cs) will be set to the purified
content of that group;

3. if (text) starts with \ (cmd) { (substr) } then (cs) will be set to \ (cnd) { (letter) } where
(letter) is obtained from applying \DTLCurrentLocaleGetInitialletter
to the (substr) argument;

142

2. Base Commands (datatool—base package)

4. otherwise \DTLCurrentLocaleGetInitialletter is used to obtain the
first letter of (rext).

See §2.8.2.2.

i)

If localisation support is provided by a datat ool —(locale) . 1d £ file, then that should
define \DTLCurrentLocaleGetInitialLetter as described in §2.3.

2.8.2.1. Initial Letters Example

Example 48 obtains initials from names containing hyphens and apostrophes.

Marie\space Elise del~Rosario:
\DTLinitials{Marie\space Elise del~Rosario}

Elouise-Mary de Vere: \DTLinitials{Elouise-
Mary de Vere}

Mary—-Jane d'Arcy: \DTLinitials{Mary-Jane d'Arcy}

Mary—-Jane d'Arcy-Lancaster:
\DTLinitials{Mary-Jane d'Arcy-Lancaster}

Mary—-Jane d'Arcy FitzGerald:
\DTLinitials{Mary—-Jane d'Arcy FitzGerald}

Niall O'Brien: \DTLinitials{Niall O'Brien}
De'Ondre Andros: \DTLinitials{De'Ondre Andros}

Dickie "Quack' wvon Duck:
\DTLinitials{Dickie "Quack' wvon Duck}

Aside from apostrophes and hyphens, mid-word punctuation isn’t supported. The sequence
“+12x, v” in the following will be skipped because it isn’t recognised as a word.

=

@aardvark +12x,y fo'c's'le *zebra?:
\DTLinitials{@aardvark +12x,y fo'c's'le *zebra?}

\DTLStoreInitialGetLetter is then redefined to set the second argument to empty
for the given set of words: “d”, “de”, “del” and “von”. This means that they will be omitted from

143

2. Base Commands (datatool—base package)

the list of initials.

,

Skip "d', "de', "del', and "von':

\renewcommand{\DTLStoreInitialGetLetter}[2]{%
\DTLifinlist{#1}{d,de,del,von}{\def#2{}}
{\DTLGetInitialLetter{#1}{#2}}%

}

The same names and words are repeated to illustrate the difference.

The default definition of \DTLStoreInitialGetLetter means that, for example,
“d’Arcy” has the initial “d” but this redefinition will change the initial for “d’Arcy” to “A”. This is
a better method than simply redefining \DTLaposinitialpunc to expand to the second
argument, which would interfere with “O’Brien” and “De’Ondre”.

kN Example 48: Name or Phrase Initials NERE

Marie Elise del Rosario: M.E.d.R.
Elouise—Mary de Vere: E-M.d.V.
Mary-Jane d’Arcy: M.-J.d.

Mary-Jane d’Arcy-Lancaster: M.-J.d.-L.
Mary-Jane d’Arcy FitzGerald: M.-J.d.F.
Niall O’Brien: N.O.

De’Ondre Andros: D.A.

Dickie ‘Quack’ von Duck: D.Q.v.D.
@aardvark +12x,y fo’c’s’le *zebra?: a.f.z.
Skip ‘d’, ‘de’, ‘del’, and ‘von’:

Marie Elise del Rosario: M.E.R.
Elouise-Mary de Vere: E.-M.V.
Mary-Jane d’Arcy: M.-J.A.

Mary-Jane d’Arcy-Lancaster: M.-J.A.-L.
Mary-Jane d’Arcy FitzGerald: M.-J.A.F.
Niall O’Brien: N.O.

De’Ondre Andros: D.A.

Dickie ‘Quack’ von Duck: D.Q.D.
@aardvark +12x,y fo’c’s’le *zebra?: a.f.z.

2.8.2.2. Initial Letters with UTF-8 Example

Example 49 has words containing UTF-8 characters.

144

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 48 Name or Phrase Initials
% Label: "ex:initials"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
Marie\space Élise del~Rosario:
\DTLinitials{Marie\space Élise del~Rosario}

Élouise-Mary de Vere: \DTLinitials{Élouise-Mary de Vere}

Mary-Jane d'Arcy: \DTLinitials{Mary-Jane d'Arcy}

Mary-Jane d'Arcy-Lancaster: \DTLinitials{Mary-Jane d'Arcy-Lancaster}

Mary-Jane d'Arcy FitzGerald: \DTLinitials{Mary-Jane d'Arcy FitzGerald}

Niall O'Brien: \DTLinitials{Niall O'Brien}

De'Ondre Andros: \DTLinitials{De'Ondre Andros}

Dickie `Quack' von Duck:
\DTLinitials{Dickie `Quack' von Duck}

@aardvark +12x,y fo'c's'le *zebra?:
\DTLinitials{@aardvark +12x,y fo'c's'le *zebra?}

Skip `d', `de', `del', and `von':
\renewcommand{\DTLStoreInitialGetLetter}[2]{%
 \DTLifinlist{#1}{d,de,del,von}{\def#2{}}
 {\DTLGetInitialLetter{#1}{#2}}%
 }

Marie\space Élise del~Rosario:
\DTLinitials{Marie\space Élise del~Rosario}

Élouise-Mary de Vere: \DTLinitials{Élouise-Mary de Vere}

Mary-Jane d'Arcy: \DTLinitials{Mary-Jane d'Arcy}

Mary-Jane d'Arcy-Lancaster: \DTLinitials{Mary-Jane d'Arcy-Lancaster}

Mary-Jane d'Arcy FitzGerald: \DTLinitials{Mary-Jane d'Arcy FitzGerald}

Niall O'Brien: \DTLinitials{Niall O'Brien}

De'Ondre Andros: \DTLinitials{De'Ondre Andros}

Dickie `Quack' von Duck:
\DTLinitials{Dickie `Quack' von Duck}

@aardvark +12x,y fo'c's'le *zebra?:
\DTLinitials{@aardvark +12x,y fo'c's'le *zebra?}
\end{document}

Nicola Talbot
Name or Phrase Initials (source code)
Example document demonstrating commands for obtaining initials from names or phrases (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example048.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example048.pdf

2. Base Commands (datatool—base package)

dbc: \DTLGetInitialLetter{dbc}{\result}
Initial: \result.

{db}c (&b grouped): \DTLGetInitialLetter{{ab}c}
{\result}

Initial: \result.

“Yabc'': \DTLGetInitialletter{ “&bc''}{\result}
Initial: \result.

T {&b}c'' (&b grouped): \DTLGetInitialLetter{ "~{ab}
c''}{\result}

Initial: \result.

Note the difference between { &b} ¢ (which satisfies step 2 of the \DTLGetInitial-
Letter algorithm) and ~ * {&b}c' ' (which doesn’t).

N Example 49: Word Initial Letter with UTF-8 %@ 32

abc: Initial: 4. dbc (b grouped): Initial: ab.
“4bc”: Initial: 4. “4bc” (4b grouped): Initial: &.

2.8.2.3. Initial Letters with Commands Example

Example 50 has words containing containing commands. In the first instance, the command is an
accent command, which can expand. The second is a robust formatting command.

\'{albc (accent command): \DTLGetInitialletter{\'{a}
bcl{\result}

Initial: \result.
\emph{4bc}: \DTLGetInitialLetter{\emph{adbc}}{\result}

Purify early.\DTLsetup{initial-purify=early}

Initial: \result.

Purify late.\DTLsetup{initial-purify=late}

145

550

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 49 Word Initial Letter with UTF-8
% Label: "ex:initialsutf8"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
ábc: \DTLGetInitialLetter{ábc}{\result}
Initial: \result. {áb}c (áb grouped): \DTLGetInitialLetter{{áb}c}{\result}
Initial: \result.

``ábc'': \DTLGetInitialLetter{``ábc''}{\result}
Initial: \result. ``{áb}c'' (áb grouped): \DTLGetInitialLetter{``{áb}c''}{\result}
Initial: \result.
\end{document}

Nicola Talbot
Word Initial Letter with UTF-8 (source code)
Example document demonstrating \DTLGetInitialLetter (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example049.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example049.pdf

2. Base Commands (datatool—base package)

\'{albc (accent command): \DTLGetInitialletter{\'{a}
bec}{\result}

Initial: \result.

\emph{&bc}: \DTLGetInitiallLetter{\emph{dbc}}{\result}

Initial: \result.

Note that in the last case above, the formatting command \ emph isn’t stripped.

kN Example 50: Word Initial Commands N\ERE

Purify early.

abc (accent command): Initial: 4.
dbc: Initial: a.

Purify late.

abc (accent command): Initial: &.
abc: Initial: a.

2.8.3. Advanced Utility Commands

These commands use I8TjzX3 syntax so you will need \Exp1SyntaxOn to change the category
codes.

X

\datatool_pad_trailing_zeros:Nn (d-var) {(n)}

This command is intended for use with token list variables that store a plain number and will
pad (tl-var) with Os to ensure that there are a minimum of (n) digits after the decimal point. If
the number in (7l-var) was originally an integer, it will become a decimal with (n) Os after the
decimal point. This command does nothing if (n) is not greater than zero.

o

The (token list) should contain a plain number (decimal or integer) before use but there is
no check to ensure this. The command simply tests for the presence of a decimal point (.)
within (token list).

The commands \datatool_measure_ (type) : Nn are simply shortcuts that use \ set-
towidth, \settoheight and \settodepth with a hook to disable problematic
commands. That is, each command is defined to do:

[\setto(type) (dim) {(hook)(text)}

146

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 50 Word Initial Commands
% Label: "ex:initialscs"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
Purify early.\DTLsetup{initial-purify=early}

\'{a}bc (accent command): \DTLGetInitialLetter{\'{a}bc}{\result} Initial: \result.

\emph{ábc}: \DTLGetInitialLetter{\emph{ábc}}{\result} Initial: \result.

Purify late.\DTLsetup{initial-purify=late}

\'{a}bc (accent command): \DTLGetInitialLetter{\'{a}bc}{\result} Initial: \result.

\emph{ábc}: \DTLGetInitialLetter{\emph{ábc}}{\result} Initial: \result.
\end{document}

Nicola Talbot
Word Initial Commands (source code)
Example document demonstrating \DTLGetInitialLetter (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example050.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example050.pdf

2. Base Commands (datatool—base package)

The commands \datatool_measure_ht_plus_dp:Nnand \datatool_measure :NNNn
are slightly more complicated, but essentially do something similar.
The hook is a token list variable:

\1l datatool measure_hook_ t1l

The default definition disables \ 1 albbel, \ref and \pageref,makes \refstepcounter
behave like \ stepcounter, and \hypertarget and \hyperlink will simply ex-
pand to their second argument.

) A

If you are using a package that redefines any of those commands to include a starred form
or optional argument and you are using that syntax within (fext), then you will need to
adjust \1_datatool_measure_hook_t1 as applicable.

\datatool_measure_width:Nn (dim) {(fext)}

Measures the width of the supplied text with problematic commands locally disabled by the hook.

X

\datatool_measure_height:Nn (dim) {(text)}

Measures the height of the supplied text with problematic commands locally disabled by the hook.

X

\datatool_measure_depth:Nn (dim) {(text)}

Measures the depth of the supplied text with problematic commands locally disabled by the hook.

7

\datatool_measure_ht_plus_dp:Nn (dim) {(text)}

Measures the combined height and depth of the supplied text with problematic commands locally
disabled by the hook.

X

\datatool_measure:NNNn (wd-dim) (ht-dim) (dp-dim) {(text)}

Measures the width, height and depth of the supplied text with problematic commands locally
disabled by the hook.

The following commands are intended to work around the problem of UTF-8 characters being
represented by multiple tokens with pdfI£TEX, when a single grapheme is required from the start
of a token list (for example, when obtaining initials).

147

2. Base Commands (datatool—base package)

A
These commands are experimental.
X
\datatool_get_first_grapheme:nN {(text)} (d-var)

This obtains the first grapheme by using \text_map_1inline:nn and breaking after the
first iteration. Note that this may not be a “letter” but may be a punctuation character. The (fext)
is purified before mapping.

X

\datatool_get_first_letter:nN {(text)} (d-var)

Similar to the previous command but skips leading non-letters. This uses \datatool_if_
letter:nT to test if the grapheme is a letter.

X

\datatool_if_ letter:nTF {(grapheme)} {(true)} {(false)}

Tests if (grapheme) is a letter. Note that (grapheme) is expected to be a single character, which
may be a multi-byte character. A grapheme is considered a letter if the first token of (grapheme)
has a letter category code or if the upper and lowercase versions of (grapheme) are different. Note
that not all letters have different upper and lowercase versions. If these are likely to be tested in
this command, then use XgI5TEX or LualfTEX and ensure the character has the letter category
code.

A

If the (grapheme) argument doesn’t contain a single character but instead contains a
mixture of letters and punctuation, then \datatool_if_letter:nTF will do
(true). Ensure that (grapheme) is a single character stripped of all commands and braces.

For example, with XgIATiEX and LualATEX the character “A” is considered a single token and has
the category code 11 (letter), but with pdfIsTEX and UTF-8 “A” consists of two tokens where the
first token has category code 13. However \text__lowercase :n is capable of converting
“A”to “4” and \text_uppercase :n is capable of converting “4” to “A”. So if (grapheme)
(which should already have been expanded and purified) has different uppercase and lowercase
versions, it can be considered a letter.

The regular expression class [:alpha:] only covers ASCII letters. Recall also from
Example 10 that ASCII control codes or non-letter characters with the category code set to “letter”
were used to influence sorting. Since \datatool_if_letter:nTF was provided to
assist with obtaining letter groups from sort values, it needs to take this into account. If this
behaviour is inappropriate for your use, then use more appropriate commands provided by ITEX3,
such as the regular expression matching commands.

148

2. Base Commands (datatool—base package)

2.9. Comma-Separated Lists
(@]

—

IATEX3 provides commands for processing CSV lists. See §1.2.2 for an example.

J

The datatool—base package provides some commands that take a CSV list as the argument,
such as \dtladdall (see §2.5.1), \DTLaddall (see §2.5.2) and \DTLifinlist
(see §2.4.1.2). Unless otherwise stated, the argument may also be a command whose definition is
a CSV list, but note that the argument must be exactly one token (the command) with no leading
spaces or trailing tokens.

A
This behaviour is new to v3.0. Older versions would expand the first element in the list for
some commands but not others.

Example 51 searches for an element in a list of four elements:

“duck' in "ant,duck,goose, zebra'?
\DTLifinlist{duck}{ant,duck, goose, zebra}{true}{false}

The above is equivalent to:

\newcommand{\mylist}{ant,duck, goose, zebra}
“duck' in T \mylist'?
\DTLifinlist{duck}{\mylist}{true}{false}.

However, the following searches a list of one element where the sole element consists of two
tokens (a space and the command \my1list):

\newcommand{\mylist}{ant,duck, goose, zebra}
“duck' in ° \mylist'?
\DTLifinlist{duck}{ \mylist}{true}{false}

The following searches a list of two elements, where the first element is \my 1 i st and the
second element is “zebu’:

\newcommand{\mylist}{ant,duck, goose, zebra}
“duck' in “\mylist, zebu'?
\DTLifinlist{duck}{\mylist, zebul{true}{false}.

149

51

2. Base Commands (datatool—base package)

£ Example 51: CSV List Argument Expansion NERE

‘duck’ in ‘ant,duck,goose,zebra’? true.

‘duck’ in ‘ant,duck,goose,zebra’ (single token)? true.

‘duck’ in ¢ ant,duck,goose,zebra’ (one element, two tokens)? false
‘duck’ in ‘ant,duck,goose,zebra,zebu’ (two elements)? false.

There are two options, sk ip—empty and t r im, that determine how to split the elements
in the CSV list. These apply to most CSV list arguments, such as for \DTLaddall and
\DTLifinlist, but not for commands described in §2.5.1 like \dt laddall. These
settings also don’t apply to (key)=(value) comma-separated list options. Package options and
options provided in \DTLsetup are always trimmed and skip empty elements.

The datatool—base package automatically loads etoolbox so you can use the etoolbox commands,
suchas \forcsvlist, toiterate over CSV lists. For examples, see Iterating Over a Comma-
Separated List.?

2.9.1. List Settings

The options described in this section govern the CSV list settings. They may be passed in the
value of the 11 st s option. For example:

=

\DTLsetup{
lists={
trim={false},
skip-empty={false}

}

}
(O

skip—empty=(boolean) initial: true

If true, empty elements will be skipped when parsing a CSV list.

[©
=

t rim=(boolean) initial: true

If true, leading and trailing spaces will be trimmed from elements when parsing a CSV list.

9

sort-reverse=(boolean) initial: false

If true, \DTLsortwordlist and \dt 1sort1list will perform a reverse sort.

3dickimaw-books.com/latex/admin/html/docsvlist.shtml

150

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 51 CSV List Argument Expansion
% Label: "ex:incsvlist"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\mylist}{ant,duck,goose,zebra}
\begin{document}
`duck' in `ant,duck,goose,zebra'?
\DTLifinlist{duck}{ant,duck,goose,zebra}{true}{false}.

`duck' in `\mylist' (single token)?
\DTLifinlist{duck}{\mylist}{true}{false}.

`duck' in ` \mylist' (one element, two tokens)? \DTLifinlist{duck}{ \mylist}{true}{false}

`duck' in `\mylist,zebu' (two elements)? \DTLifinlist{duck}{\mylist,zebu}{true}{false}.
\end{document}

Nicola Talbot
CSV List Argument Expansion (source code)
Example document illustrating whether or not a CSV list argument is expanded (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example051.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example051.pdf
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml

2. Base Commands (datatool—base package)

[

=
sort—datum=(boolean) initial: false

If this conditional is true, then \DTLsortwordlist will parse each element when it uses
the handler macro at the start, storing each element as a datum item, and will use numerical
ordering for numeric data types. Integers and decimals will be numerically compared against
each other, but the string comparison will be used if they are compared against another data type
(including currency). Currency elements will be numerically compared if they have the same
currency symbol, otherwise the string comparison will be used. —

=
and=(value) initial: word

Determines how \DTL11istand should expand. The (value) may be: word (expand to
\DTLandname) or symbol (expand to \ &).

o

If there is no language support, \DTLandname will expand to \ & in which case and
=word won’t produce any noticeable effect.

2.9.2. Formatting Lists

7

\DTLformatlist{(list)} modifier: *

Formats the CSV list supplied in the argument (/ist). The unstarred version adds grouping, the
starred version doesn’t. Each item in the list is formatted with:

X

\DTLlistformatitem{ (item)}

This simply expands to (item) by default. Each pair of elements, except for the final pair are
separated with:

X

\DTLlistformatsep/{ (item)} initial: , |,

This expands to , |, (comma followed by a space) by default. The final two elements are separated
with:

X

\DTLlistformatlastsep

This expands to ,\DTL11istand\space by default.

151

2. Base Commands (datatool—base package)

X

\DTLlistformatoxford initial: empty

If there are more than two items in the list, \DTL1ist formatlast sep will be preceded
by \DTL1listformatoxford which does nothing by default. If you want an Oxford
comma then redefine \DTL1listformatoxford toacomma:

\renewcommand{\DTLlistformatoxford}{, }

\DTLlistand

Expands either to \DTLandname or to \ &, depending on the and option in the 1ists
setting.

X

\DTLandname initial: varies
language-sensitive

This is initially defined to expand to \ andname if that command was defined when datatool
—base was loaded otherwise to \ &. However \DTLandname is redefined by localisation
support to expand to the appropriate word.

Example 52 redefines \DTL11st formatitem to render each item in italic:

\renewcommand{\DTLlistformatitem} [1]{\emph{#1}}
One: \DTLformatlist{elephant}.

Two: \DTLformatlist{elephant,ant}.

Three: \DTLformatlist{elephant, ant, zebra}.
Four: \DTLformatlist{elephant, ant, zebra,duck}.
\renewcommand{\DTLlistformatoxford}{, }

Oxford comma:

\DTLformatlist{elephant, ant, zebra, duck}.

Omit empty elements and leading/trailing spaces:
\DTLformatlist{elephant , ant,,duck}.

\DTLsetup/{
lists={

152

352

2. Base Commands (datatool—base package)

trim=false,
skip-empty=false
t
+

Retain empty elements and leading/trailing spaces:
\DTLformatlist{elephant , ant,,duck}.

£ Example 52: Formatting CSV Lists \EEE

One: elephant.

Two: elephant & ant.

Three: elephant, ant & zebra.

Four: elephant, ant, zebra & duck.

Oxford comma: elephant, ant, zebra, & duck.

Omit empty elements and leading/trailing spaces: elephant, ant, & duck.

Retain empty elements and leading/trailing spaces: elephant , ant, , &
duck.

2.9.3. List Elements

\DTLlistelement {(list) } { (idx) }

Does the (idx)th element in the list, where indexing starts with 1 for the first element.

\DTLfetchlistelement {(list) } { (idx) } { (cs) }

Fetches the (idx)th element in the list and defines the command (cs) to that element value.

X

\DTLnumitemsinlist{{list)}{(cs)}

Counts the number of elements in the list and defines the command (cs) to that number.
Example 53 uses the above commands for a three-element list, where the second element
contains a comma.

Bl

\newcommand{\mylist}{ant, {bee, wasp and hornet}, fly}
List: \DTLformatlist{\mylist}.

Number of elements: \DTLnumitemsinlist{\mylist}

153

(253

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 52 Formatting CSV Lists
% Label: "ex:formatlist"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
\renewcommand{\DTLlistformatitem}[1]{\emph{#1}}
One: \DTLformatlist{elephant}.

Two: \DTLformatlist{elephant,ant}.

Three: \DTLformatlist{elephant,ant,zebra}.

Four: \DTLformatlist{elephant,ant,zebra,duck}.

\renewcommand{\DTLlistformatoxford}{,}
Oxford comma: \DTLformatlist{elephant,ant,zebra,duck}.

Omit empty elements and leading/trailing spaces:
\DTLformatlist{elephant , ant,,duck}.

\DTLsetup{
 lists = { trim = false, skip-empty = false }
}
Retain empty elements and leading/trailing spaces:
\DTLformatlist{elephant , ant,,duck}.
\end{document}

Nicola Talbot
Formatting CSV Lists (source code)
Example document illustrating formatting comma-separated lists (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example052.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example052.pdf

2. Base Commands (datatool—base package)

{\total}\total.
Second element: \DTLlistelement{\mylist}{2}.

Fetch third element:
\DTLfetchlistelement{\mylist}{3}{\myelem}\myelem.

For comparison, the closest IXIEX3 code is:

\LaTeX3 List:

\ExplSyntaxOn

\clist_set:NV \1_tmpa_clist \mylist
\clist_use:Nnnn \1l_tmpa_clist { ~ and ~ } { , ~ }
{+ ~and ~ }

\ExplSyntaxOff

Number of elements:
\ExplSyntaxOn

\clist_count:N \1_tmpa_clist
\ExplSyntaxOff

Second element:

\ExplSyntaxOn

\clist_item:Nn \1_tmpa_clist { 2 }
\ExplSyntaxOff

Fetch third element:

\ExplSyntaxOn

\tl_set:Ne \1l_tmpa_tl

{ \clist_item:Nn \1_tmpa_clist { 3 } }
\1_tmpa_t1l

\ExplSyntaxOff

154

2. Base Commands (datatool—base package)

N Example 53: Elements of a CSV List NERE

List: ant, bee, wasp and hornet & fly.

Number of elements: 3.

Second element: bee, wasp and hornet.

Fetch third element: fly.

KTEX3 List: ant, bee, wasp and hornet, and fly
Number of elements: 3.

Second element: bee, wasp and hornet.

Fetch third element: fly.

2.9.4. Adding to Lists

The datatool—base package automatically loads etoolbox so you can use commands provided by

that package to prepend or append to a command definition, such as \preto and \appto.

Remember to include the comma separator.

[i
(i
If you have more complex requirements, consider using I5[EX3 commands (see §1.2.2 for

an example).

\dtlinsertinto{ (element)} { (sorted-list cs) } { (criteria cs)}

Globally inserts (element) into a sorted list (provided in the definition of the command (sorted-list
cs)) according to the comparison macro (criteria cs), which should have the same syntax as that
for \dt 1sort1list. Predefined comparison commands are described in §2.9.5.1.

Example 54 constructs a list, typesetting the contents with \DTLformat 1ist after each

modification:

\newcommand{\mylist}{ant,bee}
Original list: \DTLformatlist{\mylist}.

\appto\mylist{, zebra}
Item appended: \DTLformatlist{\mylist}.

\preto\mylist{aardvark, }
Item prepended: \DTLformatlist{\mylist}.

155

(2154

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 53 Elements of a CSV List
% Label: "ex:listelements"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\mylist}{ant,{bee, wasp and hornet},fly}
\begin{document}
List: \DTLformatlist{\mylist}.

Number of elements: \DTLnumitemsinlist{\mylist}{\total}\total.

Second element: \DTLlistelement{\mylist}{2}.

Fetch third element:
\DTLfetchlistelement{\mylist}{3}{\myelem}\myelem.

\LaTeX3 List:
\ExplSyntaxOn
\clist_set:NV \l_tmpa_clist \mylist
\clist_use:Nnnn \l_tmpa_clist { ~ and ~ } { , ~ } { , ~ and ~ }
\ExplSyntaxOff

Number of elements:
\ExplSyntaxOn
\clist_count:N \l_tmpa_clist .
\ExplSyntaxOff

Second element:
\ExplSyntaxOn
\clist_item:Nn \l_tmpa_clist { 2 } .
\ExplSyntaxOff

Fetch third element:
\ExplSyntaxOn
\tl_set:Ne \l_tmpa_tl { \clist_item:Nn \l_tmpa_clist { 3 } }
\l_tmpa_tl .
\ExplSyntaxOff
\end{document}

Nicola Talbot
Elements of a CSV List (source code)
Example document demonstrating counting and accessing list elements (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example053.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example053.pdf

2. Base Commands (datatool—base package)

\dtlinsertinto{duck}{\mylist}{\dtlcompare}
Item inserted: \DTLformatlist{\mylist}.

4 Example 54: Appending, Prepending and Inserting List Elements \ER ISR AR

Original list: ant & bee.

Item appended: ant, bee & zebra.

Item prepended: aardvark, ant, bee & zebra.
Item inserted: aardvark, ant, bee, duck & zebra.

2.9.5. Sorting Lists

There are two commands provided by datatool—base for sorting a CSV list. Both take a command
as the first argument whose definition should be the CSV list. On completion this command will
be (locally) redefined to expand to the ordered list. The second argument is also a command but
its behaviour and syntax is different.

The first (and older) command is \dt 1 sort 1ist, which requires a comparison macro.
This macro is repeatedly used to compare pairs of elements of the list throughout the sorting
process.

The second command is \DTLsortwordlist, which requires a handler macro that is
used to convert each element of the list into a byte sequence before sorting. The byte sequences
are then compared throughout the sorting process using a simple character code comparison.
\DTLsortwordlist is therefore more efficient, particularly if any localisation support is
provided.

X

\dtlsortlist {(list-cs)} {{(criteria cs) }

Sorts a CSV list according to the comparison command (criteria cs). Note that (list-cs) must be a
command not an explicit list. After the function has completed, (/ist-cs) will expand to the sorted
list. The comparison command compares two list elements (A) and (B) and must have the syntax:

[(criteria cs){ (reg) } { (A) } {(B) }

where (reg) is a count register. If (A) is deemed to be less than (B) then (criteria cs) should set
(reg) to —1, if (A) is deemed to be greater than (B) then (reg) should be set to +1 and if (A)
and (B) are deemed equal then (reg) should be set to 0. Predefined comparison commands are
described in §2.9.5.1.

X

\DTLsortwordlist {(list-cs) } { (handler-cs) }

156

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 54 Appending, Prepending and Inserting List Elements
% Label: "ex:listinsert"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\begin{document}
\newcommand{\mylist}{ant,bee}
Original list: \DTLformatlist{\mylist}.

\appto\mylist{,zebra}
Item appended: \DTLformatlist{\mylist}.

\preto\mylist{aardvark,}
Item prepended: \DTLformatlist{\mylist}.

\dtlinsertinto{duck}{\mylist}{\dtlcompare}
Item inserted: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Appending, Prepending and Inserting List Elements (source code)
Example document demonstrating commands to append, prepend and insert items into a comma-separated list (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example054.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example054.pdf

2. Base Commands (datatool—base package)

This command is an alternative to \dt 1 sort 11 st that has a handler macro for converting
the original string value of each list element into a byte sequence. The handler macro should have
the syntax:

(handler-cs) { (actual) } { (1) }

where (actual) is the original value and (#l) is a token list control sequence in which to store the
byte sequence. Predefined handlers are listed in §2.9.5.2.

The advantage with \DTLsortwordlist over \dtlsortlist isthat with \DTL-

sortwordlist all the sort values are processed once at the start whereas with \dt 1-
sortlist the values are repeatedly processed every time the comparison function is used.
The 1ists option sort—datum only has an effect with \DTLsortwordlist. The
sort—reverse option, which reverses the sort, governs both \DTLsortwordlist and
\dtlsortlist.
(]
=
Both \dt1sortlist and \DTLsortwordlist change the definition of (list-cs)
so that it expands to the sorted list on completion. However, with \dt 1sortlist
the resulting (list-cs) definition is just a comma-separated list of ordered items from the
original CSV list, but with \DTLsortwordlist the resulting (list-cs) definition is a
comma-separated list of sorted elements.

A sorted element is in the form:

(sorted-marker-cs) { (actual) } { (sort value) } { (letter group) }

where (actual) is the original item or the datum item if the sort —datum option is true, (sort
value) is the sort value obtained by the handler function (regardless of the data type), and (letter
group) is the letter group identifier obtained from the (sort value) via:

X

\DTLassignlettergroup{(acual)}{ (sort value) } { {cs) }

The letter group is assigned as follows:

1. If the {(actual) part is a datum item then the letter group is assigned according to the data
type as follows:

Integer or Decimal The letter group is considered a numeric group so (cs) is defined
as \dt lnumbergroup{ (num)} where (num) is the numeric value. Before
encapsulating with \dt 1numbergroup a hook may be used to alter the (num)
argument.

X

\DTLPreProcessIntegerGroup{(cs)} {{acual)}

157

2. Base Commands (datatool—base package)

This is used when (num) has been identified as an integer.

\DTLPreProcessDecimalGroup{{cs)} { (actual)}

This is used when (num) has been identified as a decimal. In both cases, the (cs)
argument is a command that expands to the numeric value and (actual) is the original
value passed to \DTLassignlettergroup. These hooks do nothing by
default.

Currency The letter group is considered a currency group so (cs) is defined as \dt 1-
currencygroup{ (sym)} { (num)} where (sym) is the currency symbol and
(num) is the numeric value. Before encapsulating with \dt lcurrencygroup
a hook may be used to alter the (sym) and (num) arguments.

X

\DTLPreProcessCurrencyGroup{ (sym-cs) } { (num-cs) }
{(actual) }

The (sym-cs) is the command that expands to the currency symbol, (num-cs) is the
command that expands to the numeric value, and (actual) is the original value passed
to \DTLassignlettergroup. This hook does nothing by default.

String If the (sort value) starts with a letter, (cs) is set to \dtllettergroup
{ (initial) } where (initial) is obtained using \DTLCurrentLocaleGetInitial-
Letter otherwise (cs) isdefinedas \dt 1nonlettergroup{ (grph) } where
(grph) is the first grapheme in the (sort value). Before encapsulating with \dt 1-
lettergroupor \dtlnonlettergroup, hooks are available to alter the

(grph).

X

\DTLPreProcessLetterGroup{{cs)}

This hook is used for a letter. This is defined to use \DTLCurrentLocale-
WordHandler.

X

\DTLPreProcessNonLetterGroup{/cs)}

This hook is used for a non-letter and does nothing by default. In both cases, the (cs)
is a command that expands to (grph).

2. Otherwise the letter group is assigned as for the string data type above.

158

2. Base Commands (datatool—base package)

If you want to iterate over a list that uses a handler function on each list element (such as
etoolbox’s \ forcsv1ist), then you can use the following commands on the element:

X

[\DTLsortedactual {(sorted element) }

J

Expands to the actual element. You can also simply use (sorted element) directly. The difference
is how expansion is applied. If the sort —datum option was true then the actual element will
be a datum item. (That is, the format used in the expansion text of a datum control sequence.)

X

\DTLsortedvalue/ (sorted element) }

Expands to the string sort value. For numeric data types (if parsing is on), this value would only
have been used for comparing across different data types.

X
\DTLsortedletter/{ (sorted element) }
Expands to the letter group.
A

The above commands all expect a sorted element with its special markup as the argument.
If you are using \ @ for to iterate over the sorted list, you will need to expand the loop
control sequence first.

J

The following command is used by \DTLsortwordlist butnotby \dtlsortlist.

7

\dtlfallbackaction{(vall)}{(val2)} {{swap code)} { (no swap code) }

If two sort values are identical, this command is used to determine whether or not the sort function
should swap the elements. The arguments (vall) and (val2) are the original values or the datum
items (not the identical byte sequences or numerical values). This command should expand to
(swap code) if the elements should be swapped, otherwise it should expand to (no swap code).
The default definition uses the case-sensitive \DTLifstringgt to compare the original
values.

For example, the following sorts a list and shows the result (with \ show) in the transcript:

\newcommand{\mylist}{\pounds2, zebu, -
.25,bee, \S$5, ant, duck,
+10,4.56,\523.10,123}
\dtlsortlist{\mylist}{\dtlcompare}
\show\mylist

The transcript shows the following:

159

2. Base Commands (datatool—base package)

> \mylist=macro:
->\pounds
2,\$23.10,\%5,+10,-.25,123,4.56, ant, bee, duck, zebu.

This is a simple character code sort that produces a simple comma-separated list as the result.
Compare the above with:

\newcommand{\mylist}{\pounds2, zebu, —
.25,bee, \$5, ant, duck,

+10,4.56,\523.10,123}
\DTLsortwordlist{\mylist}{\DTLsortwordcasehandler}
\show\mylist

The result is now more complex. I've added line breaks for clarity and replaced the private
command for the sort element markup with (S-cs) for compactness:

> \mylist=macro:
—>(S-cs){\$23.10}{$23.10}{\dtlnonlettergroup{s$}},
Scﬂ{\$5}{$5}{\dtlnonlettergroup{$}},
cs){+10}{+10}{\dtlnonlettergroup{+}},
-cs){—.25}{-.25}{\dt1lnonlettergroup{-1}},
-cs){123}{123}{\dt1lnonlettergroup{l}},
-csy{\pounds 2}{2}{\dtlnonlettergroup{2}},
-cs){4.56}{4.56}{\dtlnonlettergroup{4}},
-cs){ant }{ant}{\dtllettergroup{al},
-cs){bee}{bee}{\dtllettergroup{b}},
-cs){duck}{duck}{\dtllettergroup{d}},
-csy{zebu}{zebu}{\dtllettergroup{z}}.

/\/\/\/\/\/\/\/\/\/\

QQQGQQQQ

This produces a slightly different order: $23.10, $5, +10, -.25, 123, £2, 4.56, ant, bee, duck,
zebu. The \pounds command is stripped by the handler as it is unable to expand to just text.
Whereas the \ $ command is converted to the detokenized $ by the sort hook (see §2.9.5.3).
Note that the currency and numbers have all been assigned to the non-letter group.

(i]

—

[A different result can occur if localisation support is provided (see §2.3).

The closest match to the case-sensitive \dt 1 compareis \DTLsortwordcasehandler
(used above). The closest match to the case-insensitive \dt 1icompare is \DTLsort-
wordhandler. If the above example was switchedto \DTLsort lettercasehandler
or \DTLsortletterhandler, the hyphen/minus character — would be stripped from
— . 25, resulting in a sort value of .25.

160

2. Base Commands (datatool—base package)

When using lexicographical ordering, there is a distinct difference between —. 25 (a string
containing four characters) and —0 . 25 (a string containing five characters) or between +1 0 and
10. A simple character code comparison will place +1 0 before —. 25 (since the plus character
“+7” has a lower codepoint value than the hyphen/minus character “ — 7).

Switching the sort —datum option to true adds an extra level of complexity in the result,
but creates a different order because the numbers can now be compared numerically:

\DTLsetup{lists={sort-datum={true}}}
\newcommand{\mylist}{\pounds2, zebu, -
.25,bee, \$5, ant, duck,

+10,4.56,\523.10,123}
\DTLsortwordlist{\mylist}{\DTLsortwordcasehandler}
\show\mylist

I’'ve added line breaks for clarity, replaced constants with their actual numeric values, and
replaced the private commands for the sort element markup with (S-cs) and datum markup with
(D-cs) for compactness:

> \mylist=macro:

—>(S-cs) {(D-cs) {\$S5} {5} {\$}{3}r}1{S$5}{\dtlcurrencygroup{\$}
{5} 1},

(S-cs){(D-cs){\$23.10}1{23.10}F{\S}{3}}{$23.10r{\dt1~
currencygroup{\$}{23.10}},

(S-cs){ (D-cs){—.25}{-0.25}{}{2}}{-.25}{\dtlnumbergroup{ -
0.25%} %,
(S-cs){(D-cs){4.56}{4.56}{}{2}}{4.56}{\dtlnumbergroup
{4.56}},
(S-cs){(D-cs){+10} {10} { {1} }{+10}{\dtlnumbergroup{10}},
(S-cs){(D-cs){123}{123}{}{1}rr{123}r{\dtlnumbergroup{123}},
(S-cs) { (D-cs){ \pounds 2}{2}{\pounds}{3}r}{2}{\dtlcurrency-
group{\pounds}{2}},
(S-cs){(D-cs){ant}{}{}{0}}{ant}{\dtllettergroup{a}l},

(S-cs){ (D-cs){bee}{}{}{0}}{bee}{\dtllettergroup{b}},
(S-cs){ (D-cs){duck}{}{}{0}}{duck}r{\dtllettergroup{d}},
(S-cs){(D-cs){zebut{}{}{0}}{zebut{\dtllettergroup{z}}.

This expands to a different order: $5, $23.10, -.25, 4.56, +10, 123, £2, ant, bee, duck, zebu.
Note that the numeric values have been split into different sub-groups: currency and number. The
dollar $ currency is placed before the numbers because a string comparison is used between a
currency numeric value and non-currency number. For example, 4.56 and 123 are compared
numerically, so 4.56 is placed before 123, but $23.10 and +10 are compared lexicographically.

The \pounds?2 item has been correctly parsed as currency, but the string sort value ends
up as just 2 as a result of stripping \pounds. Since 123 isn’t currency but \pounds?2 is,
the values are compared lexicography instead of numerically, which means comparing the string

161

2. Base Commands (datatool—base package)

“123” with the string “2”. The best solution is to provide a local redefinition of \pounds:

\dtlSortWordCommands{\def\pounds{£f}}

This is done automatically by datatool—-GB. 1df and other localisation files that support
pound sterling currency (see §2.3.5). Adding localisation support, for example:

=

[\usepackage[locales=en-GB] {datatool-base}

results in a different order: -.25, +10, $5, $23.10, £2, 4.56, 123, ant, bee, duck, zebu.

B

It’s important to remember the item markup if you need to extract information within a
list loop.

If you have I£IEX3 syntax enabled you can apply the changes made in the internal hook with:

X

\datatool_sort_preprocess:Nn (d-var) {(text)}

where (zl-var) is the token list variable in which to store the result. Note that this expands the
(text) in the same way that the sort handlers do and may also convert to lowercase, depending on
the current settings. This command may be used in a locale’s definition of \DTLCurrent-
LocaleGetGroupString if using the “actual” argument.

If you prefer to ignore the current convert to lowercase setting, you can instead use:

\datatool_sort_preprocess:NnN (d-var) {(text)} (bool-var)

The final argument should be a boolean (\c_t rue_boolor\c_false_bool)toindicate
whether or not the token list should be converted to lowercase.

2.9.5.1. Comparison Commands

These comparison commands may be used with \dt 1sortlist, \dtlinsertinto,
and \dtlsort. For \DTLsortwordlist and \DTLsortdata handler functions,
see §2.9.5.2. In each case, the syntax is:

(cs) { (count-reg) } { (argl) } { (arg2) }

where (count-reg) is a count register (integer variable). If (argl) is deemed to be less than
(comes before) (arg2) then (cs) will set (count-reg) to —1, if {argl) is deemed to be greater than
(comes after) (arg2) then (count-reg) is set to +1 and if (argl) and (argl) are deemed equal then
(count-reg) is set to 0. Note that the handler’s notion of equality doesn’t necessarily mean the

162

2. Base Commands (datatool—base package)

two arguments are identical. For example, a case-insensitive comparison will consider “word”
and “Word” as equal, and \DTLnumcompare will consider \ $1,234.50and 1234.5
to be equal, since only the numerical values are compared.

X

\dtlletterindexcompare/{ (count-reg)} { (stringl)} { (string2)}

Designed for case-insensitive letter order comparison, but a hook (see §2.9.5.3) is used to locally
redefine certain commands to allow for adjustments in the compared strings. Spaces are stripped
from the strings so, for example, “sea lion” will come after “sealant”. (Note that this isn’t quite
analogous to \DTLsortletterhandler as that also discards hyphens.)

\DTLsortwordhandler is used to convert both strings to byte sequences, which are
then compared. It’s therefore more efficient to use \DTLsortwordlist to avoid repeatedly
converting the same strings to byte sequences.

X

\dt lwordindexcompare {(count-reg) } { (stringl) } { (string2) }

As \dtlletterindexcompare but spaces aren’t stripped from the strings so, for exam-
ple, “sea lion” will come before “sealant”.

(@]

= |
Since both \dt1lletterindexcompare and \dt lwordindexcompare

use \DTLsortwordhandler, they are sensitive to the current language provided
that a suitable language module has been installed (see §2.3 for more details and Exam-
ple 61 for an example). This does not apply to the simple character code commands
\dt lcompare and \dtlicompare.

\dt lcompare {(count-reg)} { (stringl) } { (string2) }

This command is used internally by the unstarred \DTLifstringlt, \DTLifstring-
egand \DTLifstringgt for a case-sensitive comparison. If you are using \DTLsort-
wordlist, the closest matching handler is \DTLsortwordcasehandler. However
\dt 1compare has no localisation support and just performs a character code comparison.

X

\dtlicompare{(count-reg)} { (stringl) } { (string2) }

This command is used internally by the starred \DTLifstringlt*, \DTLifstring-
eg* and \DTL1ifstringgt* for a case-insensitive comparison. If you are using \DTL-
sortwordlist, the closest matching handler is \DTLsortwordhandler. However
\dt 1icompare has no localisation support and just performs a character code comparison
(after converting the strings to lowercase).

163

2. Base Commands (datatool—base package)

\DTLnumcompare { (count-reg) } { (numl) } { (num2) }

Compares (numl) and (num2) numerically, where the arguments are formatted numbers or
datum control sequences. Unlike the numerical comparison commands in §2.4.1.3, this command
ignores the math setting, and will use I3int or I3fp comparisons, depending on the data types.
Any currency symbol (if present) will be ignored. If either (numl) or (num?2) are not recognised
as numerical values, the value will be treated as zero.

Options that govern comparison commands can be set within the compa re setting value.
For example:

\DTLsetup{ compare={expand-cs=true} }

GH=

expand-cs=(boolean) initial: false

Both \dt 1compare and \dt 1icompare (but not the other comparison commands) are
governed by the expand—cs boolean option. When used with \dt 1compare or \dt 1i-
compare: if true, (stringl) and (string2) will be fully expanded and purified before comparison.
If false, the following boolean option takes effect:

g

skip—-cs=(boolean) initial: false

When used with \dt 1compare or \dt1icompare where expand-cs=false: if
skip—-cs=true, any commands found in (stringl) or (string2) will be replaced with the
control code 0xOA (newline). This means that a command is considered lexicographically smaller
than punctuation, digits and letters. If false, all commands will be removed. This conditional has
no effect if expand-cs=true.

2.9.5.2. \DTLsortwordlist Handlers

The following handler macros are provided for use with \DTLsortwordlist and may also
be used as the functionin \DTLsortdata. Ineach case, (original) is the original string
and (cs) is a control sequence that will be defined to the resulting sort value (which will then be
treated as a byte sequence).

X

\DTLsortwordhandler{{original) } { {cs) }

A case-insensitive word order handler. This expands (original) and converts it to lowercase, then
applies \DTLDefaultLocaleWordHandler and purifies the result. This means that
it’s sensitive to the current language provided that a suitable language module has been installed
(see §2.3 for more details and Example 61 for an example).

164

2. Base Commands (datatool—base package)

\DTLsortwordcasehandler/{ (original) } { (cs) }

A case-sensitive word order handler. This expands (original), then applies \DTLDefault-
LocaleWordHandler and purifies the result.

X

\DTLsortletterhandler{ (original)} { (cs)}

A case-insensitive letter order handler. Similar to \DTLsortwordhandler but discards
hyphens and spaces.

X

\DTLsortlettercasehandler{(original)} {{(cs)}

A case-sensitive letter order handler. Similar to \DTLsortwordcasehandler but dis-
cards hyphens and spaces.

The above handler macros are simple wrapper functions that ensure the value is expanded and
pre-processed (case conversion or stripping hyphens and spaces) and stored in (cs) before using
the default word handler:

X

\DTLDefaultLocaleWordHandler{{cs)}

This uses \DTLCurrentLocaleWordHandler{(cs)} to convert (cs) to a byte se-
quence that ensures the locale’s alphabetic ordering, and then appends \datatoolctrl-
boundary to (cs). If you don’t require the boundary marker, you can redefine this command
to just use the current locale handler:

Ej

\renewcommand{\DTLDefaultLocaleWordHandler}[1]{%
\DTLCurrentLocaleWordHandler{#1}%
t

2.9.5.3. Word Sort Hook

The hook used by \dt lwordindexcompare and \dtlletterindexcompare
is also used at the start of \DTLsortwordlist. This means that the hook is applied
only once with an instance of \DTLsortwordlist, but with \dt1lsortlist the
hook is applied each time a comparison is required by \dt lwordindexcompare or
\dtlletterindexcompare. Therefore, it you want word or letter sorting, it’s better to
use the newer \DTLsortwordlist with \DTLsortwordhandler or \DTLsort-
letterhandler.
The commands changed by this hook are listed below.

165

2. Base Commands (datatool—base package)

\dtltexorsort {(TgX)} { (sort)}

This normally expands to just its first argument but inside \DTLsortwordlist it expands
to its second argument instead. You may recall from §2.6 that \DTLde fcurrency defines
\DTLcurr(ISO) touse \dt ltexorsort inits argument. This allows the currency symbol
to expand to a string representation within \DTLsortwordlist, \dt lwordindex-
compareor \dtlletterindexcompare.

X

\datatoolasciistart

Expands to nothing normally. The hook redefines this command to expand to the null character,
which means that it will come before all other characters.

X

\datatoolasciiend

Expands to nothing normally. The hook redefines this command to expand to the delete character
(0x7F, the highest ASCII character).

X

\datatoolctrlboundary

Expands to nothing normally. The hook redefines this command to expand to the character Ox1F
(the last control character before the space character). This command is automatically appended
to the sort value by \DTLDefaultLocaleWordHandler.

X

\datatoolpersoncomma

Designed to indicate word inversion for a person, this command expands to , \ space normally.
The hook redefines this command to the character Ox1C. For example,

Kunth\datatoolpersoncomma Donald E.

K3

\datatoolplacecomma

Designed to indicate a comma to clarify a place, this command expands to , \ space normally.
The hook redefines this command to the character Ox1D. For example:

Paris\datatoolplacecomma Texas

166

2. Base Commands (datatool—base package)

\datatoolsubjectcomma

Designed to indicate heading inversion (subjects, concepts and objects), this command expands to
, \space normally. The hook redefines this command to the character 0x1E. For example:

[New York\datatoolsubjectcomma population

There are two ways of dealing with parenthetical content.

\datatoolparen({ (text)}

This command normally expands to \space ((fext)) . The hook redefines \datatool-
parentoexpand to \datatoolctrlboundary, ignoring the argument. For example:

[duck\datatoolparen{wildfowl}

This means that the parenthetical content is omitted in the comparison. Note that this will cause
the following terms to be considered identical:

duck\datatoolparen{wildfowl}
duck\datatoolparen{cricket}

With \DTLsortwordlist, this is addressed by the default definition of \dt1fall-
backact ion which will compare the duplicate values using the original definition of \dat a-
toolparen. Notethatsince \DTLDefaultLocaleWordHandler appends \data-
toolctrlboundary to all values, “duck™ will become “duck” followed by 0x1F and
duck\datatoolparen{(text)} will become “duck” followed by 0x1F 0x1F. The first
control character is inserted by \datatoolparen and the second by \DTLDefault-
LocaleWordHandler. This means that the parenthetical entries will come after the word
on its own, and the word on its own will come after the word followed by one of the comma
markers.

An alternative method that can be used with \dt 1sort1ist is to mark where the paren-
thetical material starts:

7

\datatoolparenstart

Designed to indicate the start of parenthetical content, this command expands to \ space
normally. The parenthesis characters need to be added explicitly. The hook redefines this
command to expand to the character Ox1F. For example:

duck\datatoolparenstart (cricket)

167

2. Base Commands (datatool—base package)

In this case, the parenthetical content is included in the comparison.

o

The commands \datatoolctrlboundary and \datatoolparenstart
have the same definition within the hook but expand differently in normal text.

The use of control codes affects ordering. The normal space character has character code 0x20
and a comma has the character code 0x2C. This means that a comma would ordinarily be placed
after a space character, whereas the low-end control codes come before space.

o

The control codes used in the above commands are all assigned the “other” category code
(12) within the definition used by the hook. They are only intended for use in sorting, not
for typesetting.

Following the guidelines of the Oxford Style Manual, when sorting terms that have identical
pre-inversion parts, the following ordering is applied: people, places, subjects, no inversions, and
parenthetical. This is achieved through the marker commands (see examples 57 & 58).

X

\datatoolSetCurrencySort

Locally redefines common currency commands to their string alternatives. For example, \pounds
issetto \1_datatool_pound_str.

The hook also redefines \nobreakspace and \ to \space, \TeX and \LaTeX
are locally redefined to simply expand to “TeX” and “LaTeX”, respectively, and the following
commands are locally redefined to expand to the corresponding detokenized character: \'$ ($),
_ (O, \#(#),\%(%),and \ & (&).

Additional code can be added to the hook with:

\dt1lSortWordCommands{{(code)}

This globally adds (code) to the hook. Within (code) the @ character has the letter category code,
which means that you can use internal @-commands in (code) (see Example 62). If you need to
use control codes, make sure that you first (locally) change the category code to “other” before
using them in the hook.

2.9.5.4. CSV List Sorting Examples

The following examples demonstrate the different sorting methods.

2.9.5.4.1. Sorting with \dtlsortlist
Examples 55 & 56 sort the list: sea, sea lion, Sealyham, seal, sealant, sealing wax, which is
defined as:

168

2. Base Commands (datatool—base package)

=

\newcommand{\mylist}{sea, sea lion, Sealyham, seal,
sealant, sealing wax}

The sorted order varies depending on whether or not the sort method is case-sensitive or strips
spaces. (See Example 59 for a UTF-8 example.)
Example 55 uses \dt 1sort1list with \dtlcompare (case-sensitive) and then with

\dtlicompare (case-insensitive). Note that case-sensitive sorting places the uppercase 255
characters before the lowercase characters (so Sealyham comes first with \dt 1 compare and
last with \dt 1icompare). In both cases, “sea lion” is placed before “sealing wax” (that is,
the space is significant).
\dtlsortlist{\mylist}{\dtlcompare}
Case—-sensitive: \DTLformatlist{\mylist}.
\dtlsortlist{\mylist}{\dtlicompare}
Case—-insensitive: \DTLformatlist{\mylist}.
N Example 55: Sorting Lists with \dt Lsort1ist (Case vs No Case) N\EEE
Case-sensitive: Sealyham, sea, sea lion, seal, sealant & sealing wax.
Case-insensitive: sea, sea lion, seal, sealant, sealing wax & Sealyham.

Example 56 uses \dt 1 letterindexcompare (letter sort) and \dt lwordindex- 8
compare (word sort) instead. The order for both is case-insensitive (so Sealyham comes last), b6
but the letter order method puts “sea lion” after “sealing wax” (spaces are discarded, “0” comes
after “n”) whereas the word order method puts “sea lion” before “seal” (the space is significant,

“I” comes after space).
4 Example 56: Sorting Lists with \dt 1sort1ist (Letter vs Word) P X2 A
Letter: sea, seal, sealant, sealing wax, sea lion & Sealyham.
Word: sea, sea lion, seal, sealant, sealing wax & Sealyham.
2.9.5.4.2. Sort Markers
Example 57 demonstrates the use of the comma and parenthetical markers. The simple character 257

code commands \dt 1compare and \dt 1icompare are governed by the skip—cs and
expand-—cs options within the compa re setting. If both options are false, any commands
found in the sort value, including the marker commands, are replaced with the character code
0x0A. If skip—cs=true (and expand—-cs=false) then the marker commands will

169

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 55 Sorting Lists with \dtlsortlist (Case vs No Case)
% Label: "ex:sortlistcharcase"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\mylist}{sea, sea lion, Sealyham, seal, sealant, sealing wax}

\begin{document}
\dtlsortlist{\mylist}{\dtlcompare}
Case-sensitive: \DTLformatlist{\mylist}.

\dtlsortlist{\mylist}{\dtlicompare}
Case-insensitive: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Sorting Lists with \dtlsortlist (Case vs No Case) (source code)
Example document that sorts a comma-separated list using \dtlsortlist with the predefined case-sensitive and case-insensitive character comparison macros (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 56 Sorting Lists with \dtlsortlist (Letter vs Word)
% Label: "ex:sortlistwordletter"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\mylist}{sea, sea lion, Sealyham, seal, sealant, sealing wax}
\begin{document}
\dtlsortlist{\mylist}{\dtlletterindexcompare}
Letter: \DTLformatlist{\mylist}.

\dtlsortlist{\mylist}{\dtlwordindexcompare}
Word: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Sorting Lists with \dtlsortlist (Letter vs Word) (source code)
Example document that sorts a comma-separated list using \dtlsortlist with the predefined word and letter comparison macros (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example055.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example055.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example056.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example056.pdf

2. Base Commands (datatool—base package)

be stripped. If expand—cs=true, then the skip—cs setting is ignored and the marker
commands will expand to their usual meaning (not the meaning provided by the word sort hook).
I've used expand—cs=t rue to ensure the marker commands are expanded.

The example doesn’t use \ dt 1 compare, which would put the elements starting with “Duck”
at the beginning, but would otherwise use the same relative order as \dt 1 icompare.

The word and letter functions use the word sort hook (see §2.9.5.3), which means that the
special marker functions expand to low ASCII control characters, which means that they are
placed before ordinary punctuation and letters. The example list is defined as:

\newcommand{\mylist}{duckling,
Duck\datatoolplacecomma Mallard County,
Duck\datatoolpersoncomma Robbie,
Duck\datatoolsubjectcomma Anatomy of a,
duck\datatoolparenstart (cricket),
duck\datatoolparen{verb},

{Duck, Duck, Goose},
duck soup, duck, duck and dive

}

.

Note that there is one element that has normal commas (“Duck, Duck, Goose”). This requires
braces to hide the commas from the list parser. The other commas are hidden in the marker com-
mands: \datatoolpersoncomma (to signify (surname), (forename)), \datatool-
subject comma (heading inversion), and \datatoolplacecomma (to signify a place).
The above example uses two different ways of marking parenthetical material, \datatool-
parenstart and \datatoolparen. This affects sorting.

Since the lists have long elements and elements with commas, I've used the multicol package to
arrange them in columns and changed the separators used by \DTLformat1list to insert
line breaks. This means that the only commas shown are those within the elements. I've used
grouping to localise the changes, which ensures that each sort starts from the same list.

\renewcommand{\DTLlistformatsep}{\newline}
\renewcommand{\DTLlistformatlastsep}{\newline}
\DTLsetup{compare={expand-cs=true}}
\begin{multicols}{3}
{\dtlsortlist{\mylist}{\dtlicompare}
Case—-insensitive:\newline
\DTLformatlist{\mylist}.}

{\dtlsortlist{\mylist}{\dtlwordindexcompare}
Word sort:\newline
\DTLformatlist{\mylist}.}

170

2. Base Commands (datatool—base package)

\dtlsortlist{\mylist}{\dtlletterindexcompare}
Letter sort:\newline

\DTLformatlist{\mylist}.

\end{multicols}

The simple case-insensitive comparison (\dt 1 i compare) doesn’t recognise any difference
between explicit commas and the commas within the marker commands, so “Duck, Duck, Goose”
is placed between “Duck, Anatomy of a” and “Duck, Mallard County”. Sorting by character
code orders the space character 0x20 before the comma character 0x2C, so “duck soup” is placed
before “Duck, Anatomy of a”.

Note the difference between using \datatoolparen (which inserts 0x1F and discards
its argument) and \datatoolparenstart (which inserts 0x1F). This means that “(verb)”
is omitted from the comparison but “(cricket)” isn’t, so “duck (verb)” ends up before “duck
(cricket)”.

“ Example 57: Sorting Lists with \dt 1sort1list (comma and E LR
parenthetical markers)

Case-insensitive: Word sort: Letter sort:
duck duck duck
duck (cricket) Duck, Robbie Duck, Robbie
duck (verb) Duck, Mallard County Duck, Mallard County
duck and dive Duck, Anatomy of a Duck, Anatomy of a
duck soup duck (verb) duck (verb)
Duck, Anatomy of a duck (cricket) duck (cricket)
Duck, Duck, Goose duck and dive Duck, Duck, Goose
Duck, Mallard County duck soup duck and dive
Duck, Robbie Duck, Duck, Goose duckling
duckling. duckling. duck soup.

Example 58 adapts Example 57 touse \DTLsortwordlist, but there’s no equivalent to

the \dt 1icompare handler: 358

{\DTLsortwordlist{\mylist}{\DTLsortwordhandler}
Word sort:\newline
\DTLformatlist{\mylist}.}

{\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Letter sort:\newline
\DTLformatlist{\mylist}.}

I’ve also supplied my own custom handler that first strips explicit commas and then behaves like
\DTLsortletterhandler:

171

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 57 Sorting Lists with \dtlsortlist (comma and parenthetical markers)
% Label: "ex:sortlistcommas"
% arara: pdflatex
% arara: pdfcrop
\documentclass[10pt]{article}
\pagestyle{empty}
\usepackage{multicol}
\usepackage{datatool-base}
\newcommand{\mylist}{duckling,
 Duck\datatoolplacecomma Mallard County,
 Duck\datatoolpersoncomma Robbie,
 Duck\datatoolsubjectcomma Anatomy of a,
 duck\datatoolparenstart (cricket),
 duck\datatoolparen{verb},
 {Duck, Duck, Goose},
 duck soup, duck, duck and dive
 }
\renewcommand{\DTLlistformatsep}{\newline}
\renewcommand{\DTLlistformatlastsep}{\newline}
\DTLsetup{compare={expand-cs=true}}
\begin{document}
\begin{multicols}{3}
 {\dtlsortlist{\mylist}{\dtlicompare}
 Case-insensitive:\newline
 \DTLformatlist{\mylist}.}

{\dtlsortlist{\mylist}{\dtlwordindexcompare}
 Word sort:\newline
 \DTLformatlist{\mylist}.}

\dtlsortlist{\mylist}{\dtlletterindexcompare}
 Letter sort:\newline
 \DTLformatlist{\mylist}.
 \end{multicols}
\end{document}

Nicola Talbot
Sorting Lists with \dtlsortlist (comma and parenthetical markers) (source code)
Example document that sorts a comma-separated list using \dtlsortlist with the comma and parenthesis marker macros (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example057.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example057.pdf

2. Base Commands (datatool—base package)

\ExplSyntaxOn
\NewDocumentCommand \mycustomhandler { m m }
{
\tl _set:Nn #2 { #1 }
\regex_replace_all:nnN { , } { } #2
\DTLsortletterhandler { #2 } #2

}
\ExplSyntaxOff

\DTLsortwordlist{\mylist}{\mycustomhandler}
Custom sort:\newline
\DTLformatlist{\mylist}.

Note that the position of “duck” has changed. This is because of the boundary marker that’s
appended to all the values. The boundary marker control code is now compared with the comma
and parentheses marker control codes.

W LB &3

4 Example 58: Sorting Lists with \DTLsortwordlist (comma and
parenthetical markers)

Word sort:
Duck, Robbie
Duck, Mallard County
Duck, Anatomy of a
duck
duck (verb)
duck (cricket)
duck and dive
duck soup
Duck, Duck, Goose
duckling.

Letter sort:
Duck, Robbie
Duck, Mallard County
Duck, Anatomy of a
duck
duck (verb)
duck (cricket)
Duck, Duck, Goose
duck and dive
duckling
duck soup.

Custom sort:
Duck, Robbie
Duck, Mallard County
Duck, Anatomy of a
duck
duck (verb)
duck (cricket)
duck and dive
Duck, Duck, Goose
duckling
duck soup.

2.9.5.4.3. UTF-8

Results with \dt 1compare or \dt 1icompare for UTF-8 values are less satisfactory.
The list for examples 59, 60 & 61 is defined as:

=

\newcommand{\mylist}

{elk, Ethelstan, Arnulf, elf,résumé,
Osléac, élan, Aeolus, resume, elephant,
Valkyrie, Zulu, elbow, Adelolf, rose}

zygote, élite,

172

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 58 Sorting Lists with \DTLsortwordlist (comma and parenthetical markers)
% Label: "ex:wordsortlistcommas"
% arara: pdflatex
% arara: pdfcrop
\documentclass[10pt]{article}
\pagestyle{empty}
\usepackage{multicol}
\usepackage{datatool-base}
\newcommand{\mylist}{duckling,
 Duck\datatoolplacecomma Mallard County,
 Duck\datatoolpersoncomma Robbie,
 Duck\datatoolsubjectcomma Anatomy of a,
 duck\datatoolparenstart (cricket),
 duck\datatoolparen{verb},
 {Duck, Duck, Goose},
 duck soup, duck, duck and dive
 }
\renewcommand{\DTLlistformatsep}{\newline}
\renewcommand{\DTLlistformatlastsep}{\newline}
\ExplSyntaxOn
\NewDocumentCommand \mycustomhandler { m m }
 {
 \tl_set:Nn #2 { #1 }
 \regex_replace_all:nnN { , } { } #2
 \DTLsortletterhandler { #2 } #2
 }
 \ExplSyntaxOff
\begin{document}
\begin{multicols}{3}
{\DTLsortwordlist{\mylist}{\DTLsortwordhandler}
Word sort:\newline
\DTLformatlist{\mylist}.}

{\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Letter sort:\newline
\DTLformatlist{\mylist}.}

\DTLsortwordlist{\mylist}{\mycustomhandler} Custom sort:\newline
\DTLformatlist{\mylist}. \end{multicols}
\end{document}

Nicola Talbot
Sorting Lists with \DTLsortwordlist (comma and parenthetical markers) (source code)
Example document that sorts a comma-separated list using \DTLsortwordlist with the comma and parenthesis marker macros (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example058.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example058.pdf

2. Base Commands (datatool—base package)

XAISTEX and LualATEX both natively support UTF-8. Modern pdfISTEX now defaults to UTF-8
but if you want to use inputenc remember to load it before datatool—base:

=

\usepackage [utf8] {inputenc}
\usepackage{datatool-base}

Example 59 sorts the lists with \dt 1 sort 11 st as for the earlier Example 55: @50

\dtlsortlist{\mylist}{\dtlcompare}
Case—-sensitive: \DTLformatlist{\mylist}.

\dtlsortlist{\mylist}{\dtlicompare}
Case—-insensitive: \DTLformatlist{\mylist}.

Note that the UTF-8 characters are all placed after the Basic Latin characters, so “ZAthelstan”
is placed after “zygote” for both the case-sensitive and case-insensitive comparators. However,
“/Ethelstan” and “Osldc” come before “élan” and “élite” for the case-sensitive sort. Whereas for
the case-insensitive sort, “Oslac” comes after “élite”.

N Example 59: Sorting Lists with \dt 1sort1ist and UTF-8 E LR

Case-sensitive: Adelolf, Aeolus, Arnulf, Valkyrie, Zulu, elbow, elephant,
elf, elk, resume, rose, résumé, zygote, Athelstan, ()Slé(:, élan & élite.

Case-insensitive: Adelolf, Aeolus, Arnulf, elbow, elephant, elf, elk, re-
sume, rose, résumé, Valkyrie, Zulu, zygote, Athelstan, élan, élite & Osléc.

Note that because \dt 1letterindexcompareand \dt lwordindexcompare
both internally use \DTLsortwordhandler, they are able to handle UTF-8 in the same
way as using \DTLsortwordlist with the handler macros described in §2.9.5.2. However,
it’s more efficient to use \DTLsortwordlist to avoid repeatedly pre-processing the values.

Example 60 adapts Example 59 to use \DTLsortwordlist instead of \dtlsort- B60
list.

\DTLsortwordlist{\mylist}{\DTLsortlettercasehandler}
Case-sensitive sort: \DTLformatlist{\mylist}.

\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Case—-insensitive sort: \DTLformatlist{\mylist}.

Note that the UTF-8 characters are still listed after the Basic Latin characters when there is no

173

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 59 Sorting Lists with \dtlsortlist and UTF-8
% Label: "ex:sortlistutf8"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[utf8]{inputenc}
\usepackage{datatool-base}
\newcommand{\mylist}{elk, Æthelstan, Arnulf, elf,résumé,
 Óslác, élan, Aeolus, resume, elephant, zygote, élite, Valkyrie,
 Zulu, elbow, Adelolf, rose}
\begin{document}
\dtlsortlist{\mylist}{\dtlcompare}
Case-sensitive: \DTLformatlist{\mylist}.

\dtlsortlist{\mylist}{\dtlicompare}
Case-insensitive: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Sorting Lists with \dtlsortlist and UTF-8 (source code)
Example document that sorts a comma-separated list using \dtlsortlist with UTF-8 characters (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example059.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example059.pdf

2. Base Commands (datatool—base package)

localisation support. So the result is the same as before.

4 Example 60: Sorting Lists with \DTLsortwordlist and UTF-8 and NEFE
No Localisation Support
Case-sensitive: Adelolf, Aeolus, Arnulf, Valkyrie, Zulu, elbow, elephant,
elf, elk, resume, rose, résumé, zygote, Athelstan, Oslzic, élan & élite.
Case-insensitive: Adelolf, Aeolus, Arnulf, elbow, elephant, elf, elk, re-
sume, rose, résumé, Valkyrie, Zulu, zygote, Athelstan, élan, élite & Osléc.

Example 61 is a minor modication of Example 59, but it requires datatool—english to be installed.

This can then be loaded via the tracklang interface (for example, with the 1ocales option)
which ensures that the localisation support provided by datatool—english is used. Remember to
include the region if currency support is also required. For example:

=

[\documentclass[en-GB]{article}

Or:

Ei

\usepackage[locales=en-GB] {datatool-base}

This produces a better order because the datatool—-english—-ut £8. 1df file substitutes
common UTF-8 characters for the closest ASCII equivalent (“E” for “AE”, “O” for “O”, “4” for
“a”, and “€” for “e”). This means that “Athelstan” is now at the start before “Adelolf” (because
“AE” comes before “Ad”) for the case-sensitive sort but between “Aeolus” and “Arnulf” for the
case-insensitive sort.

7 Example 61: Sorting Lists with \DTLsortwordlist and UTF-8and QB &2 XA
Localisation Support

Case-sensitive: Athelstan, Adelolf, Aeolus, Arnulf, Osléc, Valkyrie, Zulu,
élan, elbow, elephant, elf, élite, elk, resume, résumé, rose and zygote.

Case-insensitive: Adelolf, Aeolus, Athelstan, Arnulf, élan, elbow, ele-
phant, elf, élite, elk, Osléc, resume, résumé, rose, Valkyrie, Zulu and zygote.

Note that withdatatool-english—ut£8.1df, “résumé” is converted into “resume”,
which means “résumé” has an identical sort value to “resume”. With \DTLsortwordlist,
the relative ordering of these duplicates is then determined by \dt1fallbackaction,
which by default compares the original values with \DTL1fstringgt. Since the unstarred
\DTLifstringgt internally uses \dt 1 compare without localisation, this places “re-
sume” before “résumé”.

174

D61

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 60 Sorting Lists with \DTLsortwordlist and UTF-8 and No Localisation Support
% Label: "ex:sortwordlistutf8"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[utf8]{inputenc}
\usepackage{datatool-base}
\newcommand{\mylist}{elk, Æthelstan, Arnulf, elf,résumé, Óslác, élan, Aeolus, resume, elephant, zygote, élite, Valkyrie, Zulu, elbow, Adelolf, rose}
\begin{document}
\DTLsortwordlist{\mylist}{\DTLsortlettercasehandler}
Case-sensitive: \DTLformatlist{\mylist}.

\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Case-insensitive: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Sorting Lists with \DTLsortwordlist and UTF-8 and No Localisation Support (source code)
Example document that sorts a comma-separated list using \DTLsortwordlist with UTF-8 characters and no locale (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 61 Sorting Lists with \DTLsortwordlist and UTF-8 and Localisation Support
% Label: "ex:sortlistutf8locale"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[utf8]{inputenc}
\usepackage[locales={en-GB}]{datatool-base}
\newcommand{\mylist}{elk, Æthelstan, Arnulf, elf,résumé, Óslác, élan, Aeolus, resume, elephant, zygote, élite, Valkyrie, Zulu, elbow, Adelolf, rose}
\begin{document}
\DTLsortwordlist{\mylist}{\DTLsortlettercasehandler}
Case-sensitive: \DTLformatlist{\mylist}.

\DTLsortwordlist{\mylist}{\DTLsortletterhandler}
Case-insensitive: \DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Sorting Lists with \DTLsortwordlist and UTF-8 and Localisation Support (source code)
Example document that sorts a comma-separated list using \DTLsortwordlist with UTF-8 characters and localisation support (datatool-english must also be installed) (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example060.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example060.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example061.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example061.pdf

2. Base Commands (datatool—base package)

Remember that \dt 1sortlist doesn’tuse \dt1lfallbackaction so “résumé”
and “resume” are deemed equivalent with \dt lwordindexcompare \dtlletter-
indexcompare so the result with \dt 1sort1ist would retain their original relative
order.

2.9.5.4.4. Roman Numerals

Example 62 has a list of names with Roman numerals, such as is used in the names of monarchs.
In the first case, the numerals are explicitly included in the list. In the second case a command is
provided that has a different definition in the hook.

(2162

\newcommand{\mylist}{John XVI,John VI,

John XIX, John IX, John IV,John VII, John V}
\DTLsortwordlist{\mylist}{\DTLsortwordhandler}
\DTLformatlist\mylist.

\newcommand{\Ord} [1] {\MakeUppercase{\romannumeral #1}}
\dtlSortWordCommands{\renewcommand\Ord[1] {\twoRdigits{#1}}
}

\renewcommand\mylist{John \Ord{16},John \Ord{6},

John \Ord{19}, John \Ord{9}, John \Ord{4},John \Ord{7},
John \Ord{5}}
\DTLsortwordlist{\mylist}{\DTLsortwordhandler}
\DTLformatlist\mylist.

Ordinarily this custom \Ord command will convert its numeric argument into an uppercase
Roman numeral (for example, \Ord{ 16 } would expand to “XVI”), but when sorting it expands
to a number instead (for example, \Ord{ 16} would expand to “16”).

Note the use of \two@digits that zero-pads the number to ensure that it has at least two
digits (for example, \Ord{ 6 } would expand to “06”). This is because lexicographic ordering
rather than numeric ordering is used (otherwise “16” would come before “6”). If large ordinals
are expected then extra padding would be required (which can be obtained with \dt 1pad-
leadingzeros).

S Example 62: Sort Word Hook (Roman Numerals) %@ KSR AL

John IV, John IX, John V, John VI, John VII, John XIX & John XVI.
John IV, John V, John VI, John VII, John IX, John XVI & John XIX.

175

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 62 Sort Word Hook (Roman Numerals)
% Label: "ex:sortwordhook"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool-base}
\newcommand{\mylist}{John XVI,John VI, John XIX, John IX, John IV,John VII, John V}
\begin{document}
\DTLsortwordlist{\mylist}{\DTLsortwordhandler}
\DTLformatlist{\mylist}.

\newcommand{\Ord}[1]{\MakeUppercase{\romannumeral #1}}
\dtlSortWordCommands{\renewcommand\Ord[1]{\two@digits{#1}}}
\renewcommand{\mylist}{John \Ord{16},John \Ord{6},
John \Ord{19}, John \Ord{9}, John \Ord{4},John \Ord{7},
John \Ord{5}}
\DTLsortwordlist{\mylist}{\DTLsortwordhandler}
\DTLformatlist{\mylist}.
\end{document}

Nicola Talbot
Sort Word Hook (Roman Numerals) (source code)
Example document using the sort hook to alter sort values (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example062.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example062.pdf

3. Databases (datatool package)

The datatool package provides a means of creating and loading databases. Once a database
has been created (either with supplied document commands or by parsing an external file), it is
possible to iterate through each row of data, to make it easier to perform repetitive actions, such
as mail merging.

[i
=
Whilst TeX is an excellent typesetting language, it is not designed as a database management

system, and attempting to use it as such is like trying to fasten a screw with a knife instead of
a screwdriver: it can be done, but requires great care and is more time consuming. Version
2.0 of the datatool package switched to a completely different method of storing the data to
previous versions.® Version 3.0 has switched to using IXIEX3 commands internally for some
of the database functions. As a result, the code is much more efficient. However, large
databases and complex operations will still slow the time taken to process your document.
Therefore, if you can, it is better to do the complex operations using whatever system
created the data in the first place.

“Many thanks to Morten Hggholm for providing the new code.

7

Some advanced commands for accessing database information are described in §3.16, but
using TEX is nowhere near as efficient as, say, using a SQL database, so don’t expect too much
from this package.

I’'ve written a Java helper application to accompany datatool called datatooltk. The
installer datatooltk—installer. jar!is available on CTAN.? The application will
allow you to edit DTLTEX (see §3.15.1.2) and DBTEX (see §3.15.1.3) files saved using \DTL-
write in a graphical interface or import data from a SQL database, a CSV file or a probsoln
dataset.

X

\usepackage [(options)] {datatool}

The datatool package automatically loads the datatool—base package, so all commands provided
by datatool—base are available. The commands provided by datatool relate to databases.

The supplementary packages dataplot, datapie, databar, databib and datagidx automatically
load datatool and provide additional commands that act on databases. In the case of databib and
datagidx, the databases have a specific structure. The dataplot, datapie and databar packages
provide commands to visually represent numeric data stored in a database.

Imirrors.ctan.org/support/datatooltk/datatooltk—installer.jar

ctan.org/pkg/datatooltk

176

http://mirrors.ctan.org/support/datatooltk/datatooltk-installer.jar
https://ctan.org/pkg/datatooltk
http://mirrors.ctan.org/support/datatooltk/datatooltk-installer.jar
https://ctan.org/pkg/datatooltk

3. Databases (datatool package)

3.1. Options

All options provided by datatool—base (see §2) may also be passed to datatool. Additionally, the
following options are also available, some of which can only be passed as a package option, some
of which can only be used in \DTLset up, and some may be used in either context.

-—
—

=
default—-name=(db-name) initial: untitled

May be used either as a package option or in \DTLset up, this sets the default database name
for commands where the name is optional (such as \DTLaction and \DTLwrite). Note
that the argument is expanded when the option is set. For example:

\newcommand{ \mydatacmd} {mydata}
\DTLsetup{default-name=\mydatacmd}
\renewcommand{\mydatacmd}{otherdata}

In the above, the default database name remains “mydata” after \mydat acmd is redefined.
[=
Gl
delimiter=(char) initial: "

This option may only be used as a package option and sets the delimiter used in CSV and TSV
files. The value (char) must be a single token, and is used in the file to delimit a value which may
contain the separator character to hide the separator from the parser.

After the package has loaded, you can use \DTLsetdelimiter to set the delimiter.
Alternatively, you can use the delimiter setting within the optional argument of \DTL-
read or \DTLwr ite or within the value of the i 0 option in \DTLset up. For example:

[e)

% Package option:
\usepackage[delimiter={"'}]{datatool}

% Change default:

\DTLsetdelimiter{|}

% Or:

\DTLsetup{io={delimiter={|}}}

% Override the default just for this file:
\DTLread[format=csv,delimiter={"}] {myfile}

o8

new-value—expand=(boolean) default: true; initial: false

This boolean option determines whether or not new values should be expanded before they are
added to a database. This also includes data read from CSV and TSV files (see §3.15.1.1), and

177

3. Databases (datatool package)

DTLTEX files (see §3.15.1.2), but not DBTEX files (see §3.15.1.3).

[©

=
With new-value—-expand=false, you can still expand individual values using the
expand-value or expand—-once—value when adding an entry to a database

with the new ent ry action.

If new—value—-expand=true, protected expansion is applied to the value, otherwise
no expansion is performed. For example:

=

\newcommand{\gt}[1]{ "#1'"'}
\DTLsetup{new-value-expand=true}
\DTLnewdbentry{mydata}{Name}{Zo& \gt{Stripes} Zebra}

In the above, the entry will be added to the database as Zo& ~ " Stripes'' Zebra. This
means that if the definition of \ gt is later changed, it won’t affect this entry. In this particular case,
it’s better to have the default new—value—expand=false setting to prevent expansion
(or use robust commands).

The new—value—expand=true option is useful if you are programmatically creating
entries with placeholder commands, which need to be expanded. Example 63 demonstrates the

difference:

\makeatletter
\DTLsetup{new-value-expand=false}
\DTLnewdb{test1}
\DTLaddcolumnwithheader{testl}{entry}
{Entry (Not Expanded) }
\Q@for\myentry:=ant, bee, duck, zebra\do{
\DTLnewrow{test1}
\DTLnewdbentry{testl}{entry}{\myentry}
t
\DTLsetup{new-value-expand=true}
\DTLnewdb{test2}
\DTLaddcolumnwithheader{testl}{entry}
{Entry (Expanded) }
\Q@for\myentry:=ant, bee, duck, zebra\do{
\DTLnewrow{test2}
\DTLnewdbentry{test2}{entry}{\myentry}
t
\makeatother
\renewcommand{\myentry}{Unknown! }

178

63

3. Databases (datatool package)

\DTLdisplaydb{testl}
\DTLdisplaydb{test2}

In the first case, the placeholder command ends up in the database entry, which means it’s
susceptible to the changing definition of that command. This means that every entry ends up with
the same value. (If I hadn’t redefined \myent ry after the \ @ for loop it would have resulted
in the “Undefined control sequence” error as at the end of the loop \myentryis \@nil,

which is an undefined marker).

In the second case, the placeholder command \myent ry is expanded before the entry is

added to the database.

(A
N Example 63: New Value Expansion \EEE
Entry (Not Expanded) Entry (Expanded)
Unknown! ant
Unknown! bee
Unknown! duck
Unknown! zebra
This setting may also be switched on with:
X
\dtlexpandnewvalue
and switched off with:
b §
\dt lnoexpandnewvalue

Note that the I/O expand option affects this setting. For example:

\DTLsetup{ io={expand=protected} }

This is equivalent to:

\DTLsetup/{
io={expand=protected},
new—-value—-expand=true

}

This means that:

179

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 63 New Value Expansion
% Label: "ex:newvalueexpand"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\makeatletter
\DTLsetup{new-value-expand=false}
\DTLnewdb{test1}
\DTLaddcolumnwithheader{test1}{entry}{Entry (Not Expanded)}
\@for\myentry:=ant,bee,duck,zebra\do{
 \DTLnewrow{test1}
 \DTLnewdbentry{test1}{entry}{\myentry}
}

\DTLsetup{new-value-expand=true}
\DTLnewdb{test2}
\DTLaddcolumnwithheader{test2}{entry}{Entry (Expanded)}
\@for\myentry:=ant,bee,duck,zebra\do{
 \DTLnewrow{test2}
 \DTLnewdbentry{test2}{entry}{\myentry}
}
\makeatother
\renewcommand{\myentry}{Unknown!}
\begin{document}
\DTLdisplaydb{test1} \DTLdisplaydb{test2}
\end{document}

Nicola Talbot
New Value Expansion (source code)
Example document illustrating the new-value-expand setting (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example063.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example063.pdf

3. Databases (datatool package)

&

\DTLread[expand=protected] {filename}

1s a convenient shortcut for:

{\DTLsetup{new-value—-expand=true}% local change
\DTLread{filename}
% where the file contains BEIgX commands

—~

(O

new-value-trim=(boolean) default: £ rue; inifial: true

This boolean option determines whether or not new values should have leading and trailing spaces
trimmed before they are added to a database. Note that this option is independent of the t rim
option provided by the base package.

g

Ungrouped values added with the new ent ry action will always be trimmed due to the
automated trimming of the (key)=(value) interface. However, if you specifically want
leading or trailing spaces, you will need both \DTLsetup{new-value-trim
=false} and \DTLaction[value={ (value) },..]1{new entry}
(that is, group the value and put the spaces inside the group).

Example 64 has the following:

,
\DTLnewdb{mydata}
\DTLnewrow{mydata}
\DTLsetup{new-value-trim=true}
\DTLnewdbentry{mydata}{Columnl}{ valuel }
\DTLnewrow{mydata}
\DTLsetup{new-value-trim=false}
\DTLnewdbentry{mydata}{Columnl}{ value2 }
% compare with \DTLaction:
\DTLsetup{default-name=mydata}
\DTLaction{new row}
\DTLaction[column=1,value= value3]{new entry}
\DTLaction{new row}
\DTLaction[column=1,value={ valued }]{new entry}

S04

The spaces can be shown by modifying the string formatting command to enclose the value in
double-quotes:

180

3. Databases (datatool package)

\renewcommand{\dtlstringformat} [1]{ " #1'"'}
\DTLdisplaydb{mydata}
 Example 64: Trimming New Values N\EFIE
Columnl
“valuel”
“ value2 ”
“valued”
“ valued4 ”
| ==
|
io={(key=value list) }

This option can’t be used as a package option. The value is a (key)=(value) list of I/O settings
for use with \DTLread and \DTLwrite, which are described in §3.15.2.

-—
—

=
separator=(char) initial: ,

This option may only be used as a package option and sets the separator used in CSV files. The
value (char) must be a single token, and is used in a CSV file to separate columns within each
row. After the package has loaded, you can use \DTLset separator to set the separator.
Alternatively, you can use the separator setting within the optional argument of \DTL-
reador \DTLwrite or within the value of i 0 optionin \DTLsetup.

Note that the tab character is normally treated as a space by IKIgX. For TSV files, the tab
character will need to have its category code changed to distinguish it from a space. This can be
done with format=t sv (in the i o option) or with \DTLsettabseparator.

Examples:

[e)

% Set the default separator to ;
\usepackage[separator=;] {datatool}

% Set the default separator to |

\DTLsetup{ io={separator=|} }

% Load a CSV file with the separator
\DTLread|[format=csv, separator={:}]{file-1}
% Load a TSV file with the tab separator

\DTLread[format=tsv]{file-2}

181

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 64 Trimming New Values
% Label: "ex:newvaluetrim"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLnewdb{mydata}
\DTLnewrow{mydata}
\DTLsetup{new-value-trim=true}
\DTLnewdbentry{mydata}{Column1}{ value1 }
\DTLnewrow{mydata}
\DTLsetup{new-value-trim=false}
\DTLnewdbentry{mydata}{Column1}{ value2 }
% compare with \DTLaction:
\DTLsetup{default-name=mydata}
\DTLaction{new row}
\DTLaction[column=1,value= value3]{new entry}
\DTLaction{new row}
\DTLaction[column=1,value={ value4 }]{new entry}
\begin{document}
% display the data with the values quoted:
\renewcommand{\dtlstringformat}[1]{``#1''}
\DTLdisplaydb{mydata}
\end{document}

Nicola Talbot
Trimming New Values (source code)
Example document illustrating the new-value-trim setting (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example064.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example064.pdf

3. Databases (datatool package)

[

= |
store—datum=(boolean) default: true; initial: false

If true, new values will be stored as a datum item in the database (see §2.2). This means that
each element doesn’t need to be repeatedly parsed to determine whether it is numeric or what its
numeric value is. If you want to save a database with the datum markup retained, you will need
touse format=dbtex—3, as that’s the only format to support datum items.

o

The st ore—datum option is useful if your document requires a lot of numeric compu-
tations (for example, aggregating data or plotting charts). However, it makes looking up
rows by unique labels harder, so the setting is best left off with datagidx and databib.

3.2. Example Databases

There are a number of examples in this user guide that illustrate database commands on sample
data. This section describes the sample data to provide a convenient point of reference for
each example. Some databases are constructed within the example document preamble using
\DTLact ion. Some databases are loaded from a CSV file, which is the more common way
of loading data, but the self-contained example documents need to create the required CSV file.
This is done using the filecontents environment, except for the examples with a TSV file, which
needs to have the tab character preserved.

3.2.1. Student Marks (CSV)

The “marks” database consists of columns with the labels: Surname, Forename, Student-
No (a unique identifier, which disambiguates between the two students with the same name), and
columns with the marks for each assignment.

(o]

—

This sample database is used in the following examples:
e 67. Select row action;

* 68. Row aggregate actions;

76. Referencing Rows from Displayed Data;
* 77. Inserting a Column at the Start of Displayed Data;

» 82. Display Data in a Stripy Table;

84. Display Two Fields in One Column;

182

3. Databases (datatool package)

 85. Displaying Data with Calculations, Filtering and Row Highlighting;
o 87. Iterating Over Rows with \DTLmapdata to Append a Column;
* 89. Using \DTLforeach to Display a Stripy Table;

¢ 90. Displaying Data with Row Numbers Using \DTLforeach;

* 92. Editing a Database with \DTLforeach;

* 93. Loops and Alignment;

* 105. Sorting Data Using \DTLsortdata by Descending Numeric and Ascend-
ing String Values;

e 128. Multi Bar Chart;
e 129. Multi Bar Chart (Action ‘multibar chart’);

 138. Multi Bar Chart With Group Labels;

* 148. Multi Bar Chart With a Legend.

. 7

The “marks” database is read in from the file studentmarks . csv, which contains the
following content:

Surname, Forename, StudentNo,Assignl, Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown", Jane, 102647, 75,84, 80

"Brown",Jane, 102646,64,92,79

"Brown",Andy, 103569,42,52, 54
"Adams", Zo&, 105987, 52,48,57
"Brady",Roger, 106872, 68,60, 62

"Verdon",Clare, 104356,45,50, 48

The data can be loaded with:

=

\DTLread[name=marks] {studentmarks.csv}

Alternatively, you can setup the default database name first, to avoid having to repeatedly specify
it. Since the data contains numeric values that may need to be parsed, it’s also useful to switch on
the st ore—datum option to reduce parsing:

183

3. Databases (datatool package)

\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}

Note that this assumes the default settings for \DTLread:

\DTLread[format=csv, csv—-content=literal]
{studentmarks.csv}

This is only a short database for compactness. A similar, but longer database, is the students
scores database.

3.2.2. Student Scores

The “scores” database consists of the columns: forename (with the title “First Name”),
surname (with the title “Surname”), regnum (with the title “Student Number”), gender
(which may be a recognised gender label, see §9.4), parent (the student’s guardian, parent or
parents), score and award. The award column contains currency values, and the score
column contains decimal values. The regnum column consists of a unique identifier. This
happens to be numeric for this data, but may not necessarily be numeric for a real-world database.
It’s included in the example data to demonstrate querying by a unique value and the data type
isn’t relevant for that.

(@]

;‘

This sample database is used in the following examples:
» 80. Display Two Database Rows Per Tabular Row;

 81. Display Two Database Rows Per Tabular Row (Top to Bottom);

83. Display Stripy Two Database Rows Per Tabular Row;

86. Iterating Over Rows with \DTLmapdat a and DTLenvmapdata;

193. Mail Merging.

J

Since the data contains numeric values that may need to be parsed, it’s useful to switch on
the st ore—datum option to reduce parsing. The database is constructed in the preamble of
example documents as follows:

=

\DTLsetup{store-datum, default-name=scores}

[e)

% define database:

184

3. Databases (datatool package)

\DTLaction{new}

% add columns in desired order:

\DTLaction[key=forename, value={First Name}]{add column}
\DTLaction[key=surname, value={Surname}]{add column}
\DTLaction[key=regnum, value={Student Number}]{add column}
\DTLaction[key=gender] {add column}
\DTLaction[key=parent] {add column}

\DTLaction[key=score,value={Score (\%)}]{add column}

L e T e B e T e B |

\DTLaction[key=award] {add column}
% 1st row:
\DTLaction]|
assign={forename = Jane, surname = Brown,
regnum = 102647, score = 75, award = {\$1,830},
gender = F, parent = {Ms Brown}
}

] {new row}
% 2nd row:
\DTLaction]|
assign={forename = John, surname = {Smith, Jr},
regnum = 102689, score = 68, award = {\$1,560},
gender = M, parent = {Mr and Mrs Smith}
}
] {new row}
% 3rd row:
\

DTLaction|[

assign={forename = Quinn, surname = O Coinn,
regnum = 103294, score = 91, award = {\$3,280},
parent = {Mr and Mrs O Coinn}

}

]{new row}

% 4th row:

\DTLaction|

assign={forename = Evelyn, surname = O'Leary,
regnum = 107569, score = 81.5, award = {\$2,460},
gender = n, parent = {Prof O'Leary}
}

]{new row}

% 5th row:

\DTLaction]|

assign={forename = Zo&, surname = Adams,
regnum = 105987, score = 52, award = {\$1,250},
gender = f, parent = {Mr and Mrs Adams}

185

3. Databases (datatool package)

\DTLaction|

assign={forename = Clare, surname = Vernon,
regnum = 104356, score = 45, award = {\$500},
gender = Female, parent = {Mr Vernon}

}

]{new row}

% 7th row:

\DTLaction]|

assign={forename = Roger, surname = Brady,
regnum = 106872, score = 58, award = {\$1,350},

gender = m, parent = {Dr Brady and Dr Mady}
}
l]{new row}
% 8th row:
\DTLaction |
assign={
forename = Andy, surname = Brown, regnum = 103569,
score = 42, award = {\$980},
gender = male, parent = {Mr Brown and Prof Sepia}
}

] {new row}

If you prefer a CSV file, the nearest equivalent would be:

forename, surname, regnum, gender, parent, score, award
Jane, Brown, 102647,F,Ms Brown, 75,"$1,830"

John, "Smith, Jr",102689,M,Mr and Mrs Smith, 68,"$1,560"
Quinn, O Coinn, 103294, ,Mrs and Mrs O Coinn, 91,"$3,280"
Evelyn, "O'Leary",n,Prof O'Leary,107569,81.5,"$2,460"
Zzoé&,Adams, 105987, £,Mr and Mrs Adams,52,"$1,250"
Clare,Vernon, 104356, £,Mr Vernon, 45, "S$500"

Roger,Brady, 106872, m,Dr Brady and Dr Mady,58,"$1,350"
Andy, Brown, 103569, m,Mr Brown and Prof Sepia,42,"$980"

However, the CSV format doesn’t support missing mid-row values so the missing gender field for
Quinn is now empty. This will make a difference if you display the data or test for null but not
empty (see §3.10).

If the CSV file is called student scores. csv, then it can be loaded with:

\DTLsetup{store-datum, default-name=scores}
\DTLread[format=csv, csv-content=literal,
headers={ First Name, Surname, Student Number,

[o)

gender, parent, Score (\%), award }

186

3. Databases (datatool package)

] {studentscores.csv}

Note that if the dollar symbols ($) in the file are replaced with ISTEX markup (\ $), then you will
need csv—content=texinstead of csv—content=1iteral.

3.2.3. Customers

The “customers” database consists of columns with the labels: Td (a unique integer identifier,

which happens to match the data row number but this isn’t guaranteed), Organisation,

Surname, Forename, Email, and Age (another numeric column, which could potentially

be decimal but only has integer numbers or missing items). There are some empty entries in the

Organisation, Email and Age columns.

r ! i)
This sample database is used in the following examples:

* 94. CSV Data Containing Empty Cells and Missing Final Cells;
* 95. Constructed Data With Missing (Null) Values;

* 96. Display Data With Missing (Null) Values Shown as a Dash;
» 97. Iterating Through Data with Empty or Missing Values;

» 08. Editing a Row of Data;

* 99. Sorting CSV Data Using \DTLsortdata by Organisation, Surname and
Forename With No Replacements;

* 100. Sorting CSV Data Using \DTLsortdata by Organisation, Surname and
Forename With Replacements;

* 101. Sorting Data Using \DTLsortdata With Replacements (Null vs Empty);
* 102. Sorting CSV Data Using \DTLsortdata With Language Support;

* 103. Sorting Data Using \DTLsortdata on Age then Surname (Empty or Null
Values);

e 104. Sorting Data Using \DTLsortdata on Age then Surname (No Empty
Sort Values);

* 106. Sorting CSV Data Using \dt 1 sort by Organisation, Surname and Fore-
name With Replacements;

* 111. Loading and Saving Data (Be Careful of Category Codes).

187

3. Databases (datatool package)

The customers database can be read in from the file cust omers . csv, which contains the
following content:

Id,Organisation, Surname, Forename, Email, Age
1,,Parrot,Polly, pplexample.com, 42

2,University of Somewhere,Canary,Mabel,mclexample.com
3,University of Somewhere, Zebra, Zo0é&, zz@example.com, 21
4,%Zinnia Florestry,Arara, José, jalexample.com, 42

5, ,Duck,Dickie, ddlexample.com,

6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium, Canary,Fred, fc@example.com, 19

8,Newt Fellowship,,Molgina,m@example.com

9, ,Mander, Sally

10,Elite Emporium,Fant,Eli,ef@example.com, 101

The data can be loaded with:

=

\DTLread[name=customers] {customers.csv}

Alternatively, you can setup the default database name first, to avoid having to repeatedly specify
it. Since the data contains numeric values that may need to be parsed, it’s also useful to switch on
the st ore—datum option to reduce parsing.

=

\DTLsetup{store-datum, default-name=customers}
\DTLread{customers.csv}

Note that this assumes the default settings for \DTLread:

\DTLread[format=csv, csv—-content=literal]
{customers.csv}

Null values can only occur with data loaded from a CSV file when final columns are missing. In
this case, the Age column is the last column and is not set in some rows. For example, there’s no
comma following Lizzie so Lizzie’s age will be null. Compare this with the previous row where
Dickie Duck has no age but there is a trailing comma. This will set Dickie Duck’s age to empty.
In the case of Sally Mander, both the Email and Age columns are missing. Since they are final
columns both the email and age are null.

This data may also be defined within the document. Note that there is a slight difference here
as most of the missing values are now entirely omitted from the database, so any reference to
them will result in a null value rather than an empty value. However, there is one case where
the Organisation column has been set to empty rather then being omitted, so a reference to that
element will result in an empty value not a null value.

188

3. Databases (datatool package)

\DTLsetup{default-name=customers}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Td] {add column}
\DTLaction[key=Organisation]{add column}
\DTLaction[key=Surname] {add column}
\DTLaction[key=Forename] {add column}
\DTLaction[key=Email] {add column}
\DTLaction[key=Age] {add column}
% 1st row:
\DTLaction|

assign={

% Organisation not set

Id = 1, Email = pp@example.com,

Surname = {Parrot}, Forename = {Polly}, Age
}
] {new row}
% 2nd row:
\DTLaction]|

assign={

% Age not set

Id = 2, Organisation = {University of Somew
Email = mc@example.com, Surname = {Canary},
Forename = {Mabel}
}

] {new row}
% 3rd row:
\

DTLaction|
assign={

Id = 3, Organisation = {University of Somew
Age = 21, Email = zz@example.com, Surname =
Forename = {Zoé€}

}

] {new row}
% 4th row:
\

DTLaction|
assign={

Id = 4, Organisation = {Zinnia Florestry},
Fmail = ja@example.com, Surname = {Ararat},
Forename = {José}

189

= 42

here},

here},

{Zebra},

Age =

42,

3. Databases (datatool package)

\DTLaction]|
assign={
% Organisation and Age not set
Id = 5, Surname = {Duck}, Forename = {Dickie},
Fmail = dd@example.com
}
] {new row}
% 6th row:
\DTLaction]|
assign={

% Age not set

= {Newt Fellowship},

Id = 6, Organisation =
Email = lalexample.com, Surname = {Axolotl},

Forename = {Lizzie}
}

]{new row}

% 7th row:
\DTLaction]|

assign={
Id = 7, Organisation = {Avian Emporium}, Age =19,
Email = fclexample.com, Surname = {Canary},
Forename = {Fred}

}
l]{new row}
% 8th row:
\DTLaction |
assign={
% Age and Surname not set
Id = 8, Organisation = {Newt Fellowship},
Fmail = m@example.com, Forename = {Molgina}
}
] {new row}
% 9th row:
\DTLaction]|
assign={
% Organisation empty and Age and Email not set

o

Id = 9, Organisation = {},
Surname = {Mander}, Forename = {Sally}

}

] {new row}
% 10th row:
\DTLaction]|
assign={
Id = 10, Organisation
Email = eflexample.com,

= {Elite Emporium}, Age = 101,

Surname = {Fant},

190

3. Databases (datatool package)

Forename = {Eli}

}

] {new row}

3.2.4. Product List

The “product” database consists of the columns: Title, Author, Format (hardback,
paperback or ebook), Quant ity (integer), Price (decimal), and Notes (which is null in
some rows and is only created by the first row to add an item to it).

[©

r =
This sample database is used in the following examples:

» 72. Display Data with Custom Alignment;

» 73. Display Data in a Table Omitting Columns;

* 74. Display Data in a Table with Named Columns;
 75. Display Data in a Table with Filtered Rows;

» 78. Display Data in a Table with an Extra Column;
 88. Display Data in a Table with \DTLforeach;

* 91. Using \DTLforeach to Display Data in a Table with a Running Total
Column.

Since the data contains numeric values that may need to be parsed, it’s also useful to switch on
the st ore—datum option to reduce parsing. The database is constructed in the preamble of

example documents as follows:

\DTLsetup{store-datum, default-name=products}
% define database:

\DTLaction{new}

% add columns in desired order:
\DTLaction[key=Title] {add column}
\DTLaction[key=Author] {add column}

\DTLaction[key=Format] {add column}

\DTLaction[key=Quantity] {add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1lst row:

\DTLaction|

191

assign={
Title
Author =
Format =

{T
{

}

{new row}
2nd row:
\DTLaction |
assign={
Title =
Author =
Format

%

}

{new row}

}

]
\

Quantity = 3,

Quantity = 5,

Quantity = 3,

3. Databases (datatool package)

he Adventures of Duck and Goose},
Sir Quackalot},

paperback,

{10.99}

Price

{The Return of Duck and Goose},

{Sir Quackalot},

paperback,

{19.99}

Price

]
% 3rd row:
\DTLaction]|
assign={
Title = {More Fun with Duck and Goose},
Author = {Sir Quackalot},
Format = paperback,
Quantity = 1, Price = {12.99}
}
] {new row}
% 4th row:
\DTLaction]|
assign={
Title = {Duck and Goose on Holiday},
Author = {Sir Quackalot},
Format = paperback,
Quantity = 3, Price = {11.99}
}
] {new row}
% 5th row:
\DTLaction]|
assign={
Title = {The Return of Duck and Goose},
Author = {Sir Quackalot},
Format = hardback,

Price = {19.99}

{new row}
6th row:
DTLaction|

192

3. Databases (datatool package)

assign={

Title = {The Adventures of Duck and Goose},

Author = {Sir Quackalot},

Format = hardback,

Quantity = 9, Price = {18.99}

}
] {new row}
% 7th row:
\DTLaction |

assign={

Title = {My Friend is a Duck},

Author = {A. Parrot},

Format paperback,

Quantity = 20, Price = {14.99}

}
]{new row}
% 8th row:
\DTLaction]|

assign={

Title = {Annotated Notes on the ‘Duck and Goose’
chronicles},

Author = {Prof Macaw},

Format ebook,

Quantity = 10, Price = {8.99}

}
] {new row}
% 9th row:
\DTLaction|

assign={

Title = {‘Duck and Goose’ Cheat Sheet for Students},

Author = {Polly Parrot},
Format = ebook,

Quantity = 50, Price = {5.99}
}

] {new row}
% 10th row:
\DTLaction]|
assign={
Title = {‘Duck and Goose’: an allegory for modern
times?},
Author = {Bor Ing},
Format = hardback,
Quantity = 0, Price = {59.99}
}

] {new row}

193

3. Databases (datatool package)

% 11lth row:
\DTLaction]|
assign={
Title = {Oh No! The Chickens have Escaped!},
Author = {Dickie Duck},
Format = ebook,
Quantity = 11, Price = {2.0}
}

] {new row}

3.2.5. Price List

The “pricelist” database has the columns: Product, Quantity (integer), Price (cur-
rency), and Notes (which is null in some rows). Note that, unlike the larger products

database above, the price column includes the currency symbol.

This sample database is used in examples 65 (Creating and Displaying a Database with
\DTLaction) & 69 (Automatically Formatting Values Calculated by Actions).

(o]

| S

Since the data contains numeric values that may need to be parsed, it’s useful to switch on
the st ore—datum option to reduce parsing. The database is constructed in the preamble of

example documents as follows:

% custom expandable command:
\newcommand{\limiteded}{limited edition}
% define a database with the name 'pricelist':
\DTLsetup{store-datum, default-name=pricelist}
\DTLaction{new}% create the default database
% 1st row:
\DTLaction]|
assign={
Product = {The Adventures of Duck and Goose},
Quantity = {1,452}, Price = {\$1.99}
}

] {new row}

% 2nd row:

\DTLaction]|

assign={
Product = {Duck and Goose on Holiday},
Quantity = {94}, Price = {\$2.99}

194

3. Databases (datatool package)

}

] {new row}
% the next value needs to be expanded:
\DTLaction]|
key={Notes}, expand-value={\limiteded}]{new entry}
% 3rd row:
\DTLaction|
assign={
Product = {The Return of Sir Quackalot},
Quantity = {3}, Price = {\$4.99}
}

] {new row}

3.2.6. Balance Sheet (CSV)

The “balance” database consists of columns with the labels: Description, In, Out, and
Balance. The last three columns are all numeric.

(@]

=
This sample database is used in Example 79 (Adjusting the Item Hook to Calculate Totals

and Show Negative Numbers in Red).

The “balance” database is read in from the file balance . cswv, which contains the following
content:

Description, In,Out,Balance
Travel expenses,,230,-230

Conference fees,,400,-630

Grant, 700, , 70

Train fare,, 70,0

The data can be loaded with:

\DTLread]|
name=balance, format=csv,
headers={ Description, in (\pounds),
Oout (\pounds), Balance (\pounds) }
] {balance.csv}

The database name can be set as the default, if preferred. The format=csv setting is the
default and so may be omitted. Since the data contains numeric values that may need to be parsed,
it’s also useful to switch on the st ore—datum option to reduce parsing.

195

3. Databases (datatool package)

,

\DTLsetup{store-datum,default-name=balance}
\DTLread]|
headers={ Description, in (\pounds),
Out (\pounds), Balance (\pounds) }
] {balance.csv}

3.2.7. Fruit (CSV)

The “fruit” database consists of columns with the labels: Name (string) and Quant ity (nu-
meric). The quantity includes decimal values, so evidently some fruit has been cut in half.

(@]

| S

This sample database is used in the following examples:
e 114. Pie Chart;
* 115. Pie Chart (Action ‘pie chart’);
* 116. Pie Chart (Filtering);
* 117. Separating Segments from a Pie Chart;
* 118. Separating a Range of Segments from a Pie Chart;
* 119. Separating Individual Consecutive Segments from a Pie Chart;
* 120. Pie Chart (Inner and Outer Labels);
e 121. Pie Chart (Labels Rotated);
* 122. Pie Chart (Percentage Rounding);
* 123. Pie Chart (Changing the Label Format);
* 124. Pie Chart (Changing and Referencing the Segment Colours);
e 125. Vertical Bar Chart;
* 126. Vertical Bar Chart (Action ‘bar chart’);
¢ 130. Bar Chart With Labels;
e 131. Bar Chart With Labels (Action ‘bar chart’);
* 132. Bar Chart (Filtering);

e 141. Bar Chart With a Limited Set of Custom Colours;

196

3. Databases (datatool package)

* 142. Bar Chart Cycling through the Colour Set;
* 146. Every Bar Hook (Filtering);

* 147. Bar Chart With a Legend.

J

The “fruit” database is read in from the file fruit . csv, which contains the following
content:

Name, Quantity
"Apples", 30
"Pears", 25

"Lemons, Limes",40.5
"Peaches",34.5
"Cherries", 20

This file can be loaded with:

=

[\DTLread[name=fruit, format=csv] {fruit.csv}

Again, the database name can be set as the default, if preferred. The format=csv setting is
the default and so may be omitted. Since the data contains numeric values that may need to be
parsed, it’s also useful to switch on the st o re—dat um option to reduce parsing.

Ei

\DTLsetup{store-datum,default-name=fruit}
\DTLread{fruit.csv}

3.2.8. Profits (CSV)

The “profits” database has three columns with the labels: Year, Profit and Units. There
are three negative values for the Prof it column (that is, they are in fact losses not profits) which
have been formatted slightly differently. Two have the minus sign before the currency symbol and
one has the sign after the symbol. Both formats are supported. (Example 113 demonstrates how
to automatically reformat the values to tidy them up.)

(@]

| S

This sample database is used in the following examples:
* 113. Automatically Reformatting Data While Loading a CSV file;

e 127. Horizontal Bar Chart;

197

3. Databases (datatool package)

* 133. Horizontal Bar Chart with Labels (Default Alignment);

* 134. Horizontal Bar Chart with Labels (Llower—-label-style=same);

* 135. Horizontal Bar Chart with Labels (Lower—label-style=below);
* 136. Horizontal Bar Chart with Labels (Lower—label-style=above);

* 137. Horizontal Bar Chart with Upper Labels Over the Bars (negative upper—
label-offset);

* 139. Bar Chart With Axes;
* 140. Bar Chart With Rotated Tick Labels;
* 143. Single Colours for Positive and Negative Bars;

e 144. Shaded Bar;

145. Hook at Every Bar.

. 7

The “profits” database is read in from the file profits . csv, which contains the following
content:

Year,Profit,Units

1999, "-\$4,673",12467
2000, "\$2,525.49",8965
2001, "\$1,673.52",14750
2002, "-\$1,320.01",14572
2003, "\$5,694.83",13312
2004, "\$-451.67",9764
2005, "\$6,785.20",11235

Note that this uses \ $ rather than a literal $ symbol, so csv—content=tex is required:

=

\DTLread[name=profits, format=csv, csv-content=tex]
{profits.csv}

Again, the database name can be set as the default, if preferred, and f o rmat=csv is the default
so it may be omitted. Since the data contains numeric values that may need to be parsed, it’s also
useful to switch on the st ore—datum option to reduce parsing.

198

3. Databases (datatool package)

\DTLsetup{store-datum,default-name=profits}
\DTLread[csv—-content=tex] {profits.csv}

3.2.9. Time to Growth (CSV)

The “growth1” and “growth2” databases represents data obtained from hypothetical microbio-
logical experiments, where a microbial population is observed at various time points. The two
different sets of data correspond to different temperatures. (For example, the “growth1” data may
have had the temperature set to 6 degrees and “growth2” may have had the temperature set to
8 degrees.) The first column in each case is the time observations. The other columns have the
population figures as a log count.

(@]

|

These sample databases are used in the following examples:
e 149. Scatter Plot (One Database);
e 150. Scatter Plot (Two Databases);
e 151. Scatter Plot (Action);
* 159. Scatter Plot (Two Databases with Name Map);
e 165. Line and Scatter Plot (Two Databases);
* 169. Setting the Plot Bounds;
* 170. Rounding the Tick Labels;
* 171. Changing the Axis Style;
* 172. Grid;
* 173. Custom Grid Lines;
* 174. Plot Encapsulated in a Box;
* 175. Plot Encapsulated in a Box Without Ticks;
e 180. Side-Axes, Extended Axes and Boxed;

¢ 181. No Side-Axes, Extended Axes and Boxed.

y

The “growth1” database is read in from the file growthl . csv, which contains the following
content:

199

3. Databases (datatool package)

Time, Experiment 1,Experiment 2
0,3.13,3.4

15,3.42,3.45

30,3.67,3.5

45,4.2,3.64

60,4.9,3.8

This file can be loaded with:

\DTLread [name=growthl, format=csv] {growthl.csv}

Since all values are plain numbers, an alternative is:

\DTLsetup{store-datum}
\DTLread[
name=growthl,
format=csv,
csv—content=no-parse,
data-types=decimal

] {growthl.csv}

This indicates that all columns have non-localised decimal content and by setting store

—datum first, they won’t need parsing when used in a numerical context.

The “growth2” database is read in from the file growth2 . csv, which contains the following

content:

Time, Experiment 1,Experiment 2
0,3.14,3.2

15,3.51,3.53

30,3.79,3.61

45,4.5,4.25

60,5.1,4.9

This file can be loaded with:

\DTLread [name=growth2, format=csv] {growth2.csv}

Again, since all values are plain numbers, an alternative is:

200

3. Databases (datatool package)

\DTLsetup{store-datum}
\DTLread]|
name=growth2,
format=csv,
csv—content=no—-parse,
data-types=decimal

] {growth2.csv}

3.2.10. Time to Growth (TSV)

The “growthdata” database is an alternative to the above time to growth data. In this case the data
is provided in a TSV file. Instead of having a single time column with two columns for the results
of each experiment, it has four columns containing the time and log count for each experiment.

(@]

—

This sample database is used in the following examples:

* 112. Loading a TSV File;

152. Scatter Plot (One Database, Two Sets of Data);

e 153. Scatter Plot (Two Databases, Two Sets of Data);

e 154. Scatter Plot (Two Databases, Multiple Sets of Data);

* 155. Scatter Plot With Mismatched X and Y Columns;

* 156. Scatter Plot with Custom Legend Labels (One Database, Two Sets of Data);

* 157. Scatter Plot with Custom and Default Legend Labels (One Database, Two Sets
of Data);

* 158. Scatter Plot with an Omitted Legend Label (One Database, Two Sets of Data);

* 160. Scatter Plot with Legend Label Mappings (Two Databases, Multiple Sets of
Data);

* 161. Scatter Plot with Legend Label Mappings and Custom formatting (Two
Databases, Multiple Sets of Data);

* 162. Scatter Plot with Custom Legend Labels (Two Databases, Multiple Sets of
Data);

* 163. Scatter Plot with Shifted Legend (Two Databases, Multiple Sets of Data);

201

3. Databases (datatool package)

* 164. Scatter Plot with Custom Legend (Two Databases, Multiple Sets of Data);

* 166. Scatter Plot with Custom Colours and Styles (Two Databases, Multiple Sets of
Data);

e 167. Scatter Plot with the Same Line Colour for Each Stream in a Given Database
(Two Databases, Multiple Sets of Data);

* 168. Scatter Plot with Plot Marks Reset (Two Databases, Multiple Sets of Data).

The tab character is represented by the % symbol. The first file is growth . tsv:

Experiment 1% % Experiment 2%
Time% Log Count%Time%Log Count
0%2.9%0%3.31
15%3.14%10%3.45
30%3.26%25%3.61
45%4.01%40%3.76
60%4.2%55%3.89

This represents a spreadsheet where the first row originally had “Experiment 1” spanning the first
two columns and “Experiment 2” spanning the last two columns. It was then exported to a TSV
file, which doesn’t support column spanning entries, so “Experiment 1” is now in the first column
and “Experiment 2” is in the third. This line needs to be omitted when parsing the file, which can
be done with the csv—skip—1ines option.

There is a similar second database “growthdata2” in the file growth?2 . t sv, but it has an
extra pair of columns for a third experiment:

Experiment 1% % Experiment 2% % Experiment 3%
Time% Log Count%iTime%Log CountS%Time%iLog Count
0%3.21%0%3.39%0%3.28
15%3.43%10%3.51%10%3.45
30%3.68%25%3.65%20%3.57
45%4.4%540%3.84%30%3.64
60%4.8%5553.92%40%3.95

In both files, the actual headers are in the second line: “Time”, “Log Count”, “Time” and
“Log Count” (and, for the second file, another “Time” and “Log Count”). Note that they are
duplicated, which means they are not suitable as unique column keys. Therefore it’s necessary to
override the default behaviour to ensure unique keys. The format needs to be set to ensure that
the tab character is recognised as the separator and has its category code changed so that it can be
distinguished from a space.

Since the data contains numeric values, it can be more efficient to switch on the store
—dat um setting to reduce parsing if, for example, the data needs to be displayed in a graph.

202

3. Databases (datatool package)

\DTLsetup{store-datum}
\DTLread[
name=growthdata, format=tsv, csv-skip-lines=1,
keys={ExplTime, ExplCount, Exp2Time, Exp2Count}
] {growth}
\DTLread][
name=growthdata2, format=tsv, csv-skip-lines=1,
keys={ExplTime, ExplCount, Exp2Time, Exp2Count,
Exp3Time, Exp3Count }
] {growth2}

Note that \DTLread will assume a t sv extension with format=t sv so file extension may
be omitted.

As with the CSV time to growth files, since the values are all plain numbers, a faster method is

to switch off element parsing:

\DTLsetup{store—-datum}

\DTLread[

name=growthdata, format=tsv, csv-skip-lines=l1,
keys={ExplTime, ExplCount, Exp2Time, Exp2Count},
csv—content=no-parse,

data-types=decimal

] {growth}
\DTLread[

name=growthdata2, format=tsv, csv-skip-lines=1,
keys={ExplTime, ExplCount, Exp2Time, Exp2Count,
Exp3Time, Exp3Count 1},

csv—-content=no-parse,

data-types=decimal

] {growth2}

3.2.11. Generic X/Y Data (CSV)

The “xydata” database just contains two columns of numbers that range from negative to positive.

(@]

| S

This sample database is used in the following examples:

* 107. Loading Data With No Parsing;

* 108. Loading Data With No Parsing and Columns Identified as Decimal;

203

3. Databases (datatool package)

* 109. Loading Data With No Parsing and Columns Identified as Decimal and Cur-
rency;

* 110. Loading Data With No Parsing and Columns Identified as Decimal and Cur-
rency with Reformatting;

* 176. Positive and Negative Axes;
* 177. Extending the Axes;
» 178. Changing the Tick Label Node Style;

e 179. Side Axes;

182. Redefining the Start and End Hooks.

The “xydata” database is read in from the file xydata . csv, which contains the following
content:

X, Y
~-3.5,-2.75
-3,3
-2.5,-1
-1,1.5
1,-4.2
2.6,1.8
3.2,-0.4

This file can be loaded with:

\DTLread[name=xydata, format=csv] {xydata.csv}

Again, since the data only contains plain numbers, it’s faster to switch off parsing:

\DTLsetup{store-datum}
\DTLread]|

name=xydata,
format=csv,
csv—-content=no—-parse,
data-types=decimal

] {xydata.csv}

204

3. Databases (datatool package)

3.3. Action Command

Some of the commands provided by datatool are quite long and it can be difficult to remember
the syntax. Version 3.0 provides:

X

\DTLact ion [(settings)] { (action) }

This will perform a command associated with the given action, with the arguments correctly set
according to the values given in (setfings). For example:

\DTLaction{new}

is equivalent to:

\DTLnewdb { (default-name) }

where (default-name) is the default name (which can be changed with de fault-name in
\DTLsetup). Alternatively, you can supply the database name:

\DTLaction [name=mydata] {new}

This is equivalent to:

\DTLnewdb{mydata}

Available actions are listed in §3.3.1 and settings are listed in §3.3.2. The (action) argument
will be trimmed by \DTLact ion to remove any leading or trailing spaces.

Example 65 is essentially equivalent to Example 70. It defines the “pricelist” database using
actions (see §3.2.5) and then displays the database using the d i sp 1 avy action:

The “pricelist” database has null values as the Not e s column isn’t set in every row (see §3.10).

[S65

\DTLaction{display}

7+ Example 65: Creating and Displaying a Database with \DTLaction N\ERIE
Product Quantity Price Notes

The Adventures of Duck and Goose 1,452 $1.99 NULL

Duck and Goose on Holiday 94 $2.99 limited edition

The Return of Sir Quackalot 3 $4.99 NULL

205

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 65 Creating and Displaying a Database with \\DTLaction
% Label: "ex:actions"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
% custom expandable command:
\newcommand{\limiteded}{limited edition}
% define a database with the name 'pricelist':
\DTLsetup{store-datum,default-name=pricelist}
\DTLaction{new}% create the default database
% 1st row:
\DTLaction[
 assign={
 Product = {The Adventures of Duck and Goose},
 Quantity = {1,452}, Price = {\$1.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Product = {Duck and Goose on Holiday},
 Quantity = {94}, Price = {\$2.99}
 }
]{new row}
% the next value needs to be expanded:
\DTLaction[
key={Notes}, expand-value={\limiteded}]{new entry}
% 3rd row:
\DTLaction[
 assign={
 Product = {The Return of Sir Quackalot},
 Quantity = {3}, Price = {\$4.99}
 }
]{new row}
\begin{document}
% Display the data:
\DTLaction{display}
\end{document}

Nicola Talbot
Creating and Displaying a Database with \DTLaction (source code)
Example document that creates a simple database and displays it as a table (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example065.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example065.pdf

3. Databases (datatool package)

An action may have one or more return values consisting of a primary return value and
(optionally) secondary return values that have an associated property name. There are several
ways of fetching the return values.

The primary and secondary values can be obtained with:

\DTLget [(property)]{{(cs)}

This will define the (token list variable) control sequence (cs) to the value obtained from the most
recent \DTLact ion in the current scope. Secondary return values should be identified by
their property name. The (property) should be empty or omitted for the primary value.

Secondary (but not primary) values can also be obtained with the return setting, which
should provide a comma-separated list of (cs)=(property) assignments. Each listed control
sequence (cs) will be defined to the value of the secondary property identified by (property).

If no return value is available (for example, the action failed or requested information was
unavailable or the property name is unknown) then (cs) will be defined to a null value (see §3.10).

o

If you get a null value for an action that doesn’t produce any errors or warnings, check the
supplied action settings (such as opt ions for the aggregate action) and also check
that you have correctly spelt the property names.

For example, the column 1ndex action has the column index as the primary return value:

\DTLaction[key=Price] {column index}
\DTLget {\colidx}
Column index: \colidx.

\DTLuse{ (property) }

This gets the primary or secondary return value and then uses it. Note that this command is only
expandable if the argument (property) is empty (that is, for the primary return value). Otherwise
it will expand to a robust internal command. If you need the value associated with a property
in an expandable context, you will first have to fetch it with \DTLget or with the return
option.

X

\DTLifaction{ (property)} { (true)} { {false) }

Expands to (true) if the last action (within the current scope) set the return value identified by
(property), otherwise it expands to (false). An empty (property) indicates the primary return
value.

206

3. Databases (datatool package)

3.3.1. Defined Actions

All actions recognise the optional return setting, although it will have no effect with actions
that don’t have secondary return values. The descriptions below only identify optional settings
where support varies according to the action.

3.3.1.1. Creation and Editing
| —

| S

\DTLaction [(settings)] {new}

Creates a new database. This action has one optional setting: name, which should be a single
name. There are no required settings. Other action settings are ignored. The return value is the
database name, which can also be accessed via the name secondary return property.

The new action internally uses \DTLnewdb. For example:

\DTLaction[name=mydata] {new}

is equivalent to:

\DTLnewdb{mydata}

Note that new databases are always globally defined.

| —

|

\DTLaction [(settings)] {delete}

Deletes (undefines) a database (that is, the internal commands associated with the database are
undefined). This action has one optional setting: name, which should be a single name. There
are no required settings. Other action settings are ignored. The return value is the database name,
which can also be accessed via the name return property. The other return properties are rows
and columns, which will be set to the row and column count before the database was deleted.

|

\DTLaction [(settings)] {clear}

Clears a database (that is, the database is made empty but remains defined). This action has one
optional setting: name, which should be a single name. There are no required settings. Other
action settings are ignored. The return value is the database name, which can also be accessed via
the name return property. The other return properties are rows and columns, which will
be set to the row and column count before the database was cleared. =

|

\DTLaction [(settings)] {new row}

Adds a new row to a database. This action has two optional settings: name (which should be a
single name) and assign. There are no required settings. Other action settings are ignored.

207

3. Databases (datatool package)

As with \DTLnewrow, the global option determines whether or not the database is altered
globally or locally.

The assign setting allows you to set the values for the new row at the same time. You can
also add values to this new row with the new ent ry action afterwards. It’s more efficient and
more compact to set the values while creating the new row, but if some values should be expanded
but not others, use the new ent rv action for those that need expanding. For example:

=

\DTLaction]|

assign={ Name = {José Arara}, Score = {68},
Award = {\$2,453.99} }

] {new row}

This is equivalent to:

©

\DTLaction{new row}

\DTLaction[key=Name, value={José Arara} |
{new entry}

\DTLaction[key=Score, value={68}]{new entry}

\DTLaction[key=Award, value={\$2,453.99}]
{new entry}

The primary return value is the index of the new row, which will be the same as the updated
row count. There is also a secondary return value that can be accessed with the name property,
which will be the database name. The row property can also be used, which is the same as the
primary return value. The difference is that \DTLuse{ } is expandable but \DTLuse{row}
isn’t.

The internal action of new row without the assign setting is essentially the same as
\DTLnewrow. For example:

\DTLsetup{default—-name={mydata}}
\DTLaction{new row}

which is the same as:

\DTLaction[name={mydata}]{new row}

is equivalent to:

\DTLnewrow{mydata}

Whereas with the assign setting, the new row action effectively implements not only
\DTLnewrow but also one or more instances of \DTLnewdbentry.

208

3. Databases (datatool package)

I —

|

\DTLaction [(settings)] {new entry}

Adds a new entry to the last row of a database. As with \DTLnewdbentry, the database
must have a least one row, and the g1 oba 1 option determines whether or not the database is
altered globally or locally.

This action has one optional setting: name, which should be a single name. The required
settings are: value (or expand-value or expand—-once—value) and either key
or column. Other action settings are ignored.

This action has secondary return values, which can be accessed with \DTLget or \DTLuse
or the return setting, referenced by the following property names:

* name: the database name;

e column: the index of the new column;

* key: the column key;

e row: the index of the row (which will be the same as the row count);

* type: the data type integer identifier (see §2.2). Note that while the £ ype action setting
is a keyword, the t ype return value is a number.

The primary return value (accessed with an empty property) is the column index, so you can
access the column index with either \DTLuse{column} or \DTLuse{ }, but only the
latter is expandable.

o

In general, it’s better to have the default new—value—-expand=false, and use
expand-value or expand—-once—value for the values that require expanding.
(Unless the majority of your values require expansion.)

Note the difference between using the \DTLsetup option new-value-expand=
true and the action setting expand—-value. The first performs a protected expansion. For
example:

\DTLsetup{new-value-expand=true}
\DTLaction[key=Price,value=\$1,234]{new entry}

This will add \protect \S$1, 234 to the default database. Whereas the following:

\DTLsetup{new-value-expand=false}
\DTLaction[key=Price, expand-value=\51,234] {new
entry}

209

3. Databases (datatool package)

will add \protect \Tl\textdollar 1,234 to the default database. In the case
of currency, it’s better not to expand the value otherwise the currency symbol may expand to
something that’s not recognised as a currency unit.

A
The new entry action internally uses \DTLnewdbentry if key is set. If
column is used instead, a similar function is used, but be aware that listing column
indexes out of order when the columns haven’t yet been defined may have unexpected
side-effects.

J

If you try to use both key and column this will cause an error and the column index will
be ignored. If you use key and a column hasn’t yet been defined, the column count will increase
by 1 and a new column will be created at the end. If you use column and no column with that
index has been defined, then a new column will be created with the key obtained by expanding
\dtldefaultkey (column-idx) and, if the index is greater than the current number of
columns, the database will be expanded so that it has a column count of (column-idx).

| S——

\DTLaction [(settings)] {add column}

This action may be used to append a column to a database. Although the new ent ry action
will automatically create an undefined column, you may prefer to define your columns in advance
to ensure the ordering and to provide additional column metadata.

The add column action has optional settings: name (which should be a single name),
key, type,and value (or expand-value or expand—-once-value). Note that
the column setting should not be used and will trigger an error if set. All other settings are
ignored. The \DTLsetup global option determines whether or not the database is altered
globally or locally.

Column Key

The column key, which must be unique to the database, will be obtained from the key
setting, if provided. Otherwise, it will be obtained by expanding \dt ldefaultkey
(col-idx), where (col-idx) is the index of the new column.

Column Header
The column header will be set to the value, if provided. Otherwise, it will be set to the
column key.

Column Type

The column type will be set according to the t ype setting, if provided. Otherwise, the
unknown type will be assumed. Note that the type will be updated if an entry with a greater
type precedence is added to the column. For example, if you set t ype=1integer but
then add a decimal number to this column, then the column type will be updated to decimal.

210

3. Databases (datatool package)

This action has secondary return values, which can be accessed with \DTLget or \DTLuse
or the return setting, referenced by the following property names:

e name: the database name;

* column: the index of the new column (which will be the same as the updated column
count);

* key: the column key;
* header: the column header;
* type: the data type integer identifier (see §2.2).

The primary return value (accessed with an empty property) is the column index, so you can
access the column index with either \DTLuse{column} or \DTLuse{ }, but only the
latter is expandable. (Alternatively, use \DTLcolumncount { (name)}.)

Example 66 creates a database and adds columns with actions:

2166

\DTLaction{new}

\DTLaction{new row}

\DTLaction{add column}

Added column \DTLuse{column}

(key: \DTLuse{key}; header: \DTLuse{header})
to database " \DTLuse{name}'.

\DTLaction[key=quantity] {add column}

Added column \DTLuse{column}

(key: \DTLuse{key}; header: \DTLuse{header})
to database " \DTLuse{name}'.

\DTLaction [key=price,value=Price (\$)]{add column}
Added column \DTLuse{column}

(key: \DTLuse{key}; header: \DTLuse{header})

to database “\DTLuse{name}'.

4 Example 66: Adding New Columns Using Actions N\ERE

Added column 1 (key: Columnl; header: Columnl) to database ‘unti-
tled’.

Added column 2 (key: quantity; header: quantity) to database ‘untitled’.

Added column 3 (key: price; header: Price ($)) to database ‘untitled’.

211

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 66 Adding New Columns Using Actions
% Label: "ex:addcolaction"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\begin{document}
\DTLaction{new}
\DTLaction{new row}
\DTLaction{add column}
Added column \DTLuse{column}
(key: \DTLuse{key}; header: \DTLuse{header})
to database `\DTLuse{name}'.

\DTLaction[key=quantity]{add column}
Added column \DTLuse{column}
(key: \DTLuse{key}; header: \DTLuse{header})
to database `\DTLuse{name}'.

\DTLaction[key=price,value=Price (\$)]{add column}
Added column \DTLuse{column}
(key: \DTLuse{key}; header: \DTLuse{header})
to database `\DTLuse{name}'.
\end{document}

Nicola Talbot
Adding New Columns Using Actions (source code)
Example document demonstrating how to add columns to a database using actions (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example066.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example066.pdf

3. Databases (datatool package)

3.3.1.2. Querying
| —

|

\DTLaction [(settings)] { £ind}

Finds the first row in the database to match the supplied criteria. This action involves iterating over
the database, applying the criteria to each row. If you want to lookup by a unique value, you may
find it faster to use the select row action. Unlike the select row action, the £ind
action doesn’t change the current row (unless explicitly requested with the select=true
option), so it may be used within the body of \DTLforeach to either lookup another row in
the current database or in another database.

The £ 1nd action doesn’t have any required settings, but if none are provided it will simply
find the first row of the database (if the database isn’t empty). The optional settings are:

e name: identifies the database;
e row: identifies the row index to start the search from (defaults to 1, if omitted);
e row?Z2: identifies the row index to end the search (defaults to the last row, if omitted);

* assign: an assignment list of (cs)=(col-key) pairs to define placeholder commands for
each row, before the match function is used;

* options: may be used to specify options specific to the £ ind action, see below.

The options value may include the following (key)=(value) options.
[=

=

direction=(value) initial: ascending

Indicates the search direction. The value may be one of: ascending(orasc)ordescending
(or desc). If direction=ascending, the search will start from the smallest row index.
If direction=descending the search will start from the largest row index.

[©

el
select=(boolean) default: true; initial: false

A boolean option that governs whether the first matching row to be found should be selected as
the current row. If a match is found with select=true, then \dt 1get row will be used
to set the \dt 1current row token register (and related registers) for use with actions (such
as row aggregate)or commands (such as those described in §3.16.1). If unsuccessful or
if select=false, the \dtlcurrentrow token register won’t be changed.

function=(cs)

Sets the match criteria function to (cs), which must be defined to take a single argument, where
the function definition expands to that argument to indicate a match and does nothing otherwise.

212

3. Databases (datatool package)

inline={(definition) }

An inline alternative to function.

The default match function is simply a first of one function, which means that the first row (or
last row with direction=descending) in the range row-row2, will match, provided
the database isn’t empty. If the a ssign setting is used, the placeholders can be referenced in
the function. They will also still be available after the action, and will have their values from
the matching row or from the final row in the search range if no match was found. They will be
null if the database is empty. If there was no corresponding value in the row, they will be set to
either \DTLnumbernull (if the column has a numeric data type) or \DTLstringnull
otherwise (see §3.10).

The primary return value will be the row index which satisfied the match. The return value will
not be set of no match was found. The secondary values will be set to the values of the matching
row, where the property name is the column key. This means that you can access the values from
the match even if you didn’t set the corresponding assignment in assign.

For example, the following simply fetches all the values from row 2:

=

[\DTLaction[row=2]{find}

Each value can then be displayed with \DTLuse { (col-key) }, where (col-key) is the column
key.
The following finds the first row where the surname field is “Smith” and the forename field is

“John™:

\DTLaction]|
assign={\Surname=surname, \Forename=forename},
options={
inline={\DTLifstringeg{\Surname}{Smith}
{\DTLifstringeg{\Forename}{John}{#1}{}}{}}
}
1 {find}
\DTLifaction{}% test for primary return value
{\Forename\ \Surname\ found on row \DTLuse{}}
{Not found}.

I —

|

\DTLaction [(setings)] {column index}

Obtains the column index corresponding to the given key. This action does not create any typeset
output. It performs a similar function as \DTLget columnindex but it won’t trigger an
error if there’s no column with the given key. Instead you need to test the return value with

213

3. Databases (datatool package)

\DTLifnull. Use \dt lcolumnindex instead if you want a single expandable function
with no error checking.

An error will occur if the database is undefined or if the key is missing. This action has one
optional setting: name (which should be a single name), and one required setting: key. Other
settings are ignored.

The primary return value (if successful) is the column index, which may be accessed with
\DTLuse{} or \DTLget {{cs)}. The name return property will be set to the database
name, and the key return property will be set to the column key (if provided). The column
property can also be referenced to obtain the column index, if successful.

For example:

\DTLaction[key=Price] {column index}
\DTLget {\colidx}
\DTLifnull{\colidx}{No such column}
{Column index: \colidx}.

=
| ——

\DTLaction [(settings)] {column data}

This action is similar to co L umn 1ndex but gets all the column metadata (column index, key,
type and header) from either the key or index.

The primary return value is the column key (regardless of whether the key or column
setting was used). The secondary return properties are: column (the column index), key (the
column key), t ype (the data type), and header (the column header). The return value will
be null if the column doesn’t exist.

An error will occur if the database is undefined or if there is no key or column setting or if
both are provided. This action has one optional setting: name (which should be a single name),
and one required setting: either key or column (but not both). Other settings are ignored.

|

\DTLaction [(settings)] { select row}

Selects a row and sets the \dt 1current row token register for use with actions (such as
row aggregate)or commands (such as those described in §3.16.1).

(o]

| il
If the current row has already been selected (thatis, \dt lcurrent rowand \dt 1db—

name have already been set), for example within the hooks used by \DTLdisplaydb,
then you can instead use the current row wvalues action to access information
in the current row.

J

If you know the row index, you can use the row setting to select that row. This will internally
use \dt lgetrow.

214

3. Databases (datatool package)

If you don’t know the row index, but want to find the first row that exactly matches a particular
value for a specific column then you need to use value (or expand-value or expand
—once-value) for the required value and either column or key (but not both) to identify
the column. In this case, the action will be similar to \dt 1lget rowforvalue to find the
first row that exactly matches the given value, but it won’t trigger an error if no match is found.

If you want to match by a more complex test, such as a regular expression, use the £ 1 nd action
instead with functionorinline and select=true setin the action options.
(3]
Note that value={ } indicates an empty (not null) value. If you want to find the first

row that doesn’t have a particular column set, you can instead use the £ 1nd action and
search for a null value.

In either case, the name setting (which should be a single name) may be used to identify the
database (which must exist). It omitted, the default is used. You can’t have both row and a
column identifier (column or key) set.
| (o
As with the underlying \dt 1get rowforvalue, this action (when matching a col-
umn) is primarily intended to work with a column which has unique values, such as an
identification number. If you require a match on multiple columns or a regular expression
match, you will need to iterate over the database or use the £ 1nd action.

y

If successful, this action will set the token registers \dt lcurrentrow, \dt lbefore-
rowand \dt lafterrow,andalso the placeholders \ dt 1 dbname (expands to the database
name), \dt 1 rownum (the row index) and \dt 1columnnum (the column index). If un-
successful, \dt 1 rownum will be zero.

No return values will be set if unsuccessful, otherwise the primary return value is the row index
(which will be the same as \dt 1 rownum), and the secondary return values will be the value
of each entry found in the current row with the return property key the same as the column key.

The later Example 68 uses \dt 1get rowforvalue to select a row with a particular value
from the “marks” database (see §3.2.1). Example 67 replaces this cuambersome command with
the select row action. First the row selection:

\DTLaction]|
name=marks,
key=StudentNo,
value={105987}

] {select row}

Student \DTLuse{Forename} \DTLuse{Surname}
(105987) .

215

267

3. Databases (datatool package)

Then calculate the mean for the columns Assignl, Assign2 and Assign3. This can
be done by column index, for example, columns={4-6} or by column key, for example,
keys={Assignl-Assign3}. Since Assign3 is the last column of the database, an

open-ended range may be used:

\DTLaction|
keys={Assignl-},
options={mean},
datum={round=1}

]{current row aggregate}

Average mark: \DTLuse{mean}.

(Actual value: \DTLget [mean] {\theMean}
\DTLdatumvalue{\theMean}.)

Bear in mind that the second \DTLact ion will clear the return values from the first, so if you
need to continue referencing those values, take care to scope the second instance.

+ Example 67: Select row action \EEE
Row selection:
Student Zoé Adams (105987).
Average mark: 52.3.
(Actual value: 52.33333333333333.)
[=
=
\DTLaction [(settings)] {current row values}

If the current row has already been selected (thatis, \dt lcurrentrowand \dt 1dbname
have already been set), for example within the hooks used by \DTLdisplaydb or with \dt 1-
getrow,thenthe current row wvalues action can be used to access values within the
current row rather than using the more cumbersome \dt lgetentryfromcurrentrow
for each required column.

For example, to fetch all values in the current row and use the values from the “Forename” and
“Surname” columns:

Ei

\DTLaction{current row wvalues}
Name: \DTLuse{Forename} \DTLuse{Surname}.

To store the values in placeholder commands with \DTLget:

216

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 67 Select row action
% Label: "ex:selectrow"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
% sample CSV file:
\begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}

% Load data from studentmarks.csv file:
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\begin{document}
Row selection:

\DTLaction[
 name=marks,
 key=StudentNo,
 value={105987}
]{select row}

Student \DTLuse{Forename} \DTLuse{Surname} (105987).

\DTLaction[
 keys={Assign1-},
 options={mean},
 datum={round=1}
]{current row aggregate}

Average mark: \DTLuse{mean}.

(Actual value: \DTLget[mean]{\theMean} \DTLdatumvalue{\theMean}.)
\end{document}

Nicola Talbot
Select row action (source code)
Example document demonstrating select row action to select a row by a unique value (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example067.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example067.pdf

3. Databases (datatool package)

\DTLaction{current row values}
\DTLget [Forename] { \Forename}
\DTLget [Surname] { \Surname}

Alternatively, with the return setting:

\DTLaction|
return={
\Forename=Forename,
\Surname=Surname

}

] {current row values}

There are no required settings. If you only want the values from a subset of columns you can
identify those columns with columns and/or keys. Otherwise all columns will be assumed.
A warning will occur if the name option is set as the name is expected to be in \dt 1dbname.
An error will occur if \dt 1dbname hasn’t been set. All other settings are ignored.

For example, the following collects the values for the columns with the labels “Title”, “Price”,
“Quantity”, “Total” and the columns with the indexes 1 and 2:

=

\DTLaction]|
keys={Title,Price,Quantity, Total},
columns={1, 2}

] {current row values}

The primary return value is the number of values collected. This may be less than the total
number of columns in the database or less than the list of supplied keys if there are missing
columns in the current row. The secondary return properties are the column keys and the return
value the corresponding element (which may have been parsed and converted into a datum item
if the datum option was set, or if conversion automatically occurred with st ore—datum
when the database was created).

Example 78 uses the current row wvalues action to fetch row entries within the
post-row hook of \DTLd1isplaydb toappend a total column to the table.

3.3.1.3. Aggregates
I —

|

\DTLaction [(setings)] {aggregate}

Aggregates numerical data in one or two columns of the identified database. Either the key or
column must be set (but not both) to identify the required column. The key2 or column?2

217

3. Databases (datatool package)

values may also be set (but not both) if a second column is also required. Optional settings are:
name (which should be a single name) and opt i ons, which should be a comma-separated
list of the aggregate functions to apply. The aggregate functions are as follows:

sum: sum all numeric items in the given column. The return value will be in the sum
property for the first column and, if applicable, sum2 for the second column.

mean: calculates the mean (average) of all numeric items in the given column. The return
value will be in the mean property for the first column and, if applicable, mean?2 for the
second column. This function automatically implements the sum function, since the total
is required to calculate the mean.

variance: calculates the variance of all numeric items in the given column. The
return value will be in the variance property for the first column and, if applicable,
variance?2 for the second column. This function automatically implements the mean
function, since the mean is required to calculate the variance.

sd: calculates the standard deviation of all numeric items in the given column. The return
value will be in the sd property for the first column and, if applicable, sdZ2 for the second
column. This function automatically implements the variance function, since the
variance is required to calculate the standard deviation.

min: calculates the minimum of all numeric items in the given column. The return value
will be in the min property for the first column and, if applicable, min2 for the second
column.

max: calculates the maximum of all numeric items in the given column. The return value
will be in the ma x property for the first column and, if applicable, max2 for the second
column.

If opt ions is empty, the only functions will be to count and gather numeric items in a sequence.

The primary return value is the total number of numeric items in the first column. (Non-numeric
items are skipped.) This will typically be the same as the row count, unless there are null or
non-numeric items.

o

Return values that are numeric will be plain numbers. This is different to most of the
aggregate commands described in §3.13, such as \DTLmaxforkeys, that return
formatted numbers.

The secondary return value properties are:

name: the database name.
column: the index of the first column.

count: the number of numeric items in the first column. This is the same as the primary
return value.

218

3. Databases (datatool package)

seq: the sequence of numeric items found in the first column. If you use \DTLget
[seql{{cs)} (or return={(cs)=seq}) then (cs) will be in the form of a I3seq
sequence variable.

min: if min was included in the opt ions list, then this property will be set to the
minimum value in the first column.

max: if max was included in the opt ions list, then this property will be set to the
maximum value in the first column.

sum: if sum was included in the opt ions list (or implied by a function that requires
the sum), then this property will be set to the sum of all numeric values in the first column.

mean: if mean was included in the opt 1 ons list (or implied by a function that requires
the mean), then this property will be set to the mean of all numeric values in the first column.

variance: if variance wasincluded in the opt ions list (or implied by a function
that requires the variance), then this property will be set to the variance of all numeric
values in the first column.

sd: if sd was included in the opt 1 ons list, then this property will be set to the standard
deviation of all numeric values in the first column.

Additionally, if key2 or column?2 have been set:

column?2: the index of the second column.
count 2: the number of numeric items in the second column.

seq?2: the sequence of numeric items found in the second column. If you use \DTL-
get [seg2]{(cs)} (or return={(cs)=seg2}) then (cs) will be in the form of a
I3seq sequence variable.

minZ: if min was included in the opt ions list, then this property will be set to the
minimum value in the second column.

max2: if max was included in the opt 1ions list, then this property will be set to the
maximum value in the second column.

sum?2: if sum was included in the opt ions list (or implied by a function that requires
the sum), then this property will be set to the sum of all numeric values in the second
column.

mean?2: if mean was included in the opt 1ons list (or implied by a function that
requires the mean), then this property will be set to the mean of all numeric values in the
second column.

219

3. Databases (datatool package)

* variance?2: if variance was included in the options list (or implied by a
function that requires the variance), then this property will be set to the variance of all
numeric values in the second column.

* sd2: if sd was included in the options list, then this property will be set to the
standard deviation of all numeric values in the second column.

[=
=
\DTLaction [(settings)] {row aggregate}
Calculate aggregates for the current iteration of \DTLmapdata. (See Example 87.)
L=
\DTLaction [(setings)] {current row aggregate}

Calculate aggregates for the current row stored in \dt lcurrentrow.

The actions row aggregateand current row aggregate essentially perform
the same function. The difference between them is that row aggregate is for use within
\DTLmapdataand current row aggregate isfor use within \DTLforeach
or after selecting a current row with the se lect row action or with commands like \dt 1-
getrow.

In either case, the database name should already be set in the \ dt 1 dbname placeholder,
so the name option will trigger a warning, if set, and an empty \ dt 1 dbname will trigger an
error. These actions are similar to 2ggregate but they aggregate items in the columns of the
current row that have a numeric value.

By default all columns in the current row will be checked, but you can restrict the function to a
subset of columns with the columns and/or key s options.

The opt ions setting is as for the aggregate action. The primary return value is the
number of numeric columns contributing to the aggregates. The secondary return value properties
are:

* name: the database name (same as \dt 1dbname). If any unexpected results occur,
check this return value matches the expected name.

e row: the row index (same as the value of \dt 1rownum). If any unexpected results
occur, check this return value matches the expected row index.

* columns: the list of indexes of all column in the subset or empty if no subset specified.

* count: the number of numeric items in the subset. This is the same as the primary return
value.

» seq: the sequence of numeric items found in the subset. If youuse \DTLget [seq]
{{cs)} (or return={(cs)=seq}) then (cs) will be in the form of a I3seq sequence
variable.

* min: if min was included in the options list, then this property will be set to the
minimum value in the subset.

220

3. Databases (datatool package)

* max: if max was included in the opt ions list, then this property will be set to the
maximum value in the subset.

e sum: if sum was included in the opt ions list (or implied by a function that requires
the sum), then this property will be set to the sum of all numeric values in the subset.

* mean: if mean was included in the opt i ons list (or implied by a function that requires
the mean), then this property will be set to the mean of all numeric values in the subset.

* variance:if variance wasincluded in the opt i ons list (or implied by a function
that requires the variance), then this property will be set to the variance of all numeric
values in the subset.

* sd: if sd was included in the opt 1 ons list, then this property will be set to the standard
deviation of all numeric values in the subset.

Example 68 uses the “marks” database (see §3.2.1) and calculates the average marks for each
student within \DTLmapdata:

\DTLmapdata [name=marks] {
\DTLmapget{key=Forename} \DTLmapget{key=Surname}
average marks:
\DTLaction]|
columns={4-},
options={mean}
]{row aggregate}
\DTLuse{mean}.

}

For comparison, the example also uses \DTLforeach:

\DTLforeach{marks}
{\Forename=Forename, \Surname=Surname }
{
\Forename\ \Surname\,, average mark:
\DTLaction]|
columns={4-1},
options={mean}
l]{current row aggregate}
\DTLuse{mean}.

221

[£68

3. Databases (datatool package)

And selects a particular row:

,
\dtlgetrowforvalue{marks}{\dtlcolumnindex{marks}
{StudentNo}}{105987}
Student 105987 average mark:
\DTLaction|
columns={4-1},
options={mean}
l{current row aggregate}
\DTLuse{mean}.

The rather cumbersome \dt 1get rowforvalue canbe replaced with the se lect row
action, as in the earlier Example 67.

+ Example 68: Row aggregate actions \EEE

Map data:

John Smith, Jr average marks: 65.66666666666667.

Jane Brown average marks: 79.66666666666667.

Jane Brown average marks: 78.33333333333333.

Andy Brown average marks: 49.33333333333333.

Z0é Adams average marks: 52.33333333333333.

Roger Brady average marks: 63.33333333333333.

Clare Verdon average marks: 47.66666666666667.

For each:

John Smith, Jr average mark: 65.66666666666667.

Jane Brown average mark: 79.66666666666667.

Jane Brown average mark: 78.33333333333333.

Andy Brown average mark: 49.33333333333333.

Zoé Adams average mark: 52.33333333333333.

Roger Brady average mark: 63.33333333333333.

Clare Verdon average mark: 47.66666666666667.

Row selection:

Student 105987 average mark: 52.33333333333333.

3.3.1.4. Tabulation

=)
=

\DTLaction [(settings)] {display}

This action may be used to display a database using the same underlying function as \DTL-

222

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 68 Row aggregate actions
% Label: "ex:rowaggregates"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
% sample CSV file:
\begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}

% Load data from studentmarks.csv file:
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\begin{document}
Map data:

\DTLmapdata[name=marks]{
 \DTLmapget{key=Forename} \DTLmapget{key=Surname} average marks:
 \DTLaction[
 columns={4-},
 options={mean}
]{row aggregate}
 \DTLuse{mean}.

}

For each:

\DTLforeach{marks}{\Forename=Forename,\Surname=Surname}{
 \Forename\ \Surname\
 average mark:
 \DTLaction[
 columns={4-},
 options={mean}
]{current row aggregate}
 \DTLuse{mean}.

}

Row selection:

\dtlgetrowforvalue{marks}{\dtlcolumnindex{marks}{StudentNo}}{105987}
Student 105987 average mark:
\DTLaction[
 columns={4-},
 options={mean}
]{current row aggregate}
\DTLuse{mean}.
\end{document}

Nicola Talbot
Row aggregate actions (source code)
Example document demonstrating row aggregate and current row aggregate actions (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example068.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example068.pdf

3. Databases (datatool package)

displaydb*. This action has optional settings: name (which should be a single name) and
options to pass any options to \DTLd1isplaydb*. Other settings are ignored.

There’s no primary return value, but there are secondary return values that can be accessed
with the properties: name (the database name), columns (the number of columns displayed),
and rows (the number of rows displayed).

For example:

\DTLaction[options={omit-columns={1,3}}]{display}

This is essentially the same as:

\DTLdisplaydb* [omit—columns={1, 3}] {{(default-name) }

\.

where (default-name) is obtained from the default-—name option. The action has the
advantage over \DTLdisplaydb as you can use the return values to find out how many
columns or rows were displayed (which may not necessarily be the same as the column count or

row count).
I —

|

\DTLaction [(settings)] {display long}

This is similar to the d i sp 1 avy action, but it uses the underlying function of \DTLdisplay-
longdb, which uses longtable instead of tabular. This action has optional settings: name
(which should be a single name) and opt ions to pass any options to \DTLdisplaylong-
db. Other settings are ignored.

There’s no primary return value, but there are secondary return values that can be accessed
with the properties: name (the database name), columns (the number of columns displayed),
and rows (the number of rows displayed).

3.3.1.5. Modifying a Database
I —

|

\DTLaction [(settings)] {sort}

Sorts a database using \DTLsortdata. This action has optional settings: name (the database
name), and options (the options to pass to the optional argument of \DTLsortdata).
There is one required settings: a s s 1ign, which should be the criteria to pass in the final argument
of \DTLsortdata.

The primary return value should be equal to the number of rows of the database if no errors
occurred. The secondary return values can be accessed with the properties: name (the database
name, which will always be set), columns (the number of columns in the database after sorting)
and rows (the number of rows in the database). The column count of the database may increase
if the options include instructions to add the sort or group information to the database. See §3.14.1
for further details.

223

3. Databases (datatool package)

3.3.1.6. Other

The databar package provides the bar chart and multibar chart actions. The
datapie package provides the pie chart action. The dataplot package provides the p 1ot
action.

3.3.2. Action Settings

Action settings may only be used in the optional argument of \DTLact ion and can’t be used
in \DTLsetup. They are reset to their default values by \DTLact ion before the optional
argument is processed. Settings that aren’t required by the given action are usually ignored, but an
unrequired setting may occasionally generate an error or warning if it’s likely that the setting may
accidentally be used instead of the correct one (for example, setting co 1 umn when the column
can only be identified with key).

name=(db-name(s))

The database name or (where supported) the list of names. If omitted, the value of the general
default—-name option is used. For example:

B

[\DTLaction[name=mydata] {new}

Some actions don’t permit the database name to be specified as it’s expected to be provided
by \dt 1dbname (suchas current row aggregate). Actions that require a single
name will take the first from the list and ignore the rest of the list.

[=

==

key=(label)

The unique column key. This must be set to a non-empty value for an action that allows a column
reference by ID, except in the case of actions that use key s for a list of keys. Typically, you
won’t be able to use both key and column.

key2=(label)

If an action requires a second column reference, this should be used to reference the second
column by its unique ID. This is intended for use by actions that require at most two columns, not
for actions that use keys for a list of keys. Typically, you won’t be able to use both key2 and
column?2.

224

3. Databases (datatool package)

column=(n)

The column index. This must be set to a positive number for an action that allows a column
reference by index, except in the case of actions that use columns for a list of column indexes.

=]

==

column2=(n)

If an action requires two column references, this should be used to reference the second column
by its index. This is intended for use by actions that require at most two columns, not for actions
that use columns for a list of column indexes.

=

columns={ (list) }

If an action allows an arbitrary number of column references, the columns option can be used
to reference the required columns by their index in a comma-separated list.

The list may include ranges in the form (n;)—(ns), where (n;) is the start of the range
and (ny) is the end. If (n,) is omitted then 1 is assumed and if (ny) is omitted, the last col-
umn is assumed. For example, columns={-41} is equivalent to columns={1-4} and
columns={1, 3—5} indicates columns 1, 3, 4, and 5. Where a range with a start and end
value is provided, the start value must be less than or equal to the end value. =

==

keys={(list) }

If an action allows an arbitrary number of column references, the ke y s option can be used to
reference the required columns by their key in a comma-separated list. Typically, an action that
allows a list of columns may allow both keys and columns and will merge the subsets. As
with columns, the list may include ranges in the form (keyl)—(key2), where (keyl) is the start
of the range and (key2) is the end. As with columns, if the start range is omitted, the first
column is assumed, and if the end range is omitted, the last column is assumed. For example, the
“marks” database (see §3.2.1) may have keys={Assignl—} (asin Example 87).

Unlike columns, if the associated column index of (key!) is greater that the associated
column index of (key2), the start and end references will be switched round.

row=(n)

The row index. This must be set to a positive number for an action that requires a row reference
by index.

o

The row index is a reference to the internal data and is unrelated to references in the original
source (such as line numbers in a CSV file).

225

3. Databases (datatool package)

row2=(n)

The second row index. This must be set to a positive number for an action that requires a second
row reference by index.

=
assign={ (key=value list) }

A (key)=(value) list of assignments. For example, this can be used in the new row action
to assign values to specific columns according to the column key, in this case the (key) part
in (key)=(value) is the column key. In the case of actions such as pie chart and bar
chart, each (key) part is a placeholder command.

[=]

o=

options={{(list)}

A comma-separated list or (key)=(value) list used by certain actions. In the case of the display
action, this provides the option list to pass to \DTLdisplaydb*. For example:

\DTLaction[options={only-keys={Product,Price}}]
{display}

This is equivalent to:

\DTLdisplaydb* [only-keys={Product,Price}] {(default-name)}

Whereas with the 2ggregate action, options provides a list of required aggregate func
tions.

value=(value)

A value needed by certain actions. For example, in the case of the new ent ry action, the
value setting is the value to add to the database:

\DTLaction[key=Price,value=\$1.23]{new entry}

\.

This is equivalent to:

\DTLnewdbent ry{ (default-name)} {Price}{\$1.23}

where (default-name) is obtained from the de fault -name setting.

226

3. Databases (datatool package)

L2
If value, expand-value or expand—-once—value occur in the same option

list then they will override each other. The last one in the list will take precedence.

7

(=]

==

expand-value=(text)

This is equivalent to using the value key with (fext) fully expanded.

=]

==

expand-once-value=(fext)

This is equivalent to using the value key with (text) expanded once. This is the best setting to
use if you have a placeholder command or token list. For example,

\newcommand{\price}{\$1.23}
\DTLaction]|

key=Price,
expand-once-value=\price
]{new entry}

type=(value)

The data type (see §2.2), where the value may be one of: string, integer (or int),
decimal (or real),or currency.
l =

==

return={ (assign-list) }

Secondary (but not primary) values can also be obtained with the ret urn setting, which should
provide a comma-separated list of (cs)=(property) assignments. Each listed control sequence
(cs) will be defined to the value of the secondary property identified by (property). This may be
used instead of, or in addition to, using \DTLget.

[=

=
datum={ (key=value list) | true | false} default: true; initial: false

This setting governs whether or not secondary return values should be formatted as datum items.
It’s primarily intended as a shortcut for actions such as aggregate to avoid the cumbersome
use of \dt lroundand \DTLdecimaltolocale to format the results.

227

3. Databases (datatool package)

[i
=
The datum setting doesn’t affect primary return values. However, since the primary

return value is often (but not always) duplicated in the secondary set, the formatted value
can be obtained from the applicable secondary property. Complex secondary values that
have their own markup, such as the seq return property for the 2ggregate action are
also not affected.

J

Available values are: datum=false (don’t format secondary return values), datum=
t rue (format secondary return values without changing the datum settings) or datum=
{ (key=value list) } to enable with the given subset of dat um settings. For example, dat um=
{round=2, currency=\$}. Note that dat um=t rue is essentially the same as dat um
={}.
G

= |
The original numeric value can still be obtained with a combination of \DTLget to fetch

the value as a datum control sequence and \DTLdatumvalue to extract the plain
number (see Example 67). With \DTLuse, the formatted number will be inserted into
the document. There’s little advantage in using dat um with text-only return values.

J

If datumis not set to £alse, then the secondary value format (in the string part of the
datum item) can be adjusted according to the following options, which may be set in dat um=
{ (key=value list) } . However, in the case of secondary return values that simply provide elements
from the database (such as those from the select row action), the return values will be
datum items (obtained using \DTLparse), but won’t be governed by the options listed below.

(@

locale-integer=(boolean) default: true; initial: false

If this boolean option is t rue, then the string part of secondary return values that are known
to always be integers (if set), such as a column or row index, will be formatted according to the
current localisation setting.

[©

=
locale-decimal=(boolean) default: true; initial: true

If this boolean option is t rue, then the string part of calculated numeric datum items (such
as sum or mean) will formatted according to the current localisation setting. If this option is
false, the string part will use a plain number but it will still be affected by the currency
and round options. Note that the sum return property is always considered a decimal in this
context, even if only integer values were summed. =

=
currency=false|match|default | (symbol) default: default;

initial: match

This option only governs decimal return values that have been calculated (such as the sum or

228

3. Databases (datatool package)

mean in the aggregate action). Available option values:
* false: no currency symbol is inserted;

* match: the matching currency symbol will be inserted if one was found in the original
data;

* default: the default currency symbol will be inserted before all calculated decimal
values (regardless of whether or not the original values were identified as currency);

* (symbol): the given currency symbol will be inserted before all calculated decimal values
(regardless of whether or not the original values were identified as currency).

(=

round=(number) | false default: 0 initial: false

This option only governs decimal return values that have been calculated (such as the sum or mean
in the aggregate action) and indicates whether the value should be rounded. The keyword
false oranegative value may be used to prevent rounding. Otherwise the value should be set
to a non-negative number indicating the required number of decimal places.

Example 69 uses the “pricelist” database (see §3.2.5), which has an integer column labelled
“Quantity” and a currency column labelled “Price”. The aggregates for both columns can be

obtained with the aggregate action:

\DTLaction]|
key=Quantity,
key2=Price,
options={sd, min, max}

]l {aggregate}

Quantity column index: \DTLuse{column}.
Total quantity: \DTLuse{sum}.

Average quantity: \DTLuse{mean}.

Quantity standard deviation: \DTLuse{sd}.
Minimum quantity: \DTLuse{min}.

Maximum quantity: \DTLuse{max}.

Price column index: \DTLuse{column?}.
Total price: \DTLuse{sum2}.

Average price: \DTLuse{mean2}.

Price standard deviation: \DTLuse{sd2}.
Minimum price: \DTLuse{min2}.

Maximum price: \DTLuse{max2}.

229

(269

3. Databases (datatool package)

This displays all the statistics as plain numbers (Example 69). Using datum will produce
formatted numbers for the calculated values (but not for the column index):

\DTLaction]|
datum={round=2},
key=Quantity,
key2=Price,
options={sd, min, max}
] {aggregate}

Note that this will convert the total, minimum and maximum quantities to decimals rounded to
2 decimal places (but not the column index). The actual numeric values can be obtained with
\DTLget and \DTLdatumvalue:

Quantity column index: \DTLuse{column}.

Total quantity: \DTLuse{sum}

(\DTLget [sum] {\theTotal}\DTLdatumvalue{\theTotal}) .
Average quantity: \DTLuse{mean}.

Quantity standard deviation: \DTLuse{sd}.

Minimum quantity: \DTLuse{min}

(\DTLget [min] {\theMin}\DTLdatumvalue{\theMin}) .
Maximum quantity: \DTLuse{max}

(\DTLget [max] {\theMax}\DTLdatumvalue{\theMax}) .

Note the difference if a currency symbol is enforced:

\DTLaction]|
datum={round=2, currency},
key=Quantity,
key2=Price,
options={sd, min, max}

] {aggregate}

This converts all the quantity aggregate values to currency, which is inappropriate in this case.

230

3. Databases (datatool package)

£ Example 69: Automatically Formatting Values Calculated by Actions \EEE

1 Default datum=false

Quantity column index: 2. Total quantity: 1549. Average quantity: 516.3333333333333.
Quantity standard deviation: 662.6584506532927. Minimum quantity: 3.
Maximum quantity: 1452.

Price column index: 3. Total price: 9.97. Average price: 516.3333333333333.
Price standard deviation: 513.011516104225. Minimum price: 1.99. Maxi-
mum price: 4.99.

2 datum={round=2}

Quantity column index: 2. Total quantity: 1,549.00 (1549). Average quan-
tity: 516.33. Quantity standard deviation: 662.66. Minimum quantity: 3.00
(3). Maximum quantity: 1,452.00 (1452).

Price column index: 3. Total price: $9.97. Average price: $516.33. Price
standard deviation: $513.01. Minimum price: $1.99. Maximum price: $4.99.

3 datum={round=2,currency}

(All aggregate values become currency!)

Quantity column index: 2. Total quantity: $1,549.00 (1549). Average
quantity: $516.33. Quantity standard deviation: $662.66. Minimum quan-
tity: $3.00 (3). Maximum quantity: $1,452.00 (1452).

Price column index: 3. Total price: $9.97. Average price: $516.33. Price
standard deviation: $513.01. Minimum price: $1.99. Maximum price: $4.99.

3.4. Creating a New Database

This section describes commands that may be used in a document to create a database or to locally
or globally alter a database. The g1 oba 1 option determines whether or not the modifications to
the database are global or local, except for those commands that are listed as specifically global
only. Note that new databases are always globally defined.

The new—value—trim option determines whether or not values are trimmed before
adding to a database, and the new—value—expand option determines whether or not values
should be expanded before adding. The st ore—dat um option determines whether or not the
values should be as a datum item.

231

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 69 Automatically Formatting Values Calculated by Actions
% Label: "ex:actiondatum"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
% custom expandable command:
\newcommand{\limiteded}{limited edition}
% define a database with the name 'pricelist':
\DTLsetup{store-datum,default-name=pricelist}
\DTLaction{new}% create the default database
% 1st row:
\DTLaction[
 assign={
 Product = {The Adventures of Duck and Goose},
 Quantity = {1,452}, Price = {\$1.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Product = {Duck and Goose on Holiday},
 Quantity = {94}, Price = {\$2.99}
 }
]{new row}
% the next value needs to be expanded:
\DTLaction[
key={Notes}, expand-value={\limiteded}]{new entry}
% 3rd row:
\DTLaction[
 assign={
 Product = {The Return of Sir Quackalot},
 Quantity = {3}, Price = {\$4.99}
 }
]{new row}
\begin{document}
 \section{Default datum=false}

\DTLaction[
 key=Quantity,
 key2=Price,
 options={sd,min,max}
]{aggregate}

Quantity column index: \DTLuse{column}.
Total quantity: \DTLuse{sum}.
Average quantity: \DTLuse{mean}.
Quantity standard deviation: \DTLuse{sd}.
Minimum quantity: \DTLuse{min}.
Maximum quantity: \DTLuse{max}.

Price column index: \DTLuse{column2}.
Total price: \DTLuse{sum2}.
Average price: \DTLuse{mean2}.
Price standard deviation: \DTLuse{sd2}.
Minimum price: \DTLuse{min2}.
Maximum price: \DTLuse{max2}.

\section{datum=\{round=2\}}

\DTLaction[
 datum={round=2},
 key=Quantity,
 key2=Price,
 options={sd,min,max}
]{aggregate}

Quantity column index: \DTLuse{column}.
Total quantity: \DTLuse{sum}
(\DTLget[sum]{\theTotal}\DTLdatumvalue{\theTotal}).
Average quantity: \DTLuse{mean}.
Quantity standard deviation: \DTLuse{sd}.
Minimum quantity: \DTLuse{min}
(\DTLget[min]{\theMin}\DTLdatumvalue{\theMin}).
Maximum quantity: \DTLuse{max}
(\DTLget[max]{\theMax}\DTLdatumvalue{\theMax}).

Price column index: \DTLuse{column2}.
Total price: \DTLuse{sum2}.
Average price: \DTLuse{mean2}.
Price standard deviation: \DTLuse{sd2}.
Minimum price: \DTLuse{min2}.
Maximum price: \DTLuse{max2}.

\section{datum=\{round=2,currency\}} (All aggregate values become currency!)

\DTLaction[
 datum={round=2,currency},
 key=Quantity,
 key2=Price,
 options={sd,min,max}
]{aggregate}

Quantity column index: \DTLuse{column}.
Total quantity: \DTLuse{sum}
(\DTLget[sum]{\theTotal}\DTLdatumvalue{\theTotal}).
Average quantity: \DTLuse{mean}.
Quantity standard deviation: \DTLuse{sd}.
Minimum quantity: \DTLuse{min}
(\DTLget[min]{\theMin}\DTLdatumvalue{\theMin}).
Maximum quantity: \DTLuse{max}
(\DTLget[max]{\theMax}\DTLdatumvalue{\theMax}).

Price column index: \DTLuse{column2}.
Total price: \DTLuse{sum2}.
Average price: \DTLuse{mean2}.
Price standard deviation: \DTLuse{sd2}.
Minimum price: \DTLuse{min2}.
Maximum price: \DTLuse{max2}.
\end{document}

Nicola Talbot
Automatically Formatting Values Calculated by Actions (source code)
Example document that demonstrates the datum action setting (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example069.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example069.pdf

3. Databases (datatool package)

(o]

= |
A new database can be created from data in an external file using \DTLread. In that

case, the database is always defined globally because \DTLread introduces an implicit
group to localise the settings passed in the optional argument. See §3.15 for further details.

X

\DTLgnewdb{ (db-name) }

Globally defines a new database with the label (db-name). If a database already exists with the
given label, an error will occur. Alternatively, you can use the new action:

\DTLaction[name={(db-name)}]{new}

[i
=
New databases are always global, regardless of the g1 oba 1 option, because the underlying

registers used to store the database structure have to be globally defined, so \DTLnewdb
is equivalent to \DTLgnewdb.

Before you can add any data to a database, you must start a new row.

X

\DTLnewrow{ (db-name) } modifier: *

This adds a new row to the database identified by the label (db-name). The global option
determines whether or not the change is global. If a database with the given label doesn’t exists, an
error will occur with the unstarred version. The starred version \DTLnewrow* doesn’t check
for existence. Alternatively, you can use the new row action (which checks for existence):

[\DTLaction[name={(db-name)}]{new row}

Once you have added a new row, you can add entries to that row with:

X
\DTLnewdbent ry{ (db-name) } { (col key) } { (value) } modifier: *

This adds an entry with the given value to the column identified by the label {(col key) in the last
row of the database identified by the label (db-name). The g1 obal option determines whether
or not the change is global. Alternatively, you can use the new ent ry action (which checks
for existence):

232

3. Databases (datatool package)

\DTLaction]|
name={ (db-name)} ,
key={(col key)},
value={(value)}

]{new entry}

If a database with the given label doesn’t exists or the row already contains an entry in that
column, an error will occur with the unstarred version. The starred version \DTLnewdb-
entry* doesn’t check for existence of the database, but will still trigger an error if an entry for
the given column already exists.

If a column with the given label doesn’t yet exist, it will be created and the default metadata
will be assigned. The st ore—datum option determines whether or not the value is stored
in the database as a datum item. It will be parsed regardless of that setting in order to set or
update the column data type. The new—value—t rim option determines whether or not the
value should have leading and trailing spaces trimmed. The new—-value—expand option
determines whether or not the value should be expanded.

Note that with the default new—value—expand=false, you can expand a particular
value in \DTLaction{new entry} withthe expand-value or expand—-once
—value action option. With new—-value—expand=true, the value will always have
protected expansion applied.

Example 70 creates a database labelled “mydata” as follows:

[e)

% custom expandable command:
\newcommand{\limiteded}{limited edition}
% define data
\DTLnewdb{mydata}
\DTLnewrow{mydata}% create a new row
% Add entries to the first row:
\DTLnewdbentry

{mydata}% database label

{Product}% column key

{The Adventures of Duck and Goose}% value
\DTLnewdbentry

{mydata}% database label

{Quantity}% column key

{1,452}% value
\DTLnewdbentry
{mydata}% database label
{Price}% column key
{\$1.99}% value

\DTLnewrow{mydata}$% create a new row

233

70

.

3. Databases (datatool package)

o

% Add entries to the second row:
\DTLnewdbentry

{mydata}% database label

{Product}% column key

{Duck and Goose on Holiday}% value
\DTLnewdbentry

{mydata}% database label

{Quantity}% column key

{94}% wvalue
\DTLnewdbentry

{mydata}% database label

{Price}% column key

{\$2.991% value
% the next value needs to be expanded:
\DTLsetup{new-value-expand}
\DTLnewdbentry

{mydata}% database label

{Notes}% column key

{\limiteded}% value
% switch off expansion:
\DTLsetup{new-value-expand=false}
\DTLnewrow{mydata}% create a new row
% Add entries to the third row:
\DTLnewdbentry

{mydata}% database label

{Product}% column key

{The Return of Sir Quackalot}$% value
\DTLnewdbentry

{mydata}% database label

{Quantity}% column key

{3}% value
\DTLnewdbentry
{mydata}% database label
{Price}% column key
{\$4.99}% value

Note that the second row has introduced a fourth column with the label “Notes”. Since the other
rows don’t have this column set, an attempt to access it will result in a null value. Expansion needs
to be switched on when a value must be expanded. This is commonly the case with placeholder
commands. The setting must be switched off again or it will cause the currency symbol to
prematurely expand in the next row (which means the datum parser won’t be able to detect it as

currency).

The contents of the database can now be displayed with:

234

3. Databases (datatool package)

[\DTLdisplaydb{mydata}

This displays the database in a tabular environment, as shown in Example 70.

“ Example 70: Creating a New Database with a Label N\EFIE
Product Quantity Price Notes

The Adventures of Duck and Goose 1,452 $1.99 NULL

Duck and Goose on Holiday 94 $2.99 limited edition

The Return of Sir Quackalot 3 $4.99 NULL

See Example 65 for an equivalent document using \DTLact ion.
Short commands, such as \DTLnewdbent ry don’t permit \par on the argument. If you
have a value that spans multiple paragraphs, you will need to mark the paragraph breaks with:

X

\DTLpar

This is a robust command that simply does \par.

3.5. Deleting or Clearing a Database

Deleting or clearing a database simply undefines or resets the underlying commands and registers
that are used to represent the database.

X

\DTLdeletedb{ (db-name)}

Deletes the database identified by the label (db-name) (that is, the internal commands associated
with the database are undefined). The g1 obal option determines whether or not the change is
global. If a database with the given label doesn’t exists, an error will occur. Alternatively, you can
use the de let e action:

\DTLaction[name={(db-name)}]{delete}

(3

\DTLgdeletedb{ (db-name)}

Globally deletes the database identified by the label (db-name), regardless of the g1 obal setting.
If a database with the given label doesn’t exists, an error will occur.

235

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 70 Creating a New Database with a Label
% Label: "ex:newdb"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
% custom expandable command:
\newcommand{\limiteded}{limited edition}
% define data
 \DTLnewdb{mydata}
\DTLnewrow{mydata}% create a new row
% Add entries to the first row:
\DTLnewdbentry
 {mydata}% database label
 {Product}% column key
 {The Adventures of Duck and Goose}% value
\DTLnewdbentry
 {mydata}% database label
 {Quantity}% column key
 {1,452}% value
\DTLnewdbentry
 {mydata}% database label
 {Price}% column key
 {\$1.99}% value
\DTLnewrow{mydata}% create a new row
% Add entries to the second row:
\DTLnewdbentry
 {mydata}% database label
 {Product}% column key
 {Duck and Goose on Holiday}% value
\DTLnewdbentry
 {mydata}% database label
 {Quantity}% column key
 {94}% value
\DTLnewdbentry
 {mydata}% database label
 {Price}% column key
 {\$2.99}% value
% the next value needs to be expanded:
\DTLsetup{new-value-expand}
\DTLnewdbentry
 {mydata}% database label
 {Notes}% column key
 {\limiteded}% value
% switch off expansion:
\DTLsetup{new-value-expand=false}
\DTLnewrow{mydata}% create a new row
% Add entries to the third row:
\DTLnewdbentry
 {mydata}% database label
 {Product}% column key
 {The Return of Sir Quackalot}% value
\DTLnewdbentry
 {mydata}% database label
 {Quantity}% column key
 {3}% value
\DTLnewdbentry
 {mydata}% database label
 {Price}% column key
 {\$4.99}% value

\begin{document}
\DTLdisplaydb{mydata}
\end{document}

Nicola Talbot
Creating a New Database with a Label (source code)
Example document that creates a simple database and displays it as a table (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example070.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example070.pdf

3. Databases (datatool package)

\DTLcleardb{ (db-name)}

Clears the database identified by the label (db-name). That is, the database is made empty (no
rows or columns) but is still defined. The g1 obal option determines whether or not the change
is global. If a database with the given label doesn’t exists, an error will occur. Alternatively, you
can use the c L ear action:

\DTLaction[name={(db-name)}]1{clear}

(3

\DTLgcleardb{ (db-name)}

Globally clears the database identified by the label (db-name), regardless of the g1 obal setting.
If a database with the given label doesn’t exists, an error will occur.

3.6. Database Conditionals and Metadata

You can test if a database exists with:

X
\DTLifdbexists{(db-name)} {(true)} { (false) }
This does (true) if a database with the label (db-name) exists, otherwise it does (false).
You can test if a database is empty with:
X

\DTL1ifdbempty{(db-name)} { (true) } { (false) }

This does (frue) if a database with the label (db-name) is empty, otherwise it does (false). If a
database with the given label doesn’t exists, an error will occur.
If you have I£TEX3 syntax enabled, you can also use:

\datatool_db_state:nnnn{ (db-name)} { (not empty)} { (empty) } { (not
exists) }

This is a shortcut that combines \DTL1 fdbexistsand \DTL1 fdbempty. If the database
identified by (db-name) exists and is not empty, this does (not empty), if it exists but is empty,
this does (empty). If the database doesn’t exist, this does (not exists).

The metadata associated with a database consists of the identifying database label, the number
of columns, the number of rows, and the column metadata.

236

3. Databases (datatool package)

Rows in a database are only identified by an index (starting from 1). Columns may be identified
by an index (starting from 1) or by a key (label) that must be unique to the database. You can test
if a database has a column with a given key with:

X
\DTLifhaskey{(db-name)} { (key) } { (true) } { (false) } modifier: *

This does (true) if the database identified by the label (db-name) has a column labelled with the
given (label), and (false) otherwise. The unstarred version will trigger an error if the database
doesn’t exist. The starred version will do (false) if the database doesn’t exist.

If you have I£T|EX3 syntax enabled you may instead use:

\datatool_if_has_key:nnTF {(db-name)} {(key)} {(true)}

{(false) }
\datatool_if_has_key_p:nn {(db-name)} {({key)}

This tests if the database with the label (db-name) exists and has a column with the given (key).
(\DTLifhaskey* is now simply defined to use \datatool_1if_has_key:nnTF.)

X

\DTLrowcount { (db-name) }

Expands to the number of rows in the database identified by the label (db-name). No check is
made for existence, but you will get a “Missing number, treated as zero” error if the database
hasn’t been defined.

X

[\DTLcolumncount { (db-name) }

Expands to the number of columns in the database identified by the label (db-name). No check is
made for existence, but you will get a “Missing number, treated as zero” error if the database
hasn’t been defined.

The column metadata not only consists of the index and unique key, but also a header and
the column data type (see §2.2). When an entry is added to a database the entry is parsed to
determine its data type, and the column metadata is updated. For example, if an integer is the
first element to be added to a column, the column metadata will be updated to set the column
data type to integer. If a decimal is then added to that column, the metadata will be updated to
“real number”. If another integer is added, the metadata won’t be updated as the “real number”
type takes precedence.

Some advanced commands require the column index rather than the column key. You can
lookup the index from the key with:

X
\DTLgetcolumnindex{(cs)} { (db-name) } { {col key) } modifier: *

237

3. Databases (datatool package)

This will define the control sequence (cs) to expand to the index of the column labelled (col
key) for the database identified by the label (db-name). The starred version doesn’t check if
the database or column exists. The unstarred version will trigger an error if either the database
doesn’t exist or doesn’t have a column with the given key. Alternatively, you can use the co L umn
1ndex action:

\DTLaction[key={{(colkey)}]{column index}
Index: \DTLuse{}.
Or: \DTLget{(es)} index: \cs.

Note that \DTLgetcolumnindex is robust. If you want the column index in an expand-
able context you can use:

X

SRR

\dtlcolumnindex{ (db-name)} {(col key)}

This will expand to O if the database or column don’t exist, otherwise it will expand to the column
index. (Note that prior to version 3.0, this would expand to \ relax if the database or column
didn’t exist.)

If you want the reverse, that is the column key given the column index, you can use:

X
\DTLgetkeyforcolumn{{cs)}{ (db-name)} { {col idx) } modifier: *

This gets the key for the column with the index (col idx) from the database identified by the label
(db-name) and defines the control sequence (cs) to expand to that value. The starred version
\DTLgetkeyforcolumn* doesn’t check if the database or column exists.

The column data type is used in some commands, such as \DTLd1isplaydb (where the
column data type determines the column alignment). However, if the data isn’t stored as a datum
item, it will have to be reparsed for commands like \DTLmaxforkeys. It’s more efficient
touse store—datum=true, but if you do so, you will need to remember that a command
that is set to an element value (such as those in an assignment list in \DTLforeach) will be a
datum control sequence rather than a command whose expansion text is the original value.

You can look up the column data type with:

X
\DTLgetdatatype{{cs)} { (db-name) } { (col key) } modifier: *

This will define the control sequence (cs) to expand to the data type ID for the column labelled (col
key) in the database identified by (db-name). The starred version doesn’t check if the database
and column are defined. The unstarred version will trigger an error if either are undefined.

Alternatively, you can use the column dat a action, which will get the index, key, type
and header from the column key or column index. For example, the following will display the
meta data for the first column:

238

3. Databases (datatool package)

\DTLaction[column=1]{column data}
Column 1 key: \DTLuse{key},
title: \DTLuse{header},

type: \DTLuse{type}.

The following fetches the meta data for the column identified by the key Name:

\DTLaction[key=Name] {column data}

\DTLget [column] \colidx Column index: \colidx.
\DTLget [header]\colheader Column title: \colheader.
\DTLget [type] \coltype Column type: \coltype.

The data type ID will be one of: O (string), 1 (int), 2 (real), 3 (currency), or empty for unset
(which typically means there are no non-empty elements in the column). There are commands
provided that expand to the corresponding ID:

X

\DTLunsettype

This expands to nothing and so can be used to check for the unset ID. Note that this is different
from the way that datatool—base identifies unknown types (which have an ID of —1). The other
IDs have the same numeric value as those used by datatool—base.

b §
\DTLstringtype
This expands to 0 and so can be used to check for the string ID.
b §
\DTLinttype
This expands to 1 and so can be used to check for the integer ID.
X
\DTLrealtype
This expands to 2 and so can be used to check for the real number ID.
X
\DTLcurrencytype

This expands to 3 and so can be used to check for the currency ID.

The column header defaults to the column key, but may be changed. For example, when
reading a CSV or TSV file with \DTLread, the headers can be set with the headers option.
Alternatively, you can use:

239

3. Databases (datatool package)

X
\DTLsetheader {(db-name) } { (col key) } { (header) } modifier: *

This sets the header for the column labelled (col key) in the database identified by (db-name).
The starred version doesn’t check if the database exists. The unstarred version will trigger an
error if the database doesn’t exist.

Normally new column metadata is automatically added when an entry is added with a new key.
However, you can also add a new column with:

PR

X
\DTLaddcolumn{ (db-name)} {{col key) } modifier: *

This increments the column count for the database identified by (db-name) and assigns the label
(col key). The header is also set to (col key) and the data type is initialised as “unknown”. This
doesn’t add an entry to the database. It just modifies the metadata.

If you want to add a new column with a header that isn’t the same as the column key, then you
use:

X
\DTLaddcolumnwithheader{(db-name)} {{col key) } { (header) } modifier: *

This has the same effect as:

\DTLaddcolumn{{db-name) } { (col key) }
\DTLsetheader{(db-name) } { (col key) } { (header) }

but it’s shorter and slightly quicker. Alternatively:

\DTLaction[name={(db-name)}, key={(col key)}, value={ (header)}]
{add column}

or set the database name as the default so you don’t have to keep supplying it:

\DTLsetup{default-name={(db-name)} }
\DTLaction[key={{col key)}, value={{(header)}]{add column}

Be careful about defining columns that aren’t required as you can end up with null values (which
isn’t the same as an empty value). Example 71 defines two columns but no value is added to the
second column in any of the rows:

=

\DTLnewdb{mydata}
\DTLaddcolumnwithheader{mydata} {name} {Name}
\DTLaddcolumnwithheader{mydata}{address}{Address}

240

3. Databases (datatool package)

\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{name}{Zoé&}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{name}{José}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{name}{Dickie}
% this row has an empty name:
\DTLnewrow{mydata}

\DTLnewdbentry{mydata}{name}{}

Number of rows: \DTLrowcount{mydata}.
Number of columns: \DTLcolumncount{mydata}.

\DTLdisplaydb{mydata}

Missing values show as “NULL” (see §3.10).

4 Example 71: Column with No Values N\ERE
Number of rows: 4. Number of columns: 2.

Name Address

Z0é NULL

José NULL

Dickie NULL

NULL
3.7. Displaying the Contents of a Database
A database can be displayed in a tabulated form using one of the following commands.
X

\DTLdisplaydb [(omitlist)] { (db-name) }
\DTLdisplaydb* [{options)] { (db-name) }

Displays the content of the database identified by the label (db-name) in a tabular environment.
The optional argument (omit list) should be a comma-separated list of column keys (not indexes)
to omit. To allow for greater flexibility, there is also a starred version where the optional argument
is a (key)=(value) list of options. If the database is large and requires multiple pages, you can

use the following instead:

241

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 71 Column with No Values
% Label: "ex:nullcol"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLnewdb{mydata}
\DTLaddcolumnwithheader{mydata}{name}{Name}
\DTLaddcolumnwithheader{mydata}{address}{Address}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{name}{Zoë}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{name}{José}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{name}{Dickie}
% this row has an empty name:
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{name}{}
\begin{document}
Number of rows: \DTLrowcount{mydata}.
Number of columns: \DTLcolumncount{mydata}.

\DTLdisplaydb{mydata}
\end{document}

Nicola Talbot
Column with No Values (source code)
Example document demonstrating a database with an unused column (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example071.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example071.pdf

3. Databases (datatool package)

\DTLdisplaylongdb [(options)] { (db-name)}

This displays the data in a longtable environment (you will need to load the longtable package).
The options for \DTLdisplaydb* and \DTLdisplaylongdb are listed in §3.7.1.
Associated commands, which can be redefined to make slight adjustments, are listed in §3.7.2.
Examples are provided in §3.7.3.

There are analogous actions: display (for \DTLdisplaydb*)anddisplay long
(for \DTLdisplaylongdb). For example:

\DTLaction[name={mydata}, options={only-keys=
{Name, Description}}]{display}

or

\DTLsetup{default-name=mydata}
\DTLaction[options={only-keys={Name,Description}}]
{display}

are equivalent to:

\DTLdisplaydb* [only—-keys={Name,Description}] {mydata}

As from version 3.0, both \DTLdisplaydband \DTLdisplaylongdb use a private
token list variable (content-tl-var) to construct the content of the tabular or longtable environment.
This removes the loop from within the alignment and avoids the need to globally set variables.
Once construction of (content-tl-var) has been completed, (content-tl-var) is then expanded.

The pre—content option value is placed immediately before (content-tl-var), so you
can set pre—content to \show for debugging purposes. This will show the tokens in
(content-tl-var) in the transcript (and (content-tl-var) won’t be expanded).

3.7.1. Display Options

Most of these options can be used with both \DTLdisplaydb* and \DTLdisplay-
longdb. However, some are only available with one or other command. If you are using
the displayordisplay long actions, you can specify these options in the options
action setting.

(@]

|
When datatool v2.0 introduced \DTLd1isplaylongdb, options were defined using

the xkeyval interface. In version 3.0, the xkeyval package has been dropped in favour
of the newer I3keys interface. If you previously used \setkeys{displaylong}
{ (options) } to set the options (instead of using the optional argument), you will need to

242

3. Databases (datatool package)

switch to \DTLsetup{display=1{{options)}}.

3.7.1.1. General
(=

=
init=(code) initial: empty

The value should be code to insert after the options have been processed and before the content
token list variable construction starts. This may be used to initialise variables for use in other
hooks (see Example 78).

=
pre-content=(code) initial: empty

The value should be code to insert immediately before the token list containing the tabular
environment. You can set the value to \ show for debugging purposes, and it will show rather
than typeset the content. Any local redefinitions within (code) will be scoped. For example, this
option can be used to adjust \talbcolsep or longtable settings.

(i]

L
You can’t use pre—content to locally redefine customization commands, such as
\dt1ldisplaydbenv, as they will have already been expanded.

[=
=
per—row=(number) initial: 1

The number of database rows per tabular (or longtable) row. Note that the row number \dt 1 row-
num is incremented per included database row and the column number \dt 1columnnum is
incremented per included column regardless of this option. For example, with pe r—row=2
then \dt 1 rownum and the (row-num) argument of \DTLdisplaydbAddItem will
first be 1 and then 2 for the first tabular line that follows the header (not including any additional
content that may have been inserted by hooks).

[=]

=

row—idx-map-inline={(defn)

The value should be the definition of a command that takes a single parameter which will be the
loop iteration index (1 for the first row, 2 for the second etc). The command definition should
expand to the row index to be used for the current iteration. The default behaviour is a direct
mapping from iteration index to the database row index.

243

3. Databases (datatool package)

B

The row index mapping function must expand to an integer between 1 and the total number
of columns for the database. The function is applied before filtering.

For example, to display the contents of the database in reverse order:

row—idx-map-inline={\DTLrowcount{\dtldbname}-#1+1}

ol

row—-idx-map-function={cs)

As above but the value is a command that takes a single argument. For convenience, \DTL-
displayTBrowidxmap is provided for use with per—row that will arrange the data
rows from top to bottom instead of left to right, but note that this won’t work if filtering omits
TOWS.

-—

==

post-row-inline=(defn)

A hook is provided while the tabular content is constructed at the end of each row (before the
\dt1displaycr separating the rows). Unlike \dt 1displaystartrow, which has
its expansion text inserted into the content token list, the post-row hook determines whether or
not to append content to the token list variable or accumulate information for later insertion. The
post—row—1inline option provides a way to define this hook inline.

The hook takes two arguments: (content-tl-var) (the content token list, which contains the
tabular content under construction) and (row idx) (the database row index). If filtering has been
applied, you can access the filtered row index (which is the current tabular row count excluding
header and extra content) with the register \dt 1 rownum. If no rows have been filtered,
\dt lrownum will have the same value as (row idx). The hook isn’t used for excluded rows.

(@]

=
The \dt lcurrent row token register will be available within the hook, so you ac-

cess row information with commands such as \dt lgetentryfromcurrent—
row or \DTLassignfromcurrentrow or actions such as current row
aggregate.

post-row-function={cs)

As post—row—-1inline but provides the name of a function that takes two arguments.

244

3. Databases (datatool package)

=
tabular—env={env-name) default: tabular; initial: tabular

Only available with \DTLdisplaydb* and indicates the environment to use. This is a
shortcut that redefines \dt 1displaydbenv to (env-name) but additionally checks that the
given environment is defined and redefines \dt 1displayvalign to empty, unless (env-
name) is tabular or array, in which case \dt 1displayvalign is redefined to c unless it is
currently defined to t or b.

For example (requires the tabularray package):

E
longtable-env={env-name) default: longtable,; initial: longtable

\DTLdisplaydb* [tabular-env=tblr] {mydata}

Only available with \DTLdisplaylongdb and indicates the environment to use. This is a
shortcut that redefines \dt 1displaylongdbenv to (env-name) but additionally checks
that the given environment is defined. Note that the environment needs to support longtable
syntax.

For example (requires the tabu package):

=

[\DTLdisplaylongdb[longtable-env=longtabu] {mydata}

3.7.1.2. Alignhment

--—
—

jor
string-align={col-spec) initial: 1

This option specifies the alignment for columns with the string data type. It simply redefines
\dtlstringalign to {col-spec).

integer—-align=(col-spec) initial: *

This option specifies the alignment for columns with the integer data type. It simply redefines
\dtlintalign to (col-spec).

=
int-align={col-spec) alias: integer—align

A synonym of integer—-align.

245

3. Databases (datatool package)

=
decimal-align=(col-spec) initial: ©

This option specifies the alignment for columns with the decimal (real) data type. It simply
redefines \dt 1realalign to (col-spec).

[=
=
real-align=(col-spec) alias: decimal-align
A synonym of decimal—align.
[=
S
currency-align={col-spec) initial: *

This option specifies the alignment for columns with the currency data type. It simply redefines
\dtlcurrencyalign to (col-spec).
[=

=
inter—col=(align-spec) initial: empty

This option specifies the inter-column alignment markup. It simply redefines \dt 1between-
cols to (align-spec). For example, inter—col={ | } for a vertical line.
=

=
pre—col=(align-spec) initial: empty

This option specifies the pre-column alignment markup. It simply redefines \dt 1before-
cols to (align-spec). For example, pre—col={| } for a vertical line.
=

=
post—col=(align-spec) initial: empty

This option specifies the post-column alignment markup. It simply redefines \dt laftercols
to (align-spec). For example, post—col={ | } for a vertical line.
=

=
align-specs={specs) initial: empty

This option is essentially a manual override. The value should be the complete column specifica-
tions for the table. If this setting has a non-empty value, the value will be used for the tabular
or longtable (align-spec) argument. The options st ring-align, integer—-align,
decimal—-align,currency—-align,inter—-col,pre—-col,post—col wil
be ignored (although they will still set the underlying commands).

3.7.1.3. Headers and Footers

The header is essentially in the form:

246

3. Databases (datatool package)

(pre-head)
\dtlcolumnheader{(align)}{(header 1)} &
\dtlcolumnheader{{align)} { {(header 2)} &

\dtlcolumnheader {{align)} { (header n)}
(post-head)

where (pre-head) is the expansion text of \dt 1displaystarttab (the same as the value
of the pre—head option), and (header 1) etc are the column headers, and (post-head) is the
value of the post —head option. If \dt1displayafterhead (the same as the value
of after—head) is not empty, this is then followed by:

\dtldisplaycr \dtldisplayafterhead

Each column title in the header row is aligned with:

X
\dtlcolumnheader/ (align)} { (text) } .
where (align) is the header column alignment. This is simply defined as:
[\multicolumn{1}{{align)}{\dtlheaderformat {(sifle)} }
The (align) argument is obtained by:
X

\dtladdheaderalign (align-token-tl) {(type)} {{(col-num)} { (max-cols)}

This adds the appropriate (align) to (align-token-tl), taking into account the pre—col, inter

—col and post—col settings. The default definition will use ¢ (centred) regardless of the
data type. (Note used if header—row is set.) The token list (align-token-tl) is cleared before
calling this command, so you can either append or set it.

--—
—a-

=
pre—head={code) initial: empty

The value should be code to insert immediate before the header. This option simply redefines
\dtldisplaystarttab to (code). Note that with \DTLdisplaylongdb, this will
come after the caption, if provided.

-—
—

o=
post-head=(code) initial: empty

The value should be code to insert at the end of the header (before the end of row). This
option redefines \1_datatool_post_head_t1 to (code). Note that this is different to
after—head which comes after the row end.

247

3. Databases (datatool package)

-—
—

Sa—
after-head={(code) initial: empty

This option simply redefines \dt 1displayafterhead, which comes after the header, to
(code).

For example, to add \midrule (booktabs) after the header, you can either redefine \ dt 1-
displayafterheadto \midrule:

\renewcommand{\dtldisplayafterhead}{\midrule}

oryoucanuse after—head:

\DTLsetup{display={after-head={\midrule}}}

or (for a particular longtable):

\DTLdisplaylongdb[after—-head={\midrule}] {mydata}

| =
header-row={{code)} initial: empty

This option is a manual override that may be used to explicitly set the header row. An empty
value indicates the default header, which is obtained from the column metadata. For example:

\DTLdisplaydb* [header-row={Name & Description}]
{mydata}

You will need to include any required formatting and make sure you have the correct number of

columns.
| (@))

=
no—header=(boolean) default: true; initial: false

A boolean option that indicates that the header should be omitted. Note that this option will not
only omit the header row but also the pre—head, post—headand after—head.
(]
=
The following options default to \c_novalue_t1 which indicates the setting is
switched off. This makes it possible to distinguish between switching off the setting,
and enabling the setting but requiring an empty value. For example, caption={ } will
create a caption with empty text (the table number will be displayed). Whereas the default
caption=\c_novalue_t1 (which would require IfTEX3 syntax to be enabled)
will switch off the setting.

248

3. Databases (datatool package)

=

e

capt ion=(text)

(Only available with \DTLdisplaylongdb.) If set, \capt ion will be inserted at the
start of the header with the supplied value in the argument.
=

==

cont—caption={ftext)

(Only available with \DTLd1isplaylongdb.) If this option is set in addition to capt ion,
the \caption argument for the first header (\endfirsthead) will be obtained from
caption but the \capt ion argument for the subsequent headers (\endhead) will be
obtained from cont —capt ion. This option is ignored if capt ion isn’t set.

[=
=
contcaption={ftext) alias: cont—caption
A synonym of cont—caption.
[=
=
short-caption=(text)

(Only available with \DTLd1isplaylongdb.) If this option is set in addition to capt ion,
the optional argument of \ capt ion in the first header will be set to this value. This option is
ignored if caption isn’t set.

| =
L
shortcaption=(text) alias: short—-caption
A synonym of short—caption.
[=
(Ul
label=(label)

(Only available with \DTLdisplaylongdb.) If this option is set in addition to capt ion,
the \caption in the first header will be followed by \ 1abel { (label) }. This option is
ignored if caption isn’t set.

[(=]

s

foot=(code)

If this option is set, the value will be inserted as the footer. In the case of \DTLdisplaydb,
\dtldisplaycr (code) be inserted before \dt 1displayendtab at the end of the
tabular environment (see \DTLdisplaydbAddEnd). In the case of \DTLdisplay-
longdb, (code) \endfoot will be inserted at the start of the longtable environment (see
\DTLdisplaylongdbAddBegin).

249

3. Databases (datatool package)

last-foot={code)

(Only available with \DTLdisplaylongdb.) If this option is set, (code)\endlast-
foot will be inserted (by \DTLdisplaylongdbAddBegin) as the last footer of the
longtable.

last foot=(code) alias: last-foot
A synonym of last—foot.
3.7.1.4. Filtering

row—-condition-inline={(defn)

The value should be an inline function that takes three arguments: (content-tl-var) (the content
token list variable), (row-idx) (the row index), and (frue) which will contain the code to be
performed if the row should be included. The function should expand to the third argument
({true)) if the row should be included and expand to nothing otherwise. The (frue) code will
include the post-row hook provided by post —row—inlineorpost—-row—function.

o

If you try to reference \ dt 1 rownum within the filter function before the (frue) code,
it will contain the filtered row index of the previous row to be added. The variable is
incremented in the (frue) argument.

The (content-tl-var) argument is the token list variable used to construct the tabular or longtable
body, which the function may append content to (regardless of whether or not it expands to (frue)),
but bear in mind that the content will be before \t abularnewl ine (which is added to the
content token list at the start of the code provided in the third argument of the filter function,
since it’s not possible to tell at the end of the previous row if there are any additional rows that
won'’t be filtered).

For example, to omit all the odd rows:

\DTLdisplaydb* [row-condition-inline=
{\ifodd#2\else#3\fi}] {mydata}

Or to include all rows but insert a blank row before every even row:

250

3. Databases (datatool package)

\DTLdisplaydb* [row-condition-inline={
\ifodd#2 \else \appto#l{\tabularnewline}\fi #3}]
{mydata}

row-condition-function=(cs)

Instead of using an inline function with row—condition—-1inline, you can provide a
function with row—condition-function. The supplied command (cs) must have three
arguments as per the inline function for row—condition—-inline.

Both filter options can access information from the current database row with current row
commands such as \dt lgetentryfromcurrentrow as in Example 75, or an action
that acts on the current row, suchas current row aggregate.

The following options cancel each other out. Only the last listed in the options list will
have effect.

omit-columns={{col idx list) }

The value should be a comma-separated list of column indexes, indicating which columns should

be omitted.
==

omit-keys={{col key list) }

The value should be a comma-separated list of column keys, indicating which columns should be
omitted. Note that this has replaced the now-deprecated om1it option.

=
only-columns={{col idx list) }

The value should be a comma-separated list of column indexes, indicating which columns should
be included.

only-keys={{col key list) }

The value should be a comma-separated list of column keys, indicating which columns should be
included.

251

3. Databases (datatool package)

o

With only—keys and only—columns, the table column order will match the
inclusion order (that is, the order given in the option value). Otherwise, the table column
order will match the column index order (with excluded columns omitted, if applicable).

3.7.2. Associated Commands

The following commands are used by \DTLdisplaydb and \DTLdisplaylongdb to
format the table contents.

X

\dtlheaderformat { (text) }

Used to format the column headers. This defaults to just \textbf {(fext) } Not used if
no—header is set.

[i
=
Version 3.0 has changed the definition of \dt lheaderformat. Previously, the

definition included \hfil to centre the text. The alignment is now performed with
\dtlcolumnheaderand \dt lheaderformat justdeals with any font change.

X

\dtlstringformat {(text)}

Used to format values in columns with the string data type. The default definition simply expands
to (text).

X

\dtlnumericformat { (fext)}

Used to format values in columns with a numeric data type. This command is used by the
following:

X

| S

\dtlintformat {(rext)}

Used to format values in columns with the integer data type. The default definition expands to
\dtlnumericformat {(fext)}.

X

\dtlrealformat {(text)}

Used to format values in columns with the decimal data type. The default definition expands to
\dtlnumericformat {(text)}.

252

3. Databases (datatool package)

\dtlcurrencyformat {(fext)}

Used to format values in columns with the currency data type. The default definition expands to
\dtlnumericformat {(fext)}.

The following token list commands are provided to insert extra content into the tabular or
longtable body.

X
\dtldisplaystarttab initial: empty

The expansion text of this command is inserted before the header. You can either redefine this
command or use the pre—head option. Not used if no—header is set.

X
\dtldisplayafterhead initial: empty

The expansion text of this command is inserted after the header. You can either redefine this
command or use the a fter—head option. Not used if no—header is set.

X
\dtldisplayendtab initial: empty

The expansion text of this command is inserted before the end of the tabular or longtable environ-
ment.

X
\dtldisplaystartrow initial: empty

The expansion text of this command is inserted at the start of each row (except for the first row
of data). Note that you can also insert content by redefining \DTLdisplaydbAddItem
and adding a test for the first column with \datatool_if_row_start:nnTF, asin
Example 85 in §3.7.3.14. (Content can be inserted into the end of each row with post—row
—inlineorpost—row—function).

X
\dtldisplaydbenv initial: tabular

This should expand to the environment name used by \DTLdisplaydb. Note that if you
redefine this command to use an environment that doesn’t take tabular’s optional vertical alignment
argument, you will also need to redefine \dt 1displayvalign to expand to nothing.

You can use the t abul ar—env option instead, which will also redefine \dt 1display-
valign.

X
\dtldisplayvalign initial: c

253

3. Databases (datatool package)

The expansion of this command should be the vertical alignment specifier for the optional argument
of tabular. (Only used with \DTLdi splaydb.) This may be redefined to empty if the optional
argument should be omitted.

For example, to switch to tblr (provided by tabularray):

\renewcommand{\dtldisplaydbenv}{tblr}
\renewcommand{dtldisplayvalign}{}

3

\dtldisplaylongdbenv initial: 1longtable

This should expand to the environment name used by \DTLdisplaylongdb. For example,
to switch to longtabu (provided by tabu):

=

[\renewcommand{\dtldisplaylongdbenv}{longtabu}

Alternatively, you can use the 1ongtable—env option to redefine \dt 1display-
longdbenv.

X
\dtlstringalign initial: 1

The expansion of this command should be the column alignment specifier for columns with
the string data type. The option st ring—align redefines this command. Not used if
align—specs is set to a non-empty value.

X

\dtlintalign initial: v

The expansion of this command should be the column alignment specifier for columns with the
integer data type. The option integer—align (or int—align) redefines this command.
Notused if align—specs is set to a non-empty value.

X

\dtlrealalign initial: ©

The expansion of this command should be the column alignment specifier for columns with the
decimal (real) data type. The option decimal—-align (or real—align) redefines this
command. Not used if a1l ign—specs is set to a non-empty value.

X

\dtlcurrencyalign initial: r

254

3. Databases (datatool package)

The expansion of this command should be the column alignment specifier for columns with the
currency data type. The option currency—align redefines this command. Not used if
align-specs is set to a non-empty value.

X
\dtlbeforecols initial: empty

The expansion of this command is inserted at the start of the alignment specification. The option
pre—col redefines this command. Not used if align—specs is set to a non-empty value.

I
\dtlbetweencols initial: empty

The expansion of this command is inserted between columns in the alignment specification.
The option 1nter—col redefines this command. Not used if align—specs is set to a
non-empty value.

X
\dtlaftercols initial: empty

The expansion of this command is inserted at the end of the alignment specification. The option
post—col redefines this command. Not used if 211 gn—specs is set to a non-empty value.

X

\dtldisplaycr initial: \tabularnewline

The expansion text of this command is inserted between rows. The default definition is \ t ab-
ularnewline rather than \ \ as \\ can interfere with paragraph columns. This allows
\dtlstringalign to be redefined to p where the final column has the string data type.
! (i)
-

The following are robust commands.

. 7

X

\DTLdisplaydbAddItem{ (content-ti-var) } { (item) } { (fmt-cs) } { (type) }
{ (row-num) } { (row-idx) } { (col-num) } { {col-idx) }

This command is used to append an item to the (content-tl-var) token list variable. The (fmt-cs)
argument is the formatting command applicable to the data type (such as \dt1string-
format). The default definition of this command simply appends (fimt-cs) { (item) } to (content-
fl-var). The remaining arguments are ignored by default.

The (type) argument is an integer representing the data type, the (row-idx) argument is the
index to the row in the database that contains (item), and the (col-idx) argument is the index to
the column in the database that contains (item).

The (row-num) and (col-num) arguments correspond to the value of the integer variables that
are incremented for each included row and each included column, respectively. If you use the

255

3. Databases (datatool package)

default options, then these will be the same as the row index and column index, but if you change
the order of the columns or exclude columns or filter out rows or change the mapping from the
loop index to the row index, then they will be different.

With per—row=1, the (row-num) will correspond to the tabular (or longtable) row of data,
excluding the header and any rows inserted by hooks. So the first row following the header will
have (row-num) equal to 1. If all rows in the database are included, then this will also correspond
to the database row index. However, if some rows are excluded via the filter function, then the
(row-num) may be less than the corresponding row index.

Similarly, the (col-num) will correspond to the tabular (or longtable) column number. So
(col-num) will be 1 for the first displayed column but this may not be the first column in the
database.

It becomes more complicated if per—row is greater than 1, as the column number (col-num)
will be reset to 1 at the start of each included database row. The row number (row-num) is
incremented at the start of each included database row. So the first line of the table after the
header row will start with (row-num) equal to 1 but then (row-num) will be 2 at the start of the
next block of data, which is on the same line of the table.

This means that if you want to redefine \DTLdisplaydbAddItem to insert content at
the start of a row, you can test if (col-num) is 1 if you know that pe r—row=1 but if you want
to take into account multiple rows of data per tabular row then you need to use the following
(which requires IIEX3 syntax enabled):

X

\datatool_if_row_start:nnTE {(row-num)} {(col-num)} {(true)}
{(false) }

\datatool_if_row_start_p:nn {{(row-num)} {{(col-num)}

If per—row=1 then this just tests if (col-num) is 1, otherwise it will perform modulo arithmetic
on (row-num) to determine if (col-num) corresponds to the first column.

The per—row option sets the integer variable \1_datatool_display_per_row
_int, which may be used in the definition of \DTLd1isplaydbAddItem for more com-
plex requirements. (See Example 83 in §3.7.3.12.)

A token list variable (align-token-tl) is used to contain the alignment specification that will then
be passed to the alignment argument of the tabular or longtable environment. For each column to
be shown in the table (omitting any that have been filter by the options), the following command
is used to append to (align-token-tl):

X

\dtladdalign (align-token-tl) {(type)} {{col-num)} { (max-cols)}

The (type) is the numeric identifier indicating the column data type, (col-num) is the (tabular or
longtable) column number (not the column index) and (max-cols) is the total number of columns
to be displayed.

256

3. Databases (datatool package)

o

The \dt laddalign command won’t be used if align—specs is set to a non-
empty value. Instead, (align-token-tl) will be set to the value of a1 ign—-specs.

The (type) argument determines whether to append the expansion text of \dt 1string-
align, \dtlintalign, \dtlrealalignor \dtlcurrencyalign to (align-
token-tl).

The last two arguments determine whether to add the expansion text of \dt 1beforecols
((col-num) = 1), \dtlaftercols ((col-num) = (max-cols)) or \dt Lbetweencols
(1 < (col-num) < (max-cols)). Note that \dt laftercols is placed after the alignment
specifier, so that it occurs at the end, whereas \dt 1lbeforecols and \dt lbetween-
cols are placed before.

7

\DTLdisplaydbAddBeqgin {{content-tl-var) } { (align-spec) } { (header) }

Used by \DTLdisplaydb to add the beginning of the tabular environment to the (content-tl-
var) token list variable. The (align-spec) argument is the content of the (align-token-tl) token list
variable containing the column alignment specification (created with \dt 1addalign), and
the (header) argument is the token list containing the header row (where each column header is
encapsulated with \dt lTheaderformat).

The tokens added to (content-tl-var) will be in the form:

\begin{ (tab-env)} [(v-align)] { (align-spec) }
(pre-header) (header) (post-head) (cr)
(after-head)

where (tab-env) is the expansion of \dt 1displaydbenwv, (v-align) is the expansion text of
\dtldisplayvalign, (pre-header) is the expansion text of \dt ldisplaystart-
tab, (cr) is the expansion text of \dt1ldisplaycr, and (after-head) is the expansion
text of \dt1displayafterhead. The [{v-align)] optional argument will be omitted if
\dtldisplayvalign is empty.

(o]

=
The align-specs option can be used to set (align-spec) explicitly, the header

—row option can be used to set (header) explicitly, and the no—header option will
omit (pre-header) (header) (post-head) {(cr) {(after-head).

\DTLdisplaydbAddEnd{ (content-tl-var) }

257

3. Databases (datatool package)

Adds the end tabular code to (content-tl-var) for \DTLd1i splaydb. This consists of:

(final-content) \ end { (tab-env) }

where (final-content) is the expansion text of \dt 1displayendtab, and (tab-env) is the
expansion of \dt 1displaydbenv,
For example, if you want to use tblr (provided by tabularray) instead of tabular and you don’t

need all the hooks:

\RenewDocumentCommand\DTLdisplaydbAddBegin{mmm} {%
\appto#1{\begin{tblr}{#2}#3\\}%

}

\RenewDocument Command\DTLdisplaydbAddEnd{m}{%
\appto#l{\end{tblr}}%

t

K3

\DTLdisplaylongdbAddBeqgin{{content-tl-var)} { (align-spec) } { (header) }

Analogous to \DTLdisplaydbAddBegin but used by \DTLdisplaylongdb to
add the start of the longtable environment to (content-tl-var). This is more complicated than
\DTLdisplaydbAddBegin as it also inserts the caption, label and footer, according to the
caption, short—-caption, cont-caption, label, foot,and last-foot
options.

X

\DTLdisplaylongdbAddEnd/{ (content-tl-var)}

Adds the end longtable code to {(content-tl-var) for \DTLdisplaylongdb. This consists
of:

[(final-content) \end{longtable}

where (final-content) is the expansion text of \dt 1displayendtab.

\DTLdisplayTBrowidxmap/ (idx)}

Provided for use with row—1dx—-map—function, this command expands to a row index
that will arrange data rows from top to bottom instead of left to right when pe r—row is greater
than 1. Note that this is only designed to work when no rows are omitted.

The following variables require I£I|EX3 syntax enabled and are used in some of the above
commands.

258

3. Databases (datatool package)

X
\1l_datatool_caption_tl initial: \c_novalue_tl
A token list assigned by the capt ion key.
X
\1l_datatool_short_caption_t1l initial: \c_novalue_ t1
A token list assigned by the short—caption key.
X
\1l_datatool_cont_caption_tl initial: \c_novalue_t1l
A token list assigned by the cont —capt ion key.
X
\1l _datatool_label t1l initial: \c_novalue_t1l
A token list assigned by the 1 abe 1 key.
X
\1l _datatool_foot_t1l initial: \c_novalue_t1l
A token list assigned by the foot key.
X
\l datatool last foot tl initial: \c_novalue_ tl1
A token list assigned by the Last—foot key.
X
\1_datatool_post_head_t1 initial: \c_novalue_ tl1
A token list assigned by the post —head key.
X
\1l datatool_include_header bool initial: true
A boolean variable corresponding to the inverse of the no—header key.
X
\1l_datatool_display_per_row_int
Set by the pe r—row option.
X

\1l_datatool_display_tab_rows_int

This integer variable is set to the number of rows in the database divided by \1_datatool
_display_per_row_int rounded up. Bare in mind that this doesn’t take any filtering

259

3. Databases (datatool package)

into account. It’s used in \DTLdisplayTBrowidxmap to calculate the loop index to row
index mapping.

3.7.3. Examples
3.7.3.1. Changing the Alignment

Example 72 uses the “product” database (see §3.2.4). This database is short enough to be produced
on a single page within a tabular environment:

@72
B
\DTLdisplaydb{products}

The database has five columns and some of the titles (in the first column) are quite long, which
can lead to an overly wide table. It would be better to allow line wrapping. This can be done by
changing the string column alignment (st ring—align) but this would also affect the second
and third columns. In this case, it’s simpler to use a 1 ign—specs to override the default
alignments for all the columns. Example 72 has:

B
\DTLdisplaydb*[align-specs={p{0.4\1linewidth}llrr}]
{products}

3.7.3.2. Omitting Columns
=73

<]

Example 73 uses the “product” database (see §3.2.4).

The unstarred version of \DTLd 1 sp1laydb has an optional argument that must be a comma-
separated list of column keys that identify which columns to omit. For example, if I want to omit
the Quantity and Price columns:

Ei

\DTLdisplaydb[Quantity,Price] {products}

With the starred version, the optional argument is a (key)=(value) list:

Ei

\DTLdisplaydb* [omit-keys={Quantity,Price}]{products}

Alternatively:

260

3. Databases (datatool package)

“ Example 72: Display Data with Custom Alignment

Title
The Adventures of Duck and
Goose
The Return of Duck and Goose
More Fun with Duck and
Goose
Duck and Goose on Holiday
The Return of Duck and Goose
The Adventures of Duck and
Goose
My Friend is a Duck
Annotated Notes on the ‘Duck
and Goose’ chronicles
‘Duck and Goose’ Cheat Sheet
for Students
‘Duck and Goose”: an allegory
for modern times?
Oh No! The Chickens have Es-
caped!

Author
Sir Quackalot

Sir Quackalot
Sir Quackalot

Sir Quackalot
Sir Quackalot
Sir Quackalot

A. Parrot
Prof Macaw

Polly Parrot
Bor Ing

Dickie Duck

Format
paperback

paperback
paperback

paperback
hardback
hardback

paperback
ebook

ebook
hardback

ebook

Quantity
3

w

20
10

50

11

QR &P

Price (8)
10.99

19.99
12.99

11.99
19.99
18.99

14.99
8.99

5.99
99.99

2.0

261

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 72 Display Data with Custom Alignment
% Label: "ex:displaydbalignspecs"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=products}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Title]{add column}
\DTLaction[key=Author]{add column}
\DTLaction[key=Format]{add column}
\DTLaction[key=Quantity]{add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1st row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {10.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 5, Price = {19.99}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Title = {More Fun with Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 1, Price = {12.99}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Title = {Duck and Goose on Holiday},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {11.99}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 3, Price = {19.99}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 9, Price = {18.99}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Title = {My Friend is a Duck},
 Author = {A. Parrot},
 Format = paperback,
 Quantity = 20, Price = {14.99}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 Title = {Annotated Notes on the ‘Duck and Goose’ chronicles},
 Author = {Prof Macaw},
 Format = ebook,
 Quantity = 10, Price = {8.99}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’ Cheat Sheet for Students},
 Author = {Polly Parrot},
 Format = ebook,
 Quantity = 50, Price = {5.99}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’: an allegory for modern times?},
 Author = {Bor Ing},
 Format = hardback,
 Quantity = 0, Price = {59.99}
 }
]{new row}
% 11th row:
\DTLaction[
 assign={
 Title = {Oh No! The Chickens have Escaped!},
 Author = {Dickie Duck},
 Format = ebook,
 Quantity = 11, Price = {2.0}
 }
]{new row}
\begin{document}
\DTLdisplaydb*[align-specs={p{0.4\linewidth}llrr}]{products}
\end{document}

Nicola Talbot
Display Data with Custom Alignment (source code)
Example document illustrating how to display data in a tabular environment with custom column alignment (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example072.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example072.pdf

3. Databases (datatool package)

\DTLaction[options={omit-keys={Quantity,Price}}]
{display}

These all produce the table shown in Example 73.

N Example 73: Display Data in a Table Omitting Columns N\EFIE

Title Author Format
The Adventures of Duck and Goose Sir Quackalot paperback
The Return of Duck and Goose Sir Quackalot paperback
More Fun with Duck and Goose Sir Quackalot paperback
Duck and Goose on Holiday Sir Quackalot paperback
The Return of Duck and Goose Sir Quackalot hardback
The Adventures of Duck and Goose Sir Quackalot hardback
My Friend is a Duck A. Parrot paperback
Annotated Notes on the ‘Duck and Goose’ chronicles Prof Macaw ebook
‘Duck and Goose” Cheat Sheet for Students Polly Parrot ebook
‘Duck and Goose’: an allegory for modern times? Bor Ing hardback
Oh No! The Chickens have Escaped! Dickie Duck ebook

3.7.3.3. Column Inclusion List

[—~0 574

|

Example 74 uses the “product” database (see §3.2.4).

As an alternative to the previous example, you may prefer to list the columns you want (an
inclusion list). The following indicates that the Author, Title and Price columns should be include.
The other columns will be omitted:

Ei

\DTLdisplaydb* [only—-keys={Author, Title,Price}]
{products}

Or:
Ei

\DTLaction[options={only-keys={Author,Title,Price}}]
{display}

These all produce the table shown in Example 74.

262

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 73 Display Data in a Table Omitting Columns
% Label: "ex:displaydbomit"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=products}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Title]{add column}
\DTLaction[key=Author]{add column}
\DTLaction[key=Format]{add column}
\DTLaction[key=Quantity]{add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1st row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {10.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 5, Price = {19.99}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Title = {More Fun with Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 1, Price = {12.99}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Title = {Duck and Goose on Holiday},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {11.99}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 3, Price = {19.99}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 9, Price = {18.99}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Title = {My Friend is a Duck},
 Author = {A. Parrot},
 Format = paperback,
 Quantity = 20, Price = {14.99}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 Title = {Annotated Notes on the ‘Duck and Goose’ chronicles},
 Author = {Prof Macaw},
 Format = ebook,
 Quantity = 10, Price = {8.99}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’ Cheat Sheet for Students},
 Author = {Polly Parrot},
 Format = ebook,
 Quantity = 50, Price = {5.99}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’: an allegory for modern times?},
 Author = {Bor Ing},
 Format = hardback,
 Quantity = 0, Price = {59.99}
 }
]{new row}
% 11th row:
\DTLaction[
 assign={
 Title = {Oh No! The Chickens have Escaped!},
 Author = {Dickie Duck},
 Format = ebook,
 Quantity = 11, Price = {2.0}
 }
]{new row}
\begin{document}
\DTLaction[options={omit-keys={Quantity,Price}}]{display}
\end{document}

Nicola Talbot
Display Data in a Table Omitting Columns (source code)
Example document illustrating how to display data in a tabular environment with two columns omitted (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example073.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example073.pdf

3. Databases (datatool package)

(2

N Example 74: Display Data in a Table with Named Columns N\EFIE
Author Title Price ($)

Sir Quackalot The Adventures of Duck and Goose 10.99
Sir Quackalot The Return of Duck and Goose 19.99
Sir Quackalot More Fun with Duck and Goose 12.99
Sir Quackalot Duck and Goose on Holiday 11.99
Sir Quackalot The Return of Duck and Goose 19.99
Sir Quackalot The Adventures of Duck and Goose 18.99
A. Parrot My Friend is a Duck 14.99
Prof Macaw Annotated Notes on the ‘Duck and Goose’ chronicles 8.99
Polly Parrot ‘Duck and Goose’ Cheat Sheet for Students 5.99
Bor Ing ‘Duck and Goose’: an allegory for modern times? 59.99
Dickie Duck ~ Oh No! The Chickens have Escaped! 2.0

Note that with only—kevys and only—columns, the table column order will match the
listed columns. Whereas with omit—keys and omit—columns, the table column order
will be in the order that the columns were added to the database.

3.7.3.4. Skipping Rows

(i}
Example 75 uses the “product” database (see §3.2.4).

The row—condition—inline option provides a way to omit rows. If the condition
is quite complicated, you may prefer to define a handler function and reference it with row
—condition—-function.

In Example 75, a command called \product f£ilter is defined which fetches the value
from the “Quantity” column from the current row and only includes rows where that value is

greater than zero:

\newcommand{\productfilter}[3]{%
\dtlgetentryfromcurrentrow
{\theQuantity}%
{\dtlcolumnindex{\dtldbname}{Quantity}}%
\DTLifnumgt{\theQuantity}{0}{#3}{}%
t

This command can now be used as the filter function:

263

2175

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 74 Display Data in a Table with Named Columns
% Label: "ex:displaydbonly"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=products}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Title]{add column}
\DTLaction[key=Author]{add column}
\DTLaction[key=Format]{add column}
\DTLaction[key=Quantity]{add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1st row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {10.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 5, Price = {19.99}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Title = {More Fun with Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 1, Price = {12.99}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Title = {Duck and Goose on Holiday},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {11.99}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 3, Price = {19.99}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 9, Price = {18.99}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Title = {My Friend is a Duck},
 Author = {A. Parrot},
 Format = paperback,
 Quantity = 20, Price = {14.99}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 Title = {Annotated Notes on the ‘Duck and Goose’ chronicles},
 Author = {Prof Macaw},
 Format = ebook,
 Quantity = 10, Price = {8.99}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’ Cheat Sheet for Students},
 Author = {Polly Parrot},
 Format = ebook,
 Quantity = 50, Price = {5.99}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’: an allegory for modern times?},
 Author = {Bor Ing},
 Format = hardback,
 Quantity = 0, Price = {59.99}
 }
]{new row}
% 11th row:
\DTLaction[
 assign={
 Title = {Oh No! The Chickens have Escaped!},
 Author = {Dickie Duck},
 Format = ebook,
 Quantity = 11, Price = {2.0}
 }
]{new row}
\begin{document}
\DTLaction[options={only-keys={Author,Title,Price}}]{display}
\end{document}

Nicola Talbot
Display Data in a Table with Named Columns (source code)
Example document illustrating how to display data in a tabular environment with the specified columns (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example074.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example074.pdf

3. Databases (datatool package)

\DTLaction]|
options={
row—-condition-function=\productfilter,
only—-keys={Title,Quantity,Price}
}
]{display}
N Example 75: Display Data in a Table with Filtered Rows N\EFIE
Title Quantity Price ($)
The Adventures of Duck and Goose 3 10.99
The Return of Duck and Goose 5 19.99
More Fun with Duck and Goose 1 12.99
Duck and Goose on Holiday 3 11.99
The Return of Duck and Goose 3 19.99
The Adventures of Duck and Goose 9 18.99
My Friend is a Duck 20 14.99
Annotated Notes on the ‘Duck and Goose’ chronicles 10 8.99
‘Duck and Goose’ Cheat Sheet for Students 50 5.99
Oh No! The Chickens have Escaped! 11 2.0

3.7.3.5. Referencing Rows

(@]

|
Example 76 uses the “marks” database (see §3.2.1).

J

Unlike \DTLforeach, there is no associated row counter for the display commands. How-
ever, you can borrow the \DTLforeach counters as long as there is no conflict. Example 76
does this to number and label each row. Note that labels must be unique. This can be achieved if
the database has a column that contains unique values. For the marks database, this is the student
number.

The \DTLdisplaydbAddItem hook can be redefined to increment the counter and
insert the label at the start of each row. The start of the row is determined by testing if the
seventh argument of \DTLdisplaydbAddItem ({col-num)) is one. The current
row values action can be used to fetch the student number for the current row.

This can either be done using ISIEX3 syntax:

264

2176

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 75 Display Data in a Table with Filtered Rows
% Label: "ex:displaydbcond"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=products}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Title]{add column}
\DTLaction[key=Author]{add column}
\DTLaction[key=Format]{add column}
\DTLaction[key=Quantity]{add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1st row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {10.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 5, Price = {19.99}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Title = {More Fun with Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 1, Price = {12.99}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Title = {Duck and Goose on Holiday},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {11.99}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 3, Price = {19.99}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 9, Price = {18.99}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Title = {My Friend is a Duck},
 Author = {A. Parrot},
 Format = paperback,
 Quantity = 20, Price = {14.99}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 Title = {Annotated Notes on the ‘Duck and Goose’ chronicles},
 Author = {Prof Macaw},
 Format = ebook,
 Quantity = 10, Price = {8.99}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’ Cheat Sheet for Students},
 Author = {Polly Parrot},
 Format = ebook,
 Quantity = 50, Price = {5.99}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’: an allegory for modern times?},
 Author = {Bor Ing},
 Format = hardback,
 Quantity = 0, Price = {59.99}
 }
]{new row}
% 11th row:
\DTLaction[
 assign={
 Title = {Oh No! The Chickens have Escaped!},
 Author = {Dickie Duck},
 Format = ebook,
 Quantity = 11, Price = {2.0}
 }
]{new row}

\newcommand{\productfilter}[3]{%
 \dtlgetentryfromcurrentrow
 {\theQuantity}%
 {\dtlcolumnindex{\dtldbname}{Quantity}}%
 \DTLifnumgt{\theQuantity}{0}{#3}{}%
}
\begin{document}
\DTLaction[
 options={
 row-condition-function=\productfilter,
 only-keys={Title,Quantity,Price}
 }
]{display}
\end{document}

Nicola Talbot
Display Data in a Table with Filtered Rows (source code)
Example document illustrating how to display data in a tabular environment without certain rows (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example075.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example075.pdf

3. Databases (datatool package)

\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmmaum }
{
\int_compare:nNnT { #7 } = { \c_one_int }
{
\DTLaction[return={ \StudentNo = StudentNo }]
{ current ~ row ~ values }
\tl_put_right:Nn #1 { \DTLrowincr \label }
\tl_put_right:Nx #1 { { \StudentNo } }
}
\tl_put_right:Nn #1 { #3 { #2 } }
t
\ExplSyntaxOff

or with etoolbox commands:

\RenewDocument Command\DTLdisplaydbAddItem
{mmmmmmmm }{%
\ifnum #7 = 1
\DTLaction[return={\StudentNo = StudentNo}]
{current row values}%
\appto#1{\DTLrowincr\label}$%
\eappto#l1{{\StudentNo}}%
\fi
\appto#1{#3{#2}}%
t

In either case, this modification ensures that the first column of each row starts with:

\DTLrowincr\label {(StudentNo) }

where (StudentNo) is the value of the St udentNo entry for the current row.

Note that it’s not necessary for the student number to be displayed in the table. The information
is obtained by looking up the value with the current row wvalues action. An alternative
method is to find out which column the student number is in and insert the code into the start
of that column. This can either be done by referencing the display column number argument
({col-num)) or the database column index argument ({(col-idx)).

The counter needs to be reset before the data is displayed:

265

3. Databases (datatool package)

\DTLrowreset

The data can then be displayed:

\DTLaction{display}

and a particular row can be referenced:

Row \ref{103569}
shows the details for student 103569.

Or if you need to look up the registration number from the student’s name:

D LB (B LB

\DTLaction]|
assign=H
\Surname=Surname,
\Forename=Forename,
\StudentNo=StudentNo
b
options={
inline={%
\DTLifstringeg{\Surname} {Brown}
{\DTLifstringeg{\Forename}{Andy}{#1}{}}{}%
t
}
1{find}
Row \ref{\StudentNo}
shows the details for Andy Brown.

(This method can’t be used for Jane Brown, as there are two students with that name.)

266

3. Databases (datatool package)

£ Example 76: Referencing Rows from Displayed Data N\EFIE
Surname Forename StudentNo Assignl Assign2 Assign3
Smith, Jr John 102689 68 o7 72
Brown Jane 102647 75 84 80
Brown Jane 102646 64 92 79
Brown Andy 103569 42 52 54
Adams Z0oé 105987 o2 48 o7
Brady Roger 106872 68 60 62
Verdon Clare 104356 45 50 48

Row 4 shows the details for Andy Brown.

Note that this example doesn’t show the value of the counter. This can be added with a slight
adjustment to the code in the modified \DTLdisplaydbAddItem to show the counter
value after it has been incremented. For the I£TEX3 version, the change is:

B
\tl_put_right:Nn #1 { \DTLrowincr \DTLthe-
row. ~ \label }

For the etoolbox version, the change is:

\appto#1{\DTLrowincr\DTLtherow. \label}%

This puts the value at the start of the surname column. Example 3.7.3.6 below places the value in
a separate column.

3.7.3.6. Inserting an Extra Column at the Start

Example 77 uses the “marks” database (see §3.2.1).

_[e]

The previous Example 76 incremented a counter at the start of each row with \refstep-
counter and added a label, but the value of the counter wasn’t shown, although a modification
was suggested that would put the value at the start of the first column (which contains the surname).

Example 77 modifies Example 76 to insert an extra column at the start that has the counter
value. This means that the alignment and header information will need to be adjusted.

First, \DTLdisplaydbAddItem needs to insert an extra alignment. For the IXTEX3
code, the modification is:

267

277

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 76 Referencing Rows from Displayed Data
% Label: "ex:displayrowref"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}
\DTLsetup{default-name=marks}
\DTLread{studentmarks.csv}
\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
 { m m m m m m m m }
{
 \int_compare:nNnT { #7 } = { \c_one_int }
 {
 \DTLaction[return={ \StudentNo = StudentNo }]
 { current ~ row ~ values }
 \tl_put_right:Nn #1 { \DTLrowincr \label }
 \tl_put_right:Nx #1 { { \StudentNo } }
 }
 \tl_put_right:Nn #1 { #3 { #2 } }
}
\ExplSyntaxOff
\begin{document}
\DTLrowreset
\DTLaction{display}

\DTLaction[
 assign={
 \Surname=Surname,
 \Forename=Forename,
 \StudentNo=StudentNo
 },
 options={
 inline={%
 \DTLifstringeq{\Surname}{Brown}
 {\DTLifstringeq{\Forename}{Andy}{#1}{}}{}%
 }
 }
]{find}
Row \ref{\StudentNo} shows the details for Andy Brown.
\end{document}

Nicola Talbot
Referencing Rows from Displayed Data (source code)
An example document that loads data from a CSV file and references a row (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example076.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example076.pdf

3. Databases (datatool package)

B
\tl_put_right:Nn #1 { \DTLrowincr \label }
\tl_put_right:Nx #1 { { \StudentNo } }
\tl_put_right:Nn #1 { \DTLtherow & }
For the etoolbox version, the change is:
B

\appto#1{\DTLrowincr\label}$%
\eappto#1{{\StudentNo}}%
\appto#1{\DTLtherow &}%

The extra column can be added to the alignment specifier using pre—col and a corresponding

header (possibly empty) needs to be inserted into the header row:

\DTLrowreset
\DTLaction]|
options={
pre—-col={r},
pre—-head={\bfseries Row &}
}
l{display}

Row 4 shows the details for Andy Brown.

4 Example 77: Inserting a Column at the Start of Displayed Data \EEE
Row Surname Forename StudentNo Assignl Assign2 Assign3

1 Smith, Jr John 102689 68 57 72

2 Brown Jane 102647 75 84 80

3 Brown Jane 102646 64 92 79

4 Brown Andy 103569 42 52 54

5 Adams Zoé 105987 52 48 57

6 Brady Roger 106872 68 60 62

7 Verdon Clare 104356 45 50 48

268

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 77 Inserting a Column at the Start of Displayed Data
% Label: "ex:displayinsertcol"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}
\DTLsetup{default-name=marks}
\DTLread{studentmarks.csv}
\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
 { m m m m m m m m }
{
 \int_compare:nNnT { #7 } = { \c_one_int }
 {
 \DTLaction[return={ \StudentNo = StudentNo }]
 { current ~ row ~ values }
 \tl_put_right:Nn #1 { \DTLrowincr \label }
 \tl_put_right:Nx #1 { { \StudentNo } }
 \tl_put_right:Nn #1 { \DTLtherow & }
 }
 \tl_put_right:Nn #1 { #3 { #2 } }
}
\ExplSyntaxOff
\begin{document}
\DTLrowreset
\DTLaction[
 options={
 pre-col={r},
 pre-head={\bfseries Row &}
 }
]{display}

\DTLaction[
 assign={
 \Surname=Surname,
 \Forename=Forename,
 \StudentNo=StudentNo
 },
 options={
 inline={%
 \DTLifstringeq{\Surname}{Brown}
 {\DTLifstringeq{\Forename}{Andy}{#1}{}}{}%
 }
 }
]{find}
Row \ref{\StudentNo} shows the details for Andy Brown.
\end{document}

Nicola Talbot
Inserting a Column at the Start of Displayed Data (source code)
An example document that loads data from a CSV file and inserts a column at the start showing the row number which can be referenced (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example077.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example077.pdf

3. Databases (datatool package)

3.7.3.7. Adding an Extra Column at the End

(@]

|

[Example 78 uses the “product” database (see §3.2.4).

The previous Example 77 inserted an extra column at the start. Extra columns can be added
to the end using a similar manner. Example 78 uses a slightly different approach that uses the
post-row function and explicitly sets the alignment specification (2 1 i gn—specs) and appends
the extra column header with post —head.

Example 78 has an extra column with the header “Total” that contains the value obtained by

multiplying the quantity by the price. The booktabs package is required for the horizontal rules.

\newcommand{ \productappendtotal} [2]{%
\DTLaction|
return={
\theQuantity=Quantity,
\thePrice=Price
t
] {current row values'}t%
\DTLmul{\theTotal}{\theQuantity}{\thePricel}%
\DTLround{\theTotal}{\theTotal}{2}%
\appto#1{&}%
\eappto#l{\expandonce\theTotal}$%
\DTLadd{\runningtotal}{\runningtotal}{\theTotal}%
t
\DTLaction]|
options={
only-keys={Title,Quantity,Price},
pre—-head={\toprule},
after—-head={\midrule},
align-specs={lrrr},
post—-head={& \dtlcolumnheader{c}{Totall},
init={\def\runningtotal{0}},
post-row-function=\productappendtotal,
foot={\midrule & & & \runningtotal}
}
lI{display}

269

578

3. Databases (datatool package)

£ Example 78: Display Data in a Table with an Extra Column \EEE
Title Quantity Price ($) Total
The Adventures of Duck and Goose 3 10.99 32.97
The Return of Duck and Goose 5 19.99 99.95
More Fun with Duck and Goose 1 12.99 12.99
Duck and Goose on Holiday 3 11.99 35.97
The Return of Duck and Goose 3 19.99 59.97
The Adventures of Duck and Goose 9 18.99 170.91
My Friend is a Duck 20 14.99 299.80
Annotated Notes on the ‘Duck and Goose’ chronicles 10 8.99 89.90
‘Duck and Goose’ Cheat Sheet for Students 50 5.99 299.50
‘Duck and Goose’: an allegory for modern times? 0 59.99 0.00
Oh No! The Chickens have Escaped! 11 2.0 22.00
1,123.96

3.7.3.8. Altering Individual Cell Formatting

(@]

—

Example 79 uses the “balance” database (see §3.2.6).

J

The “balance” database contains numeric data. Since the numbers will be repeatedly parsed,
it’s best to switch on the st ore—dat um setting. A default name for the database can be set at
the same time:

=

\DTLsetup{store-datum,default—-name=balance}

Suppose now that the negative numbers should be shown in red. This can be done by redefining
\dtlrealformat:

=

\renewcommand{\dtlrealformat}[1]{\DTLiflt{#1}{0}
{\color{red}}{}#1}

An alternative method is to redefine \DTLdisplaydbAddItem to perform the test for a
particular column, in this case column 4 (the balance). This also conveniently provides a way to
total the incoming and outgoing columns (columns 2 and 3). Note that some cells are empty so
these are skipped.

270

=79

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 78 Display Data in a Table with an Extra Column
% Label: "ex:displaydbpostrow"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{booktabs}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=products}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Title]{add column}
\DTLaction[key=Author]{add column}
\DTLaction[key=Format]{add column}
\DTLaction[key=Quantity]{add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1st row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {10.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 5, Price = {19.99}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Title = {More Fun with Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 1, Price = {12.99}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Title = {Duck and Goose on Holiday},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {11.99}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 3, Price = {19.99}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 9, Price = {18.99}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Title = {My Friend is a Duck},
 Author = {A. Parrot},
 Format = paperback,
 Quantity = 20, Price = {14.99}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 Title = {Annotated Notes on the ‘Duck and Goose’ chronicles},
 Author = {Prof Macaw},
 Format = ebook,
 Quantity = 10, Price = {8.99}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’ Cheat Sheet for Students},
 Author = {Polly Parrot},
 Format = ebook,
 Quantity = 50, Price = {5.99}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’: an allegory for modern times?},
 Author = {Bor Ing},
 Format = hardback,
 Quantity = 0, Price = {59.99}
 }
]{new row}
% 11th row:
\DTLaction[
 assign={
 Title = {Oh No! The Chickens have Escaped!},
 Author = {Dickie Duck},
 Format = ebook,
 Quantity = 11, Price = {2.0}
 }
]{new row}

\newcommand{\productappendtotal}[2]{%
 \DTLaction[
 return={ \theQuantity=Quantity, \thePrice=Price }
]{current row values}%
 \DTLmul{\theTotal}{\theQuantity}{\thePrice}%
 \DTLround{\theTotal}{\theTotal}{2}%
 \appto#1{&}%
 \eappto#1{\expandonce\theTotal}%
 \DTLadd{\runningtotal}{\runningtotal}{\theTotal}%
}
\begin{document}
\DTLaction[
 options={
 only-keys={Title,Quantity,Price},
 pre-head={\toprule},
 after-head={\midrule},
 align-specs={lrrr},
 post-head={& \dtlcolumnheader{c}{Total}},
 init={\def\runningtotal{0}},
 post-row-function=\productappendtotal,
 foot={\midrule & & & \runningtotal}
 }
]{display}
\end{document}

Nicola Talbot
Display Data in a Table with an Extra Column (source code)
Example document illustrating how to display data in a tabular environment with a custom column appended (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example078.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example078.pdf

3. Databases (datatool package)

\newcommand{\theInTotal} {0}
\newcommand{\theOutTotal} {0}
\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmmum }
{%

\DTLifnullorempty{#2}{}% skip null or empty

{%

\dtlifnumeg{#8}{4}% balance column

{%
\DTLifnumlt{#2}{0}{\appto#l{\color{red}}}{}%

+ %

{%
\dtlifnumeqg{#8}{2}% in column
{\DTLadd{\theInTotal}{\theInTotal}{#2}}%
{%

\dtlifnumeg{#8}{3}% out column
{\DTLadd{\theOutTotal}{\theOutTotal}{#2}}{}%

}%

%

\appto#l{#3{#2}}%

+ %

}

The totals can then be appended with the £oot option. As with the previous example, I've added

rules provided by booktabs:

\DTLaction[options={
after-head={\midrule},
foot=
{\midrule Totals & \theInTotal & \theOutTotal &}
}
]{display}

Note that the eighth argument of \DTLdisplaydbAddItem ({col-idx)) is the column
index, which will always be an integer, so an integer comparison can be used instead of the decimal
\dt1lifnumeq. (Likewise for the (type), (row-num), (row-idx) and (col-num) arguments.)
Since the st ore—datum option has been set, the second argument ((item)) will be in the
datum item format except where it’s empty or null, so the actual numeric value can be obtained
with \datatool_datum_value:Nnnnn, which will require IKTEX3 syntax and the
(type) argument can be checked to ensure that the supplied value is numeric. If you switch on
IATEX3 syntax, you may as well directly use the I3int and 13fp commands:

271

3. Databases (datatool package)

\ExplSyntaxOn
\fp_new:N \l_my_in_total_fp
\fp_new:N \1l_my_out_total_fp
\newcommand{\theInTotal}{
\fp_to_decimal:N \1l_my_in_total_fp
t
\newcommand{\theOutTotal}{
\fp_to_decimal:N \1l_my_out_total_fp
t
\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmmum }
{
\int_compare:nNnT { #4 } > { \c_datatool_string_

int }

{

\int_case:nn { #8 }

{

{ 2}
{
\fp_add:Nn \1l_my_in_total_fp
{ \datatool datum value:Nnnnn #2 }

{ 3}

\fp_add:Nn \1_my_out_total_fp
{ \datatool datum value:Nnnnn #2 }

{4}
{
\fp_compare:nNnT
{ \datatool datum value:Nnnnn #2 } <
{ \c_zero_fp }
{
\tl_put_right:Nn #1 { \color { red } }

}

}
}
\tl _put_right:Nn #1 { #3 { #2 } }

}
\ExplSyntaxOff

272

3. Databases (datatool package)

Note that this relies on the data being stored as datum items. If you’re not sure if this is the case,
you can use \DTLparse, which will check and convert if required.

A
4 Example 79: Adjusting the Item Hook to Calculate Totals and Show N\ERIE R
Negative Numbers in Red

Description in (£) Out (£) Balance (£)

Travel expenses 230 -230
Conference fees 400 -630
Grant 700 70
Train fare 70 0
Totals 700 700

3.7.3.9. Two Database Rows Per Tabular Row (Left to Right)

_[e]

[Example 80 uses the “scores” database (see §3.2.2).

To make it clearer how the data is arranged, Example 80 sorts the data by surname and then
first name. Since the data contains UTF-8 characters, localisation support is used:

\usepackage[locales=en] {datatool}

B

This requires datatool—english, which needs to be installed separately. The sorting is performed
with the sort action:

\DTLaction[assign={surname, forename}] {sort}

B

In order to save space, you may want two database rows per tabular row. This can be done
with the per—row option.

©

\DTLaction]|
options={
per-row=2,
only-keys={forename, surname, score}

¥
I{display}

273

(2180

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 79 Adjusting the Item Hook to Calculate Totals and Show Negative Numbers in Red
% Label: "ex:balancesheet"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents}[noheader,overwrite]{balance.csv}
Description,In,Out,Balance
Travel expenses,,230,-230
Conference fees,,400,-630
Grant,700,,70
Train fare,,70,0
\end{filecontents}
\usepackage{booktabs}
\usepackage{color}
\usepackage{datatool}

\DTLsetup{store-datum,default-name=balance}

\DTLread[
 headers={
 Description,
 in (\pounds),
 Out (\pounds),
 Balance (\pounds)
 }
]{balance.csv}

\newcommand{\theInTotal}{0}
\newcommand{\theOutTotal}{0}
\RenewDocumentCommand \DTLdisplaydbAddItem { m m m m m m m m }
{%
 \DTLifnullorempty{#2}{}% skip null or empty
 {%
 \dtlifnumeq{#8}{4}% balance column
 {%
 \DTLifnumlt{#2}{0}{\appto#1{\color{red}}}{}%
 }%
 {%
 \dtlifnumeq{#8}{2}% in column
 {\DTLadd{\theInTotal}{\theInTotal}{#2}}%
 {%
 \dtlifnumeq{#8}{3}{\DTLadd{\theOutTotal}{\theOutTotal}{#2}}{}% out column
 }%
 }%
 \appto#1{#3{#2}}%
 }%
 }
\begin{document}
\DTLaction[
 options={
 after-head={\midrule},
 foot={\midrule Totals & \theInTotal & \theOutTotal &}
 }
]{display}
\end{document}

Nicola Talbot
Adjusting the Item Hook to Calculate Totals and Show Negative Numbers in Red (source code)
Example document that displays a balance sheet as a table with red negative numbers and an appended row with total incomings and outgoings (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example079.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example079.pdf

3. Databases (datatool package)

This results in the data tabulated with (below the header) database row one (Zoé Adams) and two
(Roger Brady) on the first line, three (Andy Brown) and four (Jane Brown) on the second line,
five (Quinn O Coinn) and six (Evelyn O’Leary) on the third line, and seven (John Smith, Jr) and
eight (Clare Vernon) on the fourth line. That is, the data is arranged from left to right, shifting
down a line every other block of data. For a top to bottom arrange, see Example 81.

N Example 80: Display Two Database Rows Per Tabular Row N\EEE
First Name Surname Score (%) First Name Surname Score (%)
Z0é Adams 52 Roger Brady 58
Andy Brown 42 Jane Brown 75
Quinn O Coinn 91 Evelyn O’Leary 81.5
John Smith, Jr 68 Clare Vernon 45

3.7.3.10. Two Database Rows Per Tabular Row (Top to Bottom)

o

[Example 81 uses the “scores” database (see §3.2.2).

Example 81 is an alternative to Example 80 that has two database rows per tabular row, but
they are now arranged from top to bottom instead of from left to right.

A

[This example won’t work if rows are omitted.

Example 81 is as Example 80 except that it uses the row—1dx—map—function option
to change the mapping from the loop index to the selected row index:

\DTLaction|
options={
per-row=2,
row—idx-map-function=\DTLdisplayTBrowidxmap,
only—-keys={forename, surname, score}
}
] {display}

274

=181

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 80 Display Two Database Rows Per Tabular Row
% Label: "ex:displaydbrepeatcols"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[locales=en]{datatool}
\DTLsetup{store-datum,default-name=scores}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=forename,value={First Name}]{add column}
\DTLaction[key=surname,value={Surname}]{add column}
\DTLaction[key=regnum,value={Student Number}]{add column}
\DTLaction[key=gender]{add column}
\DTLaction[key=parent]{add column}
\DTLaction[key=score,value={Score (\%)}]{add column}
\DTLaction[key=award]{add column}
% 1st row:
\DTLaction[
 assign={ forename = Jane, surname = Brown,
 regnum = 102647, score = 75, award = {\$1,830},
 gender = F, parent = {Ms Brown}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={ forename = John, surname = {Smith, Jr},
 regnum = 102689, score = 68, award = {\$1,560},
 gender = M, parent = {Mr and Mrs Smith}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={ forename = Quinn, surname = Ó Coinn,
 regnum = 103294, score = 91, award = {\$3,280},
 parent = {Mr and Mrs Ó Coinn}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={ forename = Evelyn, surname = O'Leary,
 regnum = 107569, score = 81.5, award = {\$2,460},
 gender = n, parent = {Prof O'Leary}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={ forename = Zoë, surname = Adams,
 regnum = 105987, score = 52, award = {\$1,250},
 gender = f, parent = {Mr and Mrs Adams}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={ forename = Clare, surname = Vernon,
 regnum = 104356, score = 45, award = {\$500},
 gender = Female, parent = {Mr Vernon}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={ forename = Roger, surname = Brady,
 regnum = 106872, score = 58, award = {\$1,350},
 gender = m, parent = {Dr Brady and Dr Mady}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 forename = Andy, surname = Brown, regnum = 103569,
 score = 42, award = {\$980},
 gender = male, parent = {Mr Brown and Prof Sepia}
 }
]{new row}
\begin{document}
\DTLaction[assign={surname,forename}]{sort}
\DTLaction[
 options={
 per-row=2,
 only-keys={forename,surname,score}
 }
]{display}
\end{document}

Nicola Talbot
Display Two Database Rows Per Tabular Row (source code)
An example document that defines data in the document and displays two rows of data in one tabular row (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example080.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example080.pdf

3. Databases (datatool package)

£ Example 81: Display Two Database Rows Per Tabular Row (Top to Bottom) \EEE

First Name Surname Score (%) First Name Surname Score (%)

Z0é Adams 52 Quinn O Coinn 91
Roger Brady 58 Evelyn O’Leary 81.5
Andy Brown 42 John Smith, Jr 68
Jane Brown 75 Clare Vernon 45

3.7.3.11. Stripy Table

o

[Example 82 uses the “marks” database (see §3.2.1).

The new row command (\tabularnewline or \\) is inserted at the start of each row,
except for the first row. This is done after filtering (applied with row—condition—inline
or row—condition—function). Itcan’t be done at the end of the previous row as there’s
no way of telling at that point if there will be another row.

This means that although you can use the filter function to insert code into the content token list
variable, that code will be inserted at the end of the previous row before the new line command.
Therefore, if you want to insert content at the start of a row, it needs to be done in the \DTL-
displaydbAddItem command. The seventh argument of that command is the tabular (or
longtable) column number. This may be different from the eighth argument, which is the database
column index. This means that if you want to insert content at the start of a row, you need to test
if the seventh argument is 1.

G

This example assumes the default pe r—row=1. See Example 83 for per—row=2.

The default definition of \DTLdisplaydbAddItem usesa IKEX3 I3tl command:

\NewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmmum }

{
\tl_put_right:Nn #1 { #3 { #2 } }

s

The first argument is the content token list variable, the second argument is the column content
(item) and the third argument is the formatting command (fmz-cs). The above definition simply
appends (fmt-cs) { (item) } to the token list. This is equivalent to:

275

(2182

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 81 Display Two Database Rows Per Tabular Row (Top to Bottom)
% Label: "ex:displaydbttb"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[locales=en]{datatool}
\DTLsetup{store-datum,default-name=scores}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=forename,value={First Name}]{add column}
\DTLaction[key=surname,value={Surname}]{add column}
\DTLaction[key=regnum,value={Student Number}]{add column}
\DTLaction[key=gender]{add column}
\DTLaction[key=parent]{add column}
\DTLaction[key=score,value={Score (\%)}]{add column}
\DTLaction[key=award]{add column}
% 1st row:
\DTLaction[
 assign={ forename = Jane, surname = Brown,
 regnum = 102647, score = 75, award = {\$1,830},
 gender = F, parent = {Ms Brown}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={ forename = John, surname = {Smith, Jr},
 regnum = 102689, score = 68, award = {\$1,560},
 gender = M, parent = {Mr and Mrs Smith}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={ forename = Quinn, surname = Ó Coinn,
 regnum = 103294, score = 91, award = {\$3,280},
 parent = {Mr and Mrs Ó Coinn}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={ forename = Evelyn, surname = O'Leary,
 regnum = 107569, score = 81.5, award = {\$2,460},
 gender = n, parent = {Prof O'Leary}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={ forename = Zoë, surname = Adams,
 regnum = 105987, score = 52, award = {\$1,250},
 gender = f, parent = {Mr and Mrs Adams}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={ forename = Clare, surname = Vernon,
 regnum = 104356, score = 45, award = {\$500},
 gender = Female, parent = {Mr Vernon}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={ forename = Roger, surname = Brady,
 regnum = 106872, score = 58, award = {\$1,350},
 gender = m, parent = {Dr Brady and Dr Mady}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 forename = Andy, surname = Brown, regnum = 103569,
 score = 42, award = {\$980},
 gender = male, parent = {Mr Brown and Prof Sepia}
 }
]{new row}
\begin{document}
\DTLaction[assign={surname,forename}]{sort}
\DTLaction[
 options={
 per-row=2,
 row-idx-map-function=\DTLdisplayTBrowidxmap,
 only-keys={forename,surname,score}
 }
]{display}
\end{document}

Nicola Talbot
Display Two Database Rows Per Tabular Row (Top to Bottom) (source code)
An example document that defines data in the document and displays two rows of data in one tabular row arranged from top to bottom (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example081.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example081.pdf

3. Databases (datatool package)

\NewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmmum }

{\appto#1{#3{#2}}}

Example 82 creates a stripy table with rows alternately coloured blue and green. The colortbl
package provides \rowcolor:

=

\usepackage{colortbl}

In order to insert \ rowcolor at the start of a row, \DTLdisplaydbAddItem needs to
be redefined to test if the seventh argument is equal to one. The fifth argument is the row number
(excluding the header), so the simplest way to alternate is to test if that value is odd or even. For

example:

\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmm }
{
\int_compare:nNnT { #7 } = { \c_one_int }
{ % first column
\int_if odd:nTF { #5 }
{ % odd row
\tl_put_right:Nn #1 { \rowcolor { blue } }
t
{ % even row
\tl_put_right:Nn #1 { \rowcolor { green } }
t
t
\tl_put_right:Nn #1 { #3 { #2 } }
t
\ExplSyntaxOff

The data can simply be displayed using the di splay action:

\DTLaction{display}

276

3. Databases (datatool package)

£ Example 82: Display Data in a Stripy Table \EEE

Surname Forename StudentNo Assignl Assign2 Assign3

3.7.3.12. Stripy Two Database Rows Per Tabular Row

(@]

| S

[Example 83 uses the “scores” database (see §3.2.2).

Suppose now that you want both a stripy table (like Example 82) and two database rows per
tabular row (like Example 80). Simply adding the option per—row=2 to Example 82 will
cause a problem as the (col-num) argument of \DTLdisplaydbAddItem will loop round,
which will result in \ rowcolor being inserted in the middle of the tabular row.

Example 83 adjusts the redefinition of \DTLdisplaydbAddItemtouse \datatool
if row_start :nnT instead of simply testing if the seventh argument is 1. Bear in mind

that the (row-num) argument will also increment mid tabular row as a new row of data is fetched.

This means that (row-num) will always have an odd value at the start of each tabular row, so it’s
now not as simple as testing if (row-num) is odd:

\ExplSyntaxOn

\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmm }
{
\datatool 1f row_start:nnT { #5 } { #7 }
{ % first column

\int_compare:nNnTF
{ \int_mod:nn #5 2 * \1_datatool_display_
per_row_int }
= \c_one_int

{

277

283

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 82 Display Data in a Stripy Table
% Label: "ex:displaydbstripytable"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{colortbl}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem { m m m m m m m m }
{
 \int_compare:nNnT { #7 } = { \c_one_int }
 { % first column
 \int_if_odd:nTF { #5 }
 { % odd row
 \tl_put_right:Nn #1 { \rowcolor { blue } }
 }
 { % even row
 \tl_put_right:Nn #1 { \rowcolor { green } }
 }
 }
 \tl_put_right:Nn #1 { #3 { #2 } }
}
\ExplSyntaxOff
\begin{document}
\DTLaction{display}
\end{document}

Nicola Talbot
Display Data in a Stripy Table (source code)
An example document that loads data from a CSV file and displays the data with alternate blue and green rows (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example082.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example082.pdf

3. Databases (datatool package)

\tl_put_right:Nn #1 { \rowcolor { blue } }
t
{
\tl_put_right:Nn #1 { \rowcolor { green } }
t
t
\tl_put_right:Nn #1 { #3 { #2 } }
t
\ExplSyntaxOff
The data is display with:

\DTLaction]|
options={
per-row=2,
only-keys=forename, surname, score

}
l{display}
K Example 83: Display Stripy Two Database Rows Per Tabular Row \ERE

First Name Surname Score (%) First Name Surname Score (%)

3.7.3.13. Two Fields in One Column

(@]

| S

Example 84 uses the “marks” database (see §3.2.1).

The marks database has a Surname and a Forename column. Example 84 redefines \DTL-
displaydbAddItem to show both the surname and forename in the same column. The
other columns show the student registration (which disambiguates the students with the same
name) and the assignment marks. This requires the header row to be set withheader—row=to
override the default (which would only show “Surname” in the first column):

278

B84

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 83 Display Stripy Two Database Rows Per Tabular Row
% Label: "ex:displaydbstripyrepeatcols"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{colortbl}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=scores}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=forename,value={First Name}]{add column}
\DTLaction[key=surname,value={Surname}]{add column}
\DTLaction[key=regnum,value={Student Number}]{add column}
\DTLaction[key=gender]{add column}
\DTLaction[key=parent]{add column}
\DTLaction[key=score,value={Score (\%)}]{add column}
\DTLaction[key=award]{add column}
% 1st row:
\DTLaction[
 assign={ forename = Jane, surname = Brown,
 regnum = 102647, score = 75, award = {\$1,830},
 gender = F, parent = {Ms Brown}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={ forename = John, surname = {Smith, Jr},
 regnum = 102689, score = 68, award = {\$1,560},
 gender = M, parent = {Mr and Mrs Smith}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={ forename = Quinn, surname = Ó Coinn,
 regnum = 103294, score = 91, award = {\$3,280},
 parent = {Mr and Mrs Ó Coinn}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={ forename = Evelyn, surname = O'Leary,
 regnum = 107569, score = 81.5, award = {\$2,460},
 gender = n, parent = {Prof O'Leary}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={ forename = Zoë, surname = Adams,
 regnum = 105987, score = 52, award = {\$1,250},
 gender = f, parent = {Mr and Mrs Adams}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={ forename = Clare, surname = Vernon,
 regnum = 104356, score = 45, award = {\$500},
 gender = Female, parent = {Mr Vernon}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={ forename = Roger, surname = Brady,
 regnum = 106872, score = 58, award = {\$1,350},
 gender = m, parent = {Dr Brady and Dr Mady}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 forename = Andy, surname = Brown, regnum = 103569,
 score = 42, award = {\$980},
 gender = male, parent = {Mr Brown and Prof Sepia}
 }
]{new row}
\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem { m m m m m m m m }
{
 \datatool_if_row_start:nnT { #5 } { #7 }
 { % first column
 \int_compare:nNnTF { \int_mod:nn { #5 } { 2 * \l_datatool_display_per_row_int } } = { \c_one_int }
 { \tl_put_right:Nn #1 { \rowcolor { blue } }
 }
 { \tl_put_right:Nn #1 { \rowcolor { green } }
 }
 }
 \tl_put_right:Nn #1 { #3 { #2 } }
}
\ExplSyntaxOff
\begin{document}
\DTLaction[
 options={
 per-row=2,
 only-keys={forename,surname,score}
 }
]{display}
\end{document}

Nicola Talbot
Display Stripy Two Database Rows Per Tabular Row (source code)
An example document that defines data in the document and displays two rows of data in one tabular row with each row colour alternating between blue and green (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example083.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example083.pdf

3. Databases (datatool package)

\DTLaction]|
options={
only-keys=

{Surname, StudentNo,Assignl,Assign2,Assign3},
header—-row=

{Name & Reg.\ No., & Mark 1 & Mark 2 & Mark 3}
}

l{display}

\.

The \DTLdisplaydbAddItemcommand is redefined to test for the first column (as in the
earlier Example 3.7.3.11). Remember that the tabular column number is in the seventh argument,
whereas the database column index is in the eighth argument. In this case, the Surname column
is both the first column in the table and also the first column in the database. The example tests
if the column number is equal to one and, if true, fetches the forename from the current row
(using the current row wvalues action), and stores it in one of the public scratch token
list variables (\ 1__tmpa_t 1). This uses IS[EX3 commands, so the syntax needs to be switched

on temporarily.

\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmm }
{
\int_compare:nNnTF { #7 } = { \c_one_int }
{
\DTLaction[return={ \1l_tmpa_tl = Forename }]
{ current ~ row ~ values }
\datatool_if_ null_or_empty:NTF \1_tmpa_tl
{
\tl_put_right:Nn #1 { #3 { #2 } }
t
{
\tl_put_right:Nx #1
{
\exp_not:N #3 { \exp_not:n { #2 } ,
~ \exp_not:V \1_tmpa_tl }
}
t
}
{
\tl_put_right:Nn #1 { #3 { #2 } }

279

3. Databases (datatool package)

}

}
\ExplSyntaxOff

The test for null or empty (see §3.10) isn’t necessary in this example, as there are no null values
in the example database. It’s provided so that the example can be adapted for other databases.

(@]

=
This example has nested actions. The new definition of \DTLdisplaydbAddItem

uses the current row wvalues action and this will be used within the display
action. However, the underlying display function introduces a scope to limit the effects of
the display options, but that scoping also prevents the inner action from interfering with
the return values of the outer action.

J

Note that the scratch variable must be expanded before being added to the content token
list variable as its value changes at each iteration. However, if there’s a possibility that full
expansion will cause a problem for the formatting command, surname or forename then they
should be protected from expansion (which is achieved with \exp_not :N, \exp_not :n
and \exp_not :V in the above).

If you prefer not to use I&TEX3 commands, the above can be rewritten with \ appto, \eapp-
to and \expandonce, which are provided by etoolbox, \noexpand (a TgX primitive)

and \unexpanded (an e-TgX primitive).

\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmm }
{
\ifnum #7 =1
\DTLaction[return={\Forename=Forename}]
{current row wvalues}
\DTLifnullorempty{\Forename}$%
{%
\appto#1{#3{#2}1%
+%
{%
\eappto#l{\noexpand#3{\unexpanded{#2},
\expandonce\Forename} }%
}%
\else
\appto#1{#3{#2}1%
\fi
t

280

3. Databases (datatool package)

£ Example 84: Display Two Fields in One Column N\EFIE
Name Reg. No., Mark 1 Mark 2 Mark 3
Smith, Jr, John 102689 68 o7 72
Brown, Jane 102647 75 84 80
Brown, Jane 102646 64 92 79
Brown, Andy 103569 42 52 54
Adams, Zoé 105987 52 48 S7
Brady, Roger 106872 68 60 62
Verdon, Clare 104356 45 50 48

3.7.3.14. Calculations, Filtering and Row Highlighting

(@]

;‘

Example 85 uses the “marks” database (see §3.2.1).

J

This example combines elements from previous examples to show the student surname and
forename in the same column (as Example 84), calculates the average score which is appended
in an extra column (similar to Example 78), filters out the rows where the average is below
50 (similar to Example 75) and highlights the rows where the average is above 70 (similar to
Example 3.7.3.11).

The colortbl package is needed for this example as it uses \rowcolor to highlight rows.

=

[\usepackage{colortbl}

Since this example will perform arithmetic calculations and comparisons, the marks database is
loaded with the st ore—datum setting on.

=

\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}

The row condition may be used to skip rows, in a similar way to Example 75 but in this case the
average needs to be calculated, which can be done with the current row aggregate
action.

=

\newcommand{\rowfilter}[3]{%
\DTLaction]|

281

(285

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 84 Display Two Fields in One Column
% Label: "ex:displaydbmergefields"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
 { m m m m m m m m }
{
 \int_compare:nNnTF
 { #7 } = { \c_one_int }
 {
 \DTLaction[return={\l_tmpa_tl=Forename}]
 { current ~ row ~ values }
 \datatool_if_null_or_empty:NTF \l_tmpa_tl
 {
 \tl_put_right:Nn #1 { #3 { #2 } }
 }
 {
 \tl_put_right:Nx #1
 { \exp_not:N #3 { \exp_not:n { #2 }, ~ \exp_not:V \l_tmpa_tl } }
 }
 }
 {
 \tl_put_right:Nn #1 { #3 { #2 } }
 }
}
\ExplSyntaxOff
\begin{document}
\DTLaction[
 options={
 only-keys={Surname,StudentNo,Assign1,Assign2,Assign3},
 header-row={Name & Reg.\ No., & Mark 1 & Mark 2 & Mark 3}
 }
]{display}
\end{document}

Nicola Talbot
Display Two Fields in One Column (source code)
An example document that loads data from a CSV file and displays the data with the forename and surname in a single column (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example084.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example084.pdf

3. Databases (datatool package)

options={mean},datum={round=1},
keys={Assignl-},
return={\AverageScore=mean}
l]{current row aggregatel}% calculate average
\DTLifnumlt{\AverageScore}{50}%
{}% skip if average less than 50
{#3}%

t

The redefinition of \DTLdisplaydbAddItem is similar to that for Example 84 de-
scribed in §3.7.3.13. However, a check is added to determine if the average is above 70 so
that \rowcolor can be added to the content. Note that it can’t be added in the custom
\rowfilter hook as it will end up before \tabularnewl ine, which will be inserted
at the start of the code provided in the third argument of the filter function.

i

If you want to redefine \DTLd1isplaydbAddItem in order to insert content at the
start of a row, make sure to test if the seventh argument (the tabular column number) is 1
rather than the eighth argument (the database column index).

The definition used in §3.7.3.13 already tests the column number rather than the column
index, so only a small addition is required. Note that since the datum action option was
set, the result (\AverageScore) will be a datum control sequence so the actual numer-
ical value can be obtained as a plain number with \DTLdatumvalue, which means that
\fp_compare :nNnT can be used instead of \DTL1i fgt. With I&[5X3 commands, the

definition is now:

\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmmum }
{
\int_compare:nNnTF { #7 } = { \c_one_int }
{
% 1insert highlight i1f average greater than 70
\fp_compare:nNnT
{ \DTLdatumvalue \AverageScore } > { 70 }
{
\tl_put_right:Nn #1 { \rowcolor {yellow} }
t
\DTLaction[return={\1l_tmpa_tl=Forename}]
{ current ~ row ~ values }

282

3. Databases (datatool package)

\datatool_if_null_or_empty:NTF \1l_tmpa_tl
{
\tl_put_right:Nn #1 { #3 { #2 } }
t
{
\tl_put_right:Nx #1
{
\exp_not:N #3 { \exp_not:n { #2 } ,
~ \exp_not:V \1_tmpa_tl }
}
}
}
{
\tl_put_right:Nn #1 { #3 { #2 } }
}
}
\ExplSyntaxOff

Alternatively, if you prefer to use the etoolbox commands:

\RenewDocumentCommand \DTLdisplaydbAddItem
{mmmmmmmm }
{
\ifnum #7 1
% highlight if average greater than 70
\DTLifnumgt { \AverageScore}{70}%
{\appto#l{\rowcolor{yellow}}}{}%
\DTLaction[return={\Forename=Forename}]
{current row wvalues}
\DTLifnullorempty{\Forename}%
{\appto#l{#3{#2}}}%
{%
\eappto#l{\noexpand#3{\unexpanded{#2},
\expandonce\Forename}}%

}%

\else
\appto#l{#3{#2}}%
\fi

}

The post—row—function can be used to append the average (which should still be
available with the custom \AverageScore calculated in the above) in a similar manner to

283

3. Databases (datatool package)

Example 78.

\newcommand{ \appendaverage} [2]{%
\appto#1{&}%
\eappto#l{\expandonce\AverageScore}%

}

The data is again displayed with the d 1 s 1 avy action, but this time there are only three columns:
the student’s name, the student number and the average score. As with Example 78, the tabular
alignment specification must be provided with a1l ign—specs.

\DTLaction|

options={
only—-keys={Surname, StudentNo},
align-specs={lrr},
post-row-function=\appendaverage,
row—-condition-function=\rowfilter,
header-row={Name & Reg.\ No. & Average}

}

l1{display}

A

4 Example 85: Displaying Data with Calculations, Filtering and Row N\ERE
Highlighting

Name Reg. No. Average

Smith, Jr, John 102689 65.7

Brown, Jane 102647 79.7

Brown, Jane 102646 78.3

Adams, Zoé 105987 52.3

Brady, Roger 106872 63.3

284

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 85 Displaying Data with Calculations, Filtering and Row Highlighting
% Label: "ex:displaydbaverages"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{colortbl}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\ExplSyntaxOn
\RenewDocumentCommand \DTLdisplaydbAddItem
 { m m m m m m m m }
{
 \int_compare:nNnTF
 { #7 } = { \c_one_int }
 {
 % insert highlight if average greater than 70
 \fp_compare:nNnT
 { \DTLdatumvalue \AverageScore } > { 70 }
 {
 \tl_put_right:Nn #1 { \rowcolor {yellow} }
 }
 \DTLaction[return={\l_tmpa_tl=Forename}]
 { current ~ row ~ values }
 \datatool_if_null_or_empty:NTF \l_tmpa_tl
 {
 \tl_put_right:Nn #1 { #3 { #2 } }
 }
 {
 \tl_put_right:Nx #1
 { \exp_not:N #3 { \exp_not:n { #2 }, ~ \exp_not:V \l_tmpa_tl } }
 }
 }
 {
 \tl_put_right:Nn #1 { #3 { #2 } }
 }
}
\ExplSyntaxOff

\newcommand{\rowfilter}[3]{%
 \DTLaction[
 options={mean},datum={round=1},
 keys={Assign1-},
 return={\AverageScore=mean}
]{current row aggregate}% calculate average
 \DTLifnumlt{\AverageScore}{50}%
 {}% skip if average less than 50
 {#3}% include this row otherwise
}

\newcommand{\appendaverage}[2]{%
 \appto#1{&}%
 \eappto#1{\expandonce\AverageScore}%
}
\begin{document}
\DTLaction[
 options={
 only-keys={Surname,StudentNo},
 align-specs={lrr},
 post-row-function={\appendaverage},
 row-condition-function={\rowfilter},
 header-row={Name & Reg.\ No. & Average}
 }
]{display}
\end{document}

Nicola Talbot
Displaying Data with Calculations, Filtering and Row Highlighting (source code)
An example document that loads data from a CSV file and displays the data with the forename and surname in a single column and the average mark in the second column with rows highlighted in yellow where the average is above 70 (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example085.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example085.pdf

3. Databases (datatool package)

3.8. lterating Through a Database

A

Iteration is problematic within tabular-like environments. If you really need to have a loop
within a tabular-like environment, use \DTLforeach not \DTLmapdat a. However,
be aware of its limitations. Consider constructing the tabular contents to move the loop
outside of the tabular body. (See §3.9.)

J

The newer command, \DTLmapdat a, is described in §3.8.1. The older command \DTL-
foreach is described in §3.8.2. Both can be used to iterate over rows of a database and both
have a setting that allows the database to be edited. In the case of \DTLmapdat a, the edits
are locally added to a pending buffer and only applied at the end of \DTLmapdata and may
be discarded with \DTLmapdatabreak*. Note that it’s also possible to edit a database
outside of a loop. See §3.12 for those commands.

3.8.1. Iterating Over Rows with \DTLmapdata

\DTLmapdata [(key=value list)] { (loop-body) }

Iterates over the data in a database, performing (loop-body) at each iteration. The available

options are:

=

name=(value)

Identifies the database. If omitted, the default name is assumed (as given by the default

—name option).
[©

=
read-only=(boolean) default: true; initial: true

If true, this setting switches on read-only mode. If false, the database may be edited using
the commands described in §3.8.1.2, such as \DTLsetentry and \DTLrmrow. Note
that the current row editing commands for use with \DTLforeach are not compatible with

\DTLmapdata.
[©

el
allow-edit s=(boolean) default: true; initial: false

This option is an antonym of read—only. If true, this setting switches off read-only mode.
The (loop-body) argument of \DTLmapdata (which may contain paragraph breaks) is
performed at each iteration. Unlike \DTLforeach, which has an optional argument to

285

3. Databases (datatool package)

implement filtering, if you want to skip a row, you will need to add the appropriate conditional
within the loop body.
If you have a long loop, you may prefer to use an environment instead.

\begin{DTLenvmapdata} [(key=value list)]
(content)
\end{DTLenvmapdata}

This just uses \DTLmapdata on the environment body. See Example 193 in §9.6.1 which
uses DTLenvmapdata for mail merging with the supplementary person package.

o

The DTLenvmapdata environment automatically trims leading and trailing spaces from the
loop body, but \DTLmapdata doesn’t.

In both cases, the command \ dt 1 dbname will be defined to expand to the database name,
and, at the start of each iteration, the current row number is stored in the \ dt 1 rownum register.
Unlike \DTLforeach, there is no associated row counter. However, you can borrow the
\DTLforeach counters as long as there is no conflict. This simplest method is to use \DTL-
rowreset before the start of \DTLmapdata and use \DTLrowincr in the loop body.
Alternatively, you can define your own counter.

The loop may be prematurely terminated with:

X
\DTLmapdatabreak modifier: *

The loop will terminate at this point, not at the end of the current iteration. (This is different to
breaking out of \DTLforeach with \dt 1break, which will cause the loop to terminate
at the end of the current iteration.)

With the default read—on 1 y=t rue, there’s no difference between the starred and unstarred
version of \DTLmapdatabreak. Otherwise, the starred version will discard any edits as
well as breaking out of the loop, whereas the unstarred version will break out of the loop but still

apply the edits.
Note that since \DTLmapdatabreak will skip all following content in the rest of the loop
iteration, it can’t be placed within a primitive \ 1 f... ... \ £i conditional as the closing \ £ 1 will

be lost. Similarly, it can’t occur within a non-expandable or scoped context.

If you need to nest \DTLmapdat a, you must scope the inner loop to prevent conflict.
Note that \begin implicitly creates a group, so the DTLenvmapdata environment will
automatically be scoped.

Example 86 uses the student scores database (see §3.2.2) and simply iterates over each row,
printing the database name and row index. The loop will terminate on the third row. Note that

286

(286

3. Databases (datatool package)

the environment body has the leading and trailing spaces trimmed so “(after break)” at the end of
one loop runs into “scores” at the start of the next.

Command: \DTLmapdata({
\dtldbname: row \the\dtlrownum.
\dtlifnumeg{\dtlrownum}{3}{\DTLmapdatabreak}{}
(after break)

}

Environment :

\begin{DTLenvmapdata}
\dtldbname: row \the\dtlrownum.
\dtlifnumeg{\dtlrownum}{3}{\DTLmapdatabreak}{}
(after break)

\end{DTLenvmapdata}
£ Example 86: Iterating Over Rows with \DTLmapdata and \EEE
DTLenvmapdata

Command: scores: row 1. (after break) scores: row 2. (after break)

scores: TOW 3.
Environment: scores: row 1. (after break)scores: row 2. (after

break)scores: row 3.

3.8.1.1. Accessing Data in the Current Row of \DTLmapdata

Within the loop body of \DTLmapdata, you can access values in the current iteration row
using:

X

\DTLmapget { (key=value list) }

The argument is a (key)=(value) list. Allowed options are listed below. Either key or column
is required to identify the value by its column label or index. If both are used, they will override

each other.

=
kevy=(value)

The value should be the label used to identify the required column.

287

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 86 Iterating Over Rows with \DTLmapdata and DTLenvmapdata
% Label: "ex:mapdata"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=scores}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=forename,value={First Name}]{add column}
\DTLaction[key=surname,value={Surname}]{add column}
\DTLaction[key=regnum,value={Student Number}]{add column}
\DTLaction[key=gender]{add column}
\DTLaction[key=parent]{add column}
\DTLaction[key=score,value={Score (\%)}]{add column}
\DTLaction[key=award]{add column}
% 1st row:
\DTLaction[
 assign={ forename = Jane, surname = Brown,
 regnum = 102647, score = 75, award = {\$1,830},
 gender = F, parent = {Ms Brown}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={ forename = John, surname = {Smith, Jr},
 regnum = 102689, score = 68, award = {\$1,560},
 gender = M, parent = {Mr and Mrs Smith}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={ forename = Quinn, surname = Ó Coinn,
 regnum = 103294, score = 91, award = {\$3,280},
 parent = {Mr and Mrs Ó Coinn}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={ forename = Evelyn, surname = O'Leary,
 regnum = 107569, score = 81.5, award = {\$2,460},
 gender = n, parent = {Prof O'Leary}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={ forename = Zoë, surname = Adams,
 regnum = 105987, score = 52, award = {\$1,250},
 gender = f, parent = {Mr and Mrs Adams}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={ forename = Clare, surname = Vernon,
 regnum = 104356, score = 45, award = {\$500},
 gender = Female, parent = {Mr Vernon}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={ forename = Roger, surname = Brady,
 regnum = 106872, score = 58, award = {\$1,350},
 gender = m, parent = {Dr Brady and Dr Mady}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 forename = Andy, surname = Brown, regnum = 103569,
 score = 42, award = {\$980},
 gender = male, parent = {Mr Brown and Prof Sepia}
 }
]{new row}
\begin{document}
Command: \DTLmapdata{
 \dtldbname: row \the\dtlrownum.
 \dtlifnumeq{\dtlrownum}{3}{\DTLmapdatabreak}{}
 (after break)
}

% Note that the leading and trailing spaces are stripped in the environment body
Environment:
\begin{DTLenvmapdata}
 \dtldbname: row \the\dtlrownum.
 \dtlifnumeq{\dtlrownum}{3}{\DTLmapdatabreak}{}
 (after break)
\end{DTLenvmapdata}
\end{document}

Nicola Talbot
Iterating Over Rows with \DTLmapdata and DTLenvmapdata (source code)
Example document demonstrating simple iteration with no value lookup (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example086.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example086.pdf

3. Databases (datatool package)

column=(value)

The numeric value should be the index used to identify the required column.

return={(cs)

If set to a non-empty value, the value should be a command which will be defined to the value
obtained from the column (identified by key or column). If the value is empty or omitted
(the default), the value will simply be inserted into the document.

If return=cs is set, you can test if (cs) is null with \DTLifnull. For example:

\begin{DTLenvmapdata}

Dear

\DTLmapget{key=title, return=\Title}% fetch title
\DTLifnull\Title{}{\Title }% ignore title if not set
\DTLmapget{key=forename} \DTLmapget{key=surname}

o\°

\end{DTLenvmapdata}

In the above, if the title isn’t set, it will be omitted, but if the forename or surname columns aren’t
set, they will appear as “NULL”. (Note that a null value is not the same as an empty value, see
§3.10.)

(o]

=
If you used the st ore—datum option to store values in the database as datum items,

then (cs) will be a datum control sequence. You will then be able to use datum commands
such as \DTLdatumvalue and \DTLdatumtype. (See §2.2 for further details.)
Similarly for (cs) in \DTLmaprow, and likewise for assignments in \DTLforeach
and similar commands.

Rather than repeatedly using \DTLmapget for each column, you can instead use:

\DTLmaprow{ {cs)} { (body) }

This command may only be used within the loop body of \DTLmapdata (or DTLenvmapdata)
and iterates over the columns in the current (\DTLmapdat a) iteration row. At the start of
each iteration, the register \dt 1columnnum is set to the column index and {cs) is defined to
the column value. Then (body) is done. You can prematurely break the loop with:

288

3. Databases (datatool package)

\DTLmaprowbreak

This will stop the current \DT Lmaprow loop at that point but won’t stop the \DTLmapdata
loop. As with \DTLmapdatabreak, this command should not be placed inside a primitive
conditional or within a non-expandable or scoped context.

Alternatively, if you prefer the (cs)=(col-key) syntax used with \DTLforeach:

X

\DTLmapgetvalues/ (assign-list) } modifier: *

The (assign-list) argument should be a comma-separated list of (cs)=(col-key) where (cs) is a
command and (col-key) is the label identifying the required column.

If there is no value matching the given column key then the placeholder command (cs) will
be assigned to null (which can be tested with \DTL1i fnull). The unstarred \DTLmapget-
values will trigger an error if the database has no column defined with the given label (col-key)
(as opposed to the column being defined for the database but no value set in that column for the
given row), whereas the starred \DTLmapgetvalues* for won’t and will simply set (cs) to
null.

For example:

\DTLmapgetvalues
{\thePrice=Price, \theQuantity=Quantity}

This is essentially equivalent to:

\DTLmapget {key=Price, return=\thePrice}
\DTLmapget {key=Quantity, return=\theQuantity}

3.8.1.2. Editing Rows

If read-only=false (or allow—edits=true), the following commands are avail-
able for use in the loop body of \DTLmapdata (or within the body of the DTLenvmapdata
environment).

All edits are saved in a local buffer and are only applied to the database at the end of \DTL-
mapdata. This means that any change applied within a scope in the loop body will be lost once
the scope is ended. However, the final update to the database at the end will be applied according
to the current gl obal setting. Pending edits can be discarded by breaking out of the loop with
\DTLmapdatabreak*.

289

3. Databases (datatool package)

(o]

=
The final updates to the database are only performed after the loop has finished. For

example, if the database has 4 rows at the start of the loop and 1 row is removed with
\DTLrmrow, then \DTLrowcount will still expand to 4 until \DTLmapdata
has completed. Edits to the current iteration row will be picked up by any following
\DTLmapget, but \DTLmaprow will only pick up any changes made before the
\DTLmapzrow loop starts.

Some of the edit commands may take a (key)=(value) argument. Common options are:

==

column=(column-index)

Identifies a column by its numeric index. The column does not have to exist if appending is
allowed, but the index must be greater than 0.
[=

==

kevy=(column-key)

Identifies a column by its key. Some commands may allow both column and key. If the
column exists, they must both reference the same column. If the column doesn’t exist, then
column is taken as the column reference and kevy provides a key for that column if a new
column needs to be defined.

=

==

value=(value)

Identifies a value, where one is required.

expand-value=(value)

As value but will fully expand the value.

expand-once-value=(value)

As value but will expand the value once.

\DTLrmrow

Removes the current iteration row. Note that this won’t affect the row indexes of the following
iterations or the total row count, as the edit won’t take effect until the loop terminates.

X

\DTLrment ry { (key=value list) }

290

3. Databases (datatool package)

Removes the entry in the column identified by either column or key. Note that this won’t
delete the entire column but any reference to this column for the given row will result in a null
value (see §3.10).

For example:

\DTLmapdata[allow—-edits] {\DTLrmentry{columnd}}

This will remove the entry in column 4 for every row, but column 4 will still be defined.

\DTLsetentry{ (key=value list) }

Sets the column identified by either column or key to the value identified by value
or expand-value or expand-once-value. Note that the general new-value
—expand and st ore—datum settings will be respected, but the expansion with expand
—value orexpand-once—value occurs before the new—value—expand setting is
implemented.

If the current iteration row already has a value in the given column, the existing value will be
replaced with the new value. If the current row doesn’t have a value in the given column, the
new value will be added. If the desired column doesn’t exist, you will need to identify it with
column. If you also set key that will be used as the label for the new column, otherwise it
will be given the default label (obtained from \dt 1defaultkey (col-idx)).

(@]

= |
Since the database doesn’t get updated until the loop has terminated, you can use co 1l umn

={\DTLcolumncount {\dtldbname}+1} toappend a column. However, it’s
simpler to create the new column first, as in Example 87.

J

Example 87 loads the “marks” database (see §3.2.1) and uses \DTLmapdata to iterate
over each row and append a column containing the average marks for each assignment. The
row aggregate action may be used within \DTLmapdata to calculate the average. For

example:

\DTLaction[key=Average] {add column}
\DTLmapdata[allow-edits]{%

\DTLaction]|
keys={Assignl,Assign2,Assign3},
options={mean},
datum={round=1},% round the result
return={\Mean=mean}

291

5187

3. Databases (datatool package)

{row aggregate}
\DTLifnull{\Mean}% test the return value
{}% row aggregate failed!
{% average calculated successfully
\DTLsetentry{key=Average, expand-value=\Mean}
}

}

A range may be used in keys=, which may be more convenient

\DTLaction]|
keys={Assignl-Assign3},
options={mean},
datum={round=1},% round the result
return={\Mean=mean}

]

Since the new column will have a null value at this point (which will be skipped by the row

aggregate action), an open ended range may be used instead:

\DTLaction]|
keys={Assignl-},
options={mean},
datum={round=1},% round the result
return={\Mean=mean}

]

The database can then be sorted by the average mark and displayed:

\DTLaction[assign={{Average=desc}}]{sort}
\DTLaction{display}

292

3. Databases (datatool package)

£ Example 87: Iterating Over Rows with \DTLmapdata to Append a \EEE
%cillli‘l?lgme Forename StudentNo Assignl Assign2 Assign3 Average
Brown Jane 102647 75 84 80 79.7
Brown Jane 102646 64 92 79 78.3
Smith, Jr John 102689 68 57 72 65.7
Brady Roger 106872 68 60 62 63.3
Adams Zoé 105987 52 48 57 52.3
Brown Andy 103569 42 52 54 49.3
Verdon Clare 104356 45 50 48 47.7

3.8.2. Iterating Over Rows with \DTLforeach

The newer command \DTLmapdata, described in §3.8.1, locally sets internal variables at
each iteration. This means that it can’t be used within a tabular-like environment where the loop
body contains & or \ \ as internal variables will be lost when the scope changes between columns
and rows.

The commands and environments in this section are older and have extra overhead. They were
designed to work in tabular-like environments, so they perform global assignments to workaround
the automatic scoping within cells. However, alignment can be sensitive to certain commands
occurring at the start of a cell or row that can trigger “misplaced \noalign” errors. In which
case, it may be better to use the method suggested in §3.9.

X
\DTLforeach [(condition)] { (db-name) } { {assign-list) } { (body) } modifier: *

Iterates over each row of the database identified by (db-name). This command may be nested up
to three times. The starred version is read-only and therefore faster. The unstarred version allows
the database to be edited within the loop.

Corresponding environments are also available.

\begin{DTLenvforeach} [(condition)] { (db-name) } { (assign-list) }
(content)
\end{DTLenvforeach}

This is equivalent to:

\DTLforeach [(condition)] { (db-name) } { (assign-list) } { (content) }

293

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 87 Iterating Over Rows with \DTLmapdata to Append a Column
% Label: "ex:mapdataedit"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\begin{document}
\DTLaction[key=Average]{add column}
\DTLmapdata[allow-edits]{%
 % an open-ended range may be used as the new column is currently missing from this row:
 \DTLaction[
 keys={Assign1-},
 options={mean},
 datum={round=1},% round the result
 return={\Mean=mean}
]
 {row aggregate}
 \DTLifnull{\Mean}% test the return value
 {}% row aggregate failed!
 {% average calculated successfully
 \DTLsetentry{key=Average,expand-value=\Mean}
 }
}

\DTLaction[assign={{Average=desc}}]{sort}
\DTLaction{display}
\end{document}

Nicola Talbot
Iterating Over Rows with \DTLmapdata to Append a Column (source code)
An example document that loads data from a CSV file and appends a new column (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example087.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example087.pdf

3. Databases (datatool package)

\begin{DTLenvforeach¥*} [(condition)] { (db-name) } { {assign-list) }
(content)
\end{DTLenvforeach*}

This is equivalent to:

~

\DTLforeach™ [{(condition)] { (db-name) } { (assign-list) } { (content) }

Any commands applicable to \DTLforeach are also applicable to the corresponding DTL-
envforeach environment.

[i
=
Verbatim content can’t be used in (body) for either the command or environment.
After \DTLforeach (or DTLenvforeach), the final loop index may be saved with:
) §
\DTLsavelastrowcount {{cs)}

This will locally define (cs) to the final index of the last \DTLforeach loop. Note that this
refers to the counter increment at each iteration where the (condition) evaluates to true, and so
may not be the database row count. If used within the body of a \DTLforeach loop, it will
refer to the last \DTLforeach loop at the next level up. Where the level index is obtained
from the following:

X

\dtlforeachlevel

The current level register is incremented at the start of \DTLforeach and corresponds to the
level index. This will be 1 in the outermost \DTLforeach, 2 within the first nested \DTL-
foreach, and 3 within the second nested \DTLforeach. Each level has an associated
row counter, which is incremented with \refstepcounter, which means you can use
\label at the start of (body) in order to reference a row number, but obviously some method
will be needed to make the label unique, see Example 90 in §3.8.2.2.3.

(@]

=
Ideally \ 1abel should occur as soon as possible after \refstepcounter, and

it must be within the same scope. Therefore if you need to label the rows, ensure that
\label occurs right at the start of (body).

lNo

DTLrowi

294

3. Databases (datatool package)

The DTLrowi counter keeps track of the current row for the first level.

[No
|
DTLrowii
The DTLrowii counter keeps track of the current row for the second level.
[No
=
DTLrowiii

The DTLrowiii counter keeps track of the current row for the third level.

f =
The counter corresponding to the current level is only incremented for rows where the
(condition) is satisfied. This means that if the counter is referenced in (condition) it will

still have its value from the previous row.

lNo

DTLrow

To avoid duplicate hypertargets with hyperref, there is a level O counter DTLrow that is incremented
at the start of every \DTLforeach. Thisensures that \t heHDTLrowi, \theHDTLrowii
and \theHDTLrowiii expand to unique values.

These counters may be used in other contexts, such as with \DTLmapdat a, but take care
that such use doesn’t conflict with \DTLforeach. Bear in mind that these counters don’t
have automatic resets (that is, they are not defined with a parent counter). For convenience, the
following commands are provided to minimise conflict.

X

\DTLrowreset

Increments DTLrow and resets the counter DTLrow(n) where (n) is one more than \dt1for-
eachlevel.

X

\DTLrowincr

Increments the counter DTLrow(n) where (n) is one more than \dt 1foreachlevel.

X

\DTLtherow

Uses \theDTLrow(n) where (n) is one more than \dt 1 foreachlevel.

At the start of each iteration, the assignments given in (assign-list) are made. This argument
should be a (cs)—(col-key) comma-separated list, where (cs) is a command and (col-key) is the
key uniquely identifying a column.

295

3. Databases (datatool package)

Each placeholder command (cs) will be globally defined to the value in the column
identified by (col-key) (or null, if not set) of the current row. There is no test to ensure that
the command isn’t already defined.

The (condition) provided in the optional argument is tested using \ i fthenelse (so the
commands in §2.4.2 may be used). If the condition evaluates to true, the row counter for the
current level is incremented, and the (body) of the loop is performed. The placeholder commands
in (assign-list) may be referenced within the (condition). If the optional argument is omitted,
\boolean{true} is assumed.

The following commands are defined for use in (body). Additionally, the \dt lcurrent-
row token register is set to the special internal database markup for the current row. Commands or
actions that are designed for use with that register, suchas the current row aggregate
action, may be used in (body), but avoid the editing commands described in §3.16.1 that alter
\dtlcurrentrow. Instead, use the commands described in §3.8.2.1 to modify the current
TOW.

b §
\DTLcurrentindex
This will expand to the numeric value of the current row counter.
X
\dtlbreak

If used within (body), this command will cause the loop to terminate at the end of the current
iteration. Note that this is different to \DTLmaprowbreak, which breaks out of the current
loop immediately.

I

\DTLiffirstrow{ (true)} {(false)}

Expands to (true), if this row is the first (that satisfies the condition). That is, if the corresponding
DTLrow(I) counter is 1. Otherwise, it expands to (false). Bear in mind that this tests the loop
index not the database row index.

X

\DTLiflastrow{ (true)} { (false)}

Expands to (frue), if this row is the last (that satisfies the condition). Prior to version 3.0, this
would never evaluate to (frue) if any rows had been filtered. As from version 3.0, this compares
the corresponding DTLrow() counter with the total number of rows in the database less the
number of omitted rows.

X

\DTLifoddrow{ (true) } { (false) }

296

3. Databases (datatool package)

Expands to (frue), if the loop index (that is, the value of the corresponding DTLrow(/) counter)
is odd.

\DTLforeachkeyinrow Iterates over each column in the current row of \DTLfor-
each, globally defines (cs) to the value in that column, and does (code). This internally iterates
through the column metadata with \dt 1 foreachkey, assigning \dt 1key, \dt1lcol,
\dt1ltype and \dt lheader to the column key, column index, column type and column
header, respectively.

3.8.2.1. Editing the Current Row within \DTLforeach

If the read-only \DTLforeach* is used, no changes can be made to the database. With the
editable unstarred version, the current row may be changed using the commands below, and the
database will be updated after each iteration. This makes it slower than the read-only version.

o

This is a different approach to the a11ow—edit s mode for \DTLmapdata, which
stores pending edits in a buffer and only updates the database after the loop has terminated.

With the editable unstarred \DTLforeach, the following commands may be used to modify
the current row of the database. These commands will trigger an error with the read-only version.
A
These commands don’t follow the global, new-value—-expand or store
—datum settings. They always perform a global change, expand the given value, if
applicable, and don’t use the datum format.

\DTLappendtorow/{ (col-key) } { (value) }

Appends an entry with the protected expansion of (value) to the current row for the column
identified by (col-key). The row must not already have that column set.

X

\DTLreplaceentryforrow{ (col-key)} { (value) }

Replaces the entry for the column identified by (col-key) in the current row with the protected
expansion of (value).

X

\DTLremoveentryfromrow{ (col-key)}

Removes the entry in the column identified by (col-key) from the current row. An error will occur
if the given column isn’t set.

297

3. Databases (datatool package)

\DTLremovecurrentrow

Removes the current row from the database. Note that this is different from removing all entries
from the row with \DTLremoveent ryfromrow, which would result in a blank row.

3.8.2.2. Examples

Most of these examples can now be performed with either \DTLdisplaydb* or \DTL-
mapdata.

3.8.2.2.1. Displaying Data
Example 88 is an alternative to Example 74 (see §3.7.3.3) that uses \DTLforeach*
instead of \DTLd1isplaydb. Note that the use of \DTLdisplaydb is simpler and less

problematic (see §3.9).

\begin{tabular}{llr}
\bfseries Author & \bfseries Title &
\bfseries Price (\9%)%
\DTLforeach*{products}%
{\Author=Author, \Title=Title, \Price=Price}%
{\\% start new row

\Author & \Title & \Price

}
\end{tabular}

Note that the new row command \ \ has been placed at the start of the final argument. This is
necessary as placing it at the end of the argument will cause an unwanted row at the end of the
table. This is a feature of the loop mechanism.

3.8.2.2.2. Stripy Table
Example 89 is an alternative to Example 82 in §3.7.3.11 that alternately colours the rows of

data blue or green.
[i
|
Take care when using a conditional to deal with any alignment. The conditional must be
expandable. In this case, \DTL1 foddrow is used, which is expandable.

This example requires the colortbl package which provides \rowcolor.

298

2188

(289

3. Databases (datatool package)

£ Example 88: Display Data in a Table with \DTLforeach \EEE
Author Title Price ($)
Sir Quackalot The Adventures of Duck and Goose 10.99
Sir Quackalot The Return of Duck and Goose 19.99
Sir Quackalot More Fun with Duck and Goose 12.99
Sir Quackalot Duck and Goose on Holiday 11.99
Sir Quackalot The Return of Duck and Goose 19.99
Sir Quackalot The Adventures of Duck and Goose 18.99
A. Parrot My Friend is a Duck 14.99
Prof Macaw Annotated Notes on the ‘Duck and Goose’ chronicles 8.99
Polly Parrot ‘Duck and Goose’ Cheat Sheet for Students 5.99
Bor Ing ‘Duck and Goose’: an allegory for modern times? 59.99
Dickie Duck ~ Oh No! The Chickens have Escaped! 2.0

\begin{tabular}{llrrrr}

\bfseries Surname & \bfseries Forename &

\bfseries StudentNo & \bfseries Assignl &

\bfseries Assign2 & \bfseries Assign3%

\DTLforeach*{marks}

{\Surname=Surname, \Forename=Forename,
\StudentNo=StudentNo, \AssignI=Assignl,
\AssignII=Assign2, \AssignIII=Assign3}

{%
\DTLifoddrow{\\\rowcolor{blue}}{\\\rowcolor{
\Surname & \Forename &

\StudentNo & \AssignI &
\AssignII & \AssignIII
%
\end{tabular}

greent }

299

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 88 Display Data in a Table with \DTLforeach
% Label: "ex:foreachdisplay"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=products}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Title]{add column}
\DTLaction[key=Author]{add column}
\DTLaction[key=Format]{add column}
\DTLaction[key=Quantity]{add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1st row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {10.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 5, Price = {19.99}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Title = {More Fun with Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 1, Price = {12.99}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Title = {Duck and Goose on Holiday},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {11.99}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 3, Price = {19.99}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 9, Price = {18.99}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Title = {My Friend is a Duck},
 Author = {A. Parrot},
 Format = paperback,
 Quantity = 20, Price = {14.99}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 Title = {Annotated Notes on the ‘Duck and Goose’ chronicles},
 Author = {Prof Macaw},
 Format = ebook,
 Quantity = 10, Price = {8.99}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’ Cheat Sheet for Students},
 Author = {Polly Parrot},
 Format = ebook,
 Quantity = 50, Price = {5.99}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’: an allegory for modern times?},
 Author = {Bor Ing},
 Format = hardback,
 Quantity = 0, Price = {59.99}
 }
]{new row}
% 11th row:
\DTLaction[
 assign={
 Title = {Oh No! The Chickens have Escaped!},
 Author = {Dickie Duck},
 Format = ebook,
 Quantity = 11, Price = {2.0}
 }
]{new row}
\begin{document}
\begin{tabular}{llr}
\bfseries Author &
\bfseries Title &
\bfseries Price (\$)%
\DTLforeach*{products}% database
{\Author=Author,\Title=Title,\Price=Price}% assignment list
 {\\% start new row
 \Author & \Title & \Price
}
\end{tabular}
\end{document}

Nicola Talbot
Display Data in a Table with \DTLforeach (source code)
Example document illustrating how to display data in a tabular environment with a loop (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example088.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example088.pdf

3. Databases (datatool package)

—

£ Example 89: Using \DTLforeach to Display a Stripy Table \EEE

Surname Forename StudentNo Assignl Assign2 Assign3

Brown Jane 102647 75 84 80

Brown Andy 103569 42 52 54

Brady Roger 106872 68 60 62

Example 85 in §3.7.3.14, which highlights rows after computing the average score, may seem
similar to this example, but \DTLi fnumlt is a robust command and will therefore cause a
problem. Either use the method provided in Example 85 or in Example 93.

3.8.2.2.3. Displaying the Data with an Extra Column at the Start
Example 90 is an alternative to Example 77 that inserts the row index and label in a separate
column at the start.

,

\begin{tabular}{rllrrrr}

\bfseries Row & \bfseries Surname &

\bfseries Forename & \bfseries StudentNo &

\bfseries Assignl & \bfseries Assign2 &

\bfseries Assign3%

\DTLforeach*{marks}

{\Surname=Surname, \Forename=Forename,
\StudentNo=StudentNo, \AssignI=Assignli,
\AssignII=Assign2, \AssignIII=Assign3}

{%

\label{\StudentNo}
\\ \theDTLrowi &
\Surname & \Forename &
\StudentNo & \AssignI &
\AssignII & \AssignIII
}%
\end{tabular}

Note that the \ 1abe 1l must occur in the same scope as \refstepcounter. This means
that it has to go before the new row \ \ which automatically starts a new scope.

As with Example 77, the student number for the referenced row is obtained with the £1ind
action.

300

2190

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 89 Using \DTLforeach to Display a Stripy Table
% Label: "ex:foreachstripy"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{colortbl}
\usepackage{datatool}
\DTLsetup{default-name=marks}
\DTLread{studentmarks.csv}

\begin{document}
\begin{tabular}{llrrrr}
\bfseries Surname &
\bfseries Forename &
\bfseries StudentNo &
\bfseries Assign1 &
\bfseries Assign2 &
\bfseries Assign3%
\DTLforeach*{marks}
{\Surname=Surname, \Forename=Forename, \StudentNo=StudentNo,
\AssignI=Assign1, \AssignII=Assign2, \AssignIII=Assign3}
{%
 \DTLifoddrow{\\\rowcolor{blue}}{\\\rowcolor{green}} \Surname &
 \Forename &
 \StudentNo &
 \AssignI &
 \AssignII &
 \AssignIII
}%
\end{tabular}
\end{document}

Nicola Talbot
Using \DTLforeach to Display a Stripy Table (source code)
An example document that loads data from a CSV file and displays rows of data with alternate background colours (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example089.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example089.pdf

3. Databases (datatool package)

£ Example 90: Displaying Data with Row Numbers Using \DTLforeach \EEE

Row Surname Forename StudentNo Assignl Assign2 Assign3

1 Smith, Jr John 102689 68 57 72
2 Brown Jane 102647 75 84 80
3 Brown Jane 102646 64 92 79
4 Brown Andy 103569 42 52 54
5 Adams 706 105987 52 48 57
6 Brady Roger 106872 68 60 62
7 Verdon Clare 104356 45 50 48

Row 4 shows the details for Andy Brown.

3.8.2.2.4. Displaying the Data with an Extra Column at the End

Example 91 is an alternative to Example 78 (see §3.7.3.7) that uses \DTLforeach* instead
of \DTLdisplaydb to display the data with an extra column showing the total (quantity
times price) as well as the running total at the end. Note that the scoping introduced by the cells
in the tabular environment means that the running total must be globally updated.

As with Example 78, the booktabs package is used for horizontal rules at the start and end of

the table.

\newcommand{\runningtotal}{0}

\begin{tabular}{lrrr}

\toprule

\bfseries Title & \bfseries Quantity &

\bfseries Price & \bfseries Total%
\DTLforeach*{products}% database

{\theTitle=Title, \theQuantity=Quantity,
\thePrice=Price}%

{%
\DTLiffirstrow{\\\midrule}{\\}\theTitle &
\theQuantity & \thePrice &
\DTLmul{\theTotal}{\theQuantity}{\thePrice}%
\DTLround{\theTotal}{\theTotal}{2}%
\DTLgadd{\runningtotal}{\runningtotal}{\theTotal}$%
\theTotal

+%

\\\midrule & & & \runningtotal

\end{tabular}

Note that this example has a conditional (\DTL1 f fi r st row) that determines whether to
just start a new row with \ \ or to start a new row and insert a horizontal rule with \ \ \m1id-

301

(291

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 90 Displaying Data with Row Numbers Using \DTLforeach
% Label: "ex:foreachinsertcol"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}
\DTLsetup{default-name=marks}
\DTLread{studentmarks.csv}

\begin{document}
\begin{tabular}{rllrrrr}
\bfseries Row &
\bfseries Surname &
\bfseries Forename &
\bfseries StudentNo &
\bfseries Assign1 &
\bfseries Assign2 &
\bfseries Assign3%
\DTLforeach*{marks}
{\Surname=Surname, \Forename=Forename, \StudentNo=StudentNo,
\AssignI=Assign1, \AssignII=Assign2, \AssignIII=Assign3}
{%
 \label{\StudentNo}
 \\ \theDTLrowi &
 \Surname &
 \Forename &
 \StudentNo &
 \AssignI &
 \AssignII &
 \AssignIII
}%
\end{tabular}

\DTLaction[
 assign={
 \Surname=Surname,
 \Forename=Forename,
 \StudentNo=StudentNo
 },
 options={
 inline={%
 \DTLifstringeq{\Surname}{Brown}
 {\DTLifstringeq{\Forename}{Andy}{#1}{}}{}%
 }
 }
]{find}
Row \ref{\StudentNo} shows the details for Andy Brown.
\end{document}

Nicola Talbot
Displaying Data with Row Numbers Using \DTLforeach (source code)
An example document that loads data from a CSV file and inserts a column at the start showing the row number which can be referenced (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example090.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example090.pdf

3. Databases (datatool package)

rule. If you need something like this in your document, the conditional command must be

expandable otherwise you will get an error (see §3.9).

£ Example 91: Using \DTLforeach to Display Data in a Table with a NERE

Running Total Column
Title Quantity Price Total
The Adventures of Duck and Goose 3 10.99 32.97
The Return of Duck and Goose 5 19.99 99.95
More Fun with Duck and Goose 1 1299 12.99
Duck and Goose on Holiday 3 11.99 35.97
The Return of Duck and Goose 3 19.99 59.97
The Adventures of Duck and Goose 9 18.99 170.91
My Friend is a Duck 20 14.99 299.80
Annotated Notes on the ‘Duck and Goose’ chronicles 10 8.99 89.90
‘Duck and Goose’ Cheat Sheet for Students 50 5.99 299.50
‘Duck and Goose’: an allegory for modern times? 0 59.99 0.00
Oh No! The Chickens have Escaped! 11 2.0 22.00
1,123.96

3.8.2.2.5. Editing Rows

Example 92 is an alternative to Example 87 (see §3.8.1.2) that uses \DTLforeach instead
of \DTLmapdata to edit the database. With \DTLmapdata, the row aggregates are
computed with the row aggregate action, but with \DTLforeach the current

row aggregate action must be used instead.

\DTLforeach{marks}{}{%
\DTLaction]|
keys={Assignl-},
options={mean},

return={\Mean=mean}
]

{current row aggregate}

{}% row aggregate failed!

}

datum={round=1},% round the result

\DTLifnull{\Mean}% test the return value

{% average calculated successfully
\DTLappendtorow{Average}{\Mean}$%

302

[E192

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 91 Using \DTLforeach to Display Data in a Table with a Running Total Column
% Label: "ex:foreachextracol"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{booktabs}
\usepackage{datatool}
\DTLsetup{store-datum,default-name=products}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Title]{add column}
\DTLaction[key=Author]{add column}
\DTLaction[key=Format]{add column}
\DTLaction[key=Quantity]{add column}
\DTLaction[key=Price,value={Price (\$)}]{add column}
% 1st row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {10.99}
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 5, Price = {19.99}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Title = {More Fun with Duck and Goose},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 1, Price = {12.99}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Title = {Duck and Goose on Holiday},
 Author = {Sir Quackalot},
 Format = paperback,
 Quantity = 3, Price = {11.99}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 Title = {The Return of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 3, Price = {19.99}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 Title = {The Adventures of Duck and Goose},
 Author = {Sir Quackalot},
 Format = hardback,
 Quantity = 9, Price = {18.99}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Title = {My Friend is a Duck},
 Author = {A. Parrot},
 Format = paperback,
 Quantity = 20, Price = {14.99}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 Title = {Annotated Notes on the ‘Duck and Goose’ chronicles},
 Author = {Prof Macaw},
 Format = ebook,
 Quantity = 10, Price = {8.99}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’ Cheat Sheet for Students},
 Author = {Polly Parrot},
 Format = ebook,
 Quantity = 50, Price = {5.99}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Title = {‘Duck and Goose’: an allegory for modern times?},
 Author = {Bor Ing},
 Format = hardback,
 Quantity = 0, Price = {59.99}
 }
]{new row}
% 11th row:
\DTLaction[
 assign={
 Title = {Oh No! The Chickens have Escaped!},
 Author = {Dickie Duck},
 Format = ebook,
 Quantity = 11, Price = {2.0}
 }
]{new row}
\begin{document}
\newcommand{\runningtotal}{0}
\begin{tabular}{lrrr}
\toprule
\bfseries Title &
\bfseries Quantity &
\bfseries Price &
\bfseries Total%
 \DTLforeach*{products}% database
{\theTitle=Title,\theQuantity=Quantity,\thePrice=Price}% assignments
{%
 \DTLiffirstrow{\\\midrule}{\\}\theTitle & \theQuantity & \thePrice & \DTLmul{\theTotal}{\theQuantity}{\thePrice}%
 \DTLround{\theTotal}{\theTotal}{2}%
 \DTLgadd{\runningtotal}{\runningtotal}{\theTotal}%
 \theTotal }%
\\\midrule & & & \runningtotal
\end{tabular}
\end{document}

Nicola Talbot
Using \DTLforeach to Display Data in a Table with a Running Total Column (source code)
Example document illustrating how to show data in a tabular environment with a custom column appended using a loop (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example091.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example091.pdf

3. Databases (datatool package)

The database can then be sorted by the average mark and displayed:

\DTLsortdata{marks}{Average=desc}

\DTLdisplaydb{marks}

7 Example 92: Editing a Database with \DTLforeach \EEE
Surname Forename StudentNo Assignl Assign2 Assign3 Average
Brown Jane 102647 75 84 80 79.7
Brown Jane 102646 64 92 79 78.3
Smith, Jr John 102689 68 57 72 65.7
Brady Roger 106872 68 60 62 63.3
Adams Zoé 105987 52 48 57 52.3
Brown Andy 103569 42 52 54 49.3
Verdon Clare 104356 45 50 48 47.7

3.9. Loops and Conditionals with tabular-like Environments

It can be problematic using loops and conditionals with the tabular environment or any similar
alignment environment, such as longtable. Each cell within a row has implicit scoping. This
allows you to conveniently use declarations, such as \bfseries, at the start of a cell without

affecting the rest of the row. For example:

B

\begin{tabular}{cr}
\bfseries A & B\\
\itshape C & D
\end{tabular}

A
C

B
D

In the above, only “A” is bold and only “C” is italic because of the implicit scope that localises

the effect of the font change.

Suppose now that you want to keep track of the row numbers. Using the older TgX route, you
could define a count register and increment it at the start of each row. However a local increment

will only have an effect within the current scope. For example:

303

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 92 Editing a Database with \DTLforeach
% Label: "ex:foreachedit"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\begin{document}
\DTLforeach{marks}{}{%
 \DTLaction[
 keys={Assign1-},
 options={mean},
 datum={round=1},% round the result
 return={\Mean=mean}
]
 {current row aggregate}
 \DTLifnull{\Mean}% test the return value
 {}% row aggregate failed!
 {% average calculated successfully
 \DTLappendtorow{Average}{\Mean}%
 }
}

\DTLsortdata{marks}{Average=desc}
\DTLdisplaydb{marks}
\end{document}

Nicola Talbot
Editing a Database with \DTLforeach (source code)
An example document that loads data from a CSV file and appends a new column (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example092.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example092.pdf

3. Databases (datatool package)

. B

\newcount \myrowctr A B (0)
\begin{tabular}{cr} C D(0)
\advance\myrowctr by 1\relax

A & B (\the\myrowctr)\\
\advance\myrowctr by l\relax

C & D (\the\myrowctr)
\end{tabular}

The local increment within a cell means that the change is lost. You can prefix \advance
with \global to make the change global, but a higher-level more I&TEX solution is to define
a counter and increment it with \ stepcounter (or \refstepcounter), which will
make the change global. For example:

Bl

\newcounter{myrowctr} A B
\begin{tabular}{cr} C D)
\stepcounter{myrowctr}

A & B (\themyrowctr)\\
\stepcounter{myrowctr}

C & D (\themyrowctr)

\end{tabular*}

This is what \DTLforeach does and, to allow it to be nested, there are three counters
(DTLrowi, DTLrowii and DTLrowiii) associated with each level. These counters are incremented
globally (with \refstepcounter). The placeholder commands also need to be globally
defined, as well as various other commands that need to change at each iteration.

This means that \DTLforeach can, to a limited extent, be used within a tabular-like context
but \DTLmapdata, which only locally defines or changes variables, can’t. This means that
\DTLmapdata can be scoped to prevent any local assignments or changes conflicting with
other content, whereas \DTLforeach can't.

Problems arise when more complex operations are needed at the start of a row or cell that
interferes with the column alignment. Suppose now that I want to include a test at the start of
each row to insert a horizontal rule above every other row:

\newcounter{myrowctr}
\newcommand{ \myrowhook}{%
\stepcounter{myrowctr}%
\ifthenelse{\isodd{\value{myrowctr}}}{}{\hline}%
}
\begin{tabular}{cr}

304

3. Databases (datatool package)

\myrowhook A & B (\themyrowctr) \\
\myrowhook C & D (\themyrowctr)
\end{tabular}

This now causes a “misplaced \noalign” error.

The best way to avoid this in complex situations where the tabular content requires various
conditionals to adjust rows or cells is to construct the content in a temporary command (a token
list variable) so that the problematic code is shifted outside of the tabular environment. This is
the method now used by \DTLdisplaydband \DTLdisplaylongdb.

Using a more traditional ISTEX 22 method, you can define the variable with \newcommand
and append to it using commands provided by etoolbox. For example, first define the counter and
the command that will be used to store the content of the tabular environment:

=

\newcounter{myrowctr}
\newcommand{\mytabcontent }{}

Provide a command to initialise the above (in case multiple tables are needed):

=

\newcommand{\InitTabContent}{%
\renewcommand{\mytabcontent } {\begin{tabular}{cr}}%
\setcounter{myrowctr}{0}%

}

Provide a command to finish off:

\newcommand{\FinishTabContent }{%
\appto\mytabcontent {\end{tabular}}%
}

Now a command is needed to add a row. Note that the row separator \ \ needs to be inserted
at the end of all but the last row, which is the same as inserting it at the start of all but the first
row. So this first checks if the counter is O before incrementing it to determine whether or not to
insert \ \. A horizontal line is inserted every even row (after the counter has been incremented).
Alternatively, this could be modified to insert \h1ine before the counter is incremented when
it’s odd. The two arguments provided are appended without expansion to the content (separated
by &). However, the value of the row counter must be expanded when it’s added so \eappto
is required.

305

3. Databases (datatool package)

\newcommand{\AddRow} [2] {%
\ifthenelse{\value{myrowctr}=0}{}{\app-

to\mytabcontent{\\}}%
\stepcounter{myrowctr}%
\ifthenelse{\isodd{\value{myrowctr}}}{}%

{\appto\mytabcontent{\hline}}% even row

\appto\mytabcontent{#1 & #21}%
\eappto\mytabcontent{ (\themyrowctr) }%

t

Once the custom commands have been defined, they can be used:

\InitTabContent
\AddRow{A}{B}% add first row
\AddRow{C}{D}% add second row
\FinishTabContent

__ B

This doesn’t actually display the tabular content, but at the end of the above, the replacement text of
the custom command \mytabcontent now contains the content of the tabular environment
without the awkward conditionals. You can confirm this with:

\show\mytabcontent

This will show the content in the transcript or terminal when you run IETEX:

> \mytabcontent=macro:
->\begin {tabular}{cr}A & B (1)\\\hline C & D
(2)\end {tabular}.

8 LB

You can now go ahead and put \mytabcontent where you want your table.

If you prefer to use If[[EX3, you can instead use the commands provided by the I3tl package
(token lists) and the I3int package (integers), which are now part of the ISTEX kernel so they don’t
need loading. For example, first switch on IZTEX3 syntax and define the variables:

\ExplSyntaxOn
\int_new:N \l_my_row_int % new integer variable
\tl_new:N \1l_my_content_tl % new token list variable

_ B

The custom command to initialise these variables is now provided as a document command, which

306

3. Databases (datatool package)

1s robust:

\NewDocumentCommand \InitTabContent { }
{

\tl_set:Nn \1l_my_content_tl { \begin{tabular} { cr }
}

\int_zero:N \l_my_row_int

}

Similarly for the command that finishes off:

\NewDocumentCommand \FinishTabContent { }

{
\tl_put_right:Nn \1_my_content_tl { \end{tabular} }

b

And for the command that adds values to the first and second columns of the current row:

\NewDocument Command \AddRow { m m }
{
\int_if_ zero:nF { \l_my_row_int }
{ % row index not zero
\tl_put_right:Nn \1l_my_content_tl { \\ }
}
\int_incr:N \l_my_row_int
\int_if_even:nT { \l_my_row_int }
{ % row index even
\tl_put_right:Nn \1l_my_content_tl { \hline }
}
\tl_put_right:Nn \1l_my_content_tl { #1 & #2 }
\tl_put_right:Nx \1l_my_content_tl
{ ~ (\int_use:N \1_my_row_int) }
}
\ExplSyntaxOff

The rest is as before:

\InitTabContent
\AddRow{A}{B}% add first row

307

3. Databases (datatool package)

\AddRow{C}{D}% add second row
\FinishTabContent

This may seem very convoluted, and certainly is for the above trivial case, but when using a
loop to construct the contents, it can avoid the headaches of misplaced \noalign errors.

Example 93 uses \DTLmapdata to iterate over the data in the “marks” database (see
§3.2.1). The average mark is calculated using the row aggregate action and a row is only
appended if the average is 50 or above. Any row that has an average above 70 is highlighted using
\rowcolor (which requires the colortbl package).

(293

(@]

= |
Example 93 is provided to demonstrate the technique described in this chapter. The same

output can be more compactly achieved using the hooks provided with \DTLdisplay—
db (which internally applies a similar method). See Example 85 in §3.7.3.14, which
produces almost the same but has an extra column showing the student number.

First some variables are defined:

\ExplSyntaxOn

\int_new:N \1l_my_row_int
\tl_new:N \1l_my_content_tl
\tl_new:N \1l_my_forename_tl
\tl_new:N \1l_my_surname_t1l
\tl_new:N \1l_my_mean_tl

The initialisation command is the same as before but now its an internal command:

\cs_new:Nn \my_init_content:

{
\tl_set:Nn \l_my_content_tl { \begin{tabular}

{ 1r } }

\int_zero:N \1l_my_row_int

}

.

Similarly for the command to finish off:

=

\cs_new:Nn \my_finish_content:

{
\tl_put_right:Nn \1l_my_content_tl { \end{tabular} }

308

3. Databases (datatool package)

}

The command that adds a row is different. The first argument will be the student’s name and the
second argument will be the average score. These will be supplied with placeholder commands
so the values will need to be expanded when they are appended to the token list variable. The
command starts off with a test to determine if the mean is greater than or equal to 50. This test is
actually done in reverse (that is, the code is only done if mean < 50 is false).

\cs_new:Nn \my_add_row:nn
{
\fp_compare:nNnF { #2 } < { 50 }
{
\int_if_ zero:nF { \l_my_row_int }
{
\tl_put_right:Nn \l_my_content_tl { \\ }
}
\int_incr:N \1l_my_row_int
\fp_compare:nNnT { #2 } > 70
{
\tl_put_right:Nn \1l_my_content_t1l
{ \rowcolor { yellow } }
t
\tl_put_right:Nx \l_my_content_tl { #1 & #2 }
}
}

The document command iterates over the default database. (Alternatively, you can adapt this
to provide an argument with the database name.) The surname and forename are fetched using
\DTLmapgetvalues and the mean is obtained with the row aggregat e function. Be
careful with actions with spaces in their name when you have I£TEX3 syntax on as spaces are
ignored. You will need to use ~ where a space must actually occur.

\NewDocumentCommand { \meanscorestab }
{

\my_init_content:

\DTLmapdata

{

\DTLmapgetvalues

{

\1l_my_surname_tl = Surname ,

309

3. Databases (datatool package)

\1l_my_forename_tl = Forename
t
\DTLaction
[
keys={Assignl-},
datum={round=1},
return={ \l_my_mean_tl = mean },
options=mean
]
{ row ~ aggregate }
\my_add_row:nn

{ \1_my_forename_tl \c_space_tl \l_my_surname_t1l }
{ \1l_my_mean_tl }
}

\my_finish_content:
% expand the content:
\1l_my_content_t1l
t

\ExplSyntaxOff

This custom command can now be used in the document at the point where the table is required.

The “marks” database used by Example 93 has two Jane Browns who both have an average
above 70, so both their rows are highlighted in yellow. The students with an average below 50
aren’t listed.

£ Example 93: Loops and Alignment NERE

John Smith, Jr 65.7
Jane Brown 79.7
Jane Brown 78.3
Z0é Adams 52.3
Roger Brady 63.3

3.10. Null Values

Certain commands, such as \DTLmapget, provide a way to fetch a value from a row in a
database. Return values for actions can also be fetched using the return option or with
\DTLget. In either case, if you try to fetch a value that hasn’t been set then you will get a null
value.

310

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 93 Loops and Alignment
% Label: "ex:constructtab"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
% sample CSV file:
\begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{colortbl}
\usepackage{datatool}

% Load data from studentmarks.csv file:
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
% Commands to construct the tabular content:
\ExplSyntaxOn
% define variables:
\int_new:N \l_my_row_int
\tl_new:N \l_my_content_tl
\tl_new:N \l_my_forename_tl
\tl_new:N \l_my_surname_tl
\tl_new:N \l_my_mean_tl
% command to initialise:
\cs_new:Nn \my_init_content:
{
 \tl_set:Nn \l_my_content_tl { \begin{tabular} { lr } }
 \int_zero:N \l_my_row_int
}
% command to finish off:
\cs_new:Nn \my_finish_content:
 {
 \tl_put_right:Nn \l_my_content_tl { \end{tabular} }
 }
% command to append a row:
\cs_new:Nn \my_add_row:nn
{
 \fp_compare:nNnF { #2 } < { 50 }
 { \int_if_zero:nF { \l_my_row_int }
 {
 \tl_put_right:Nn \l_my_content_tl { \\ }
 }
 \int_incr:N \l_my_row_int
 \fp_compare:nNnT { #2 } > { 70 }
 {
 \tl_put_right:Nn \l_my_content_tl { \rowcolor { yellow } }
 }
 \tl_put_right:Nx \l_my_content_tl { #1 & #2 }
 }
}
% define document command:
\NewDocumentCommand { \meanscorestab } { }
{
% construct tabular:
 \my_init_content:
% iterate over the default database:
 \DTLmapdata
 {
% get the surname and forename for the current row:
 \DTLmapgetvalues
 {
 \l_my_surname_tl = Surname ,
 \l_my_forename_tl = Forename
 }
% calculate the mean:
 \DTLaction
 [
 keys={Assign1-},
 datum={round=1},
 return={ \l_my_mean_tl = mean },
 options=mean
]
 {row ~ aggregate}
 \my_add_row:nn
 { \l_my_forename_tl \c_space_tl \l_my_surname_tl }
 { \l_my_mean_tl }
 }
% finish construction:
 \my_finish_content: % expand the content:
 \l_my_content_tl }
\ExplSyntaxOff
\begin{document}
\meanscorestab
\end{document}

Nicola Talbot
Loops and Alignment (source code)
Example document demonstrating constructing a tabular within a loop to avoid alignment issues (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example093.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example093.pdf

3. Databases (datatool package)

A null value is not the same as an empty value. Empty values can be tested using etoolbox’s
\ifdefempty or similar.

For example, the “customers” database described in §3.2.3 can either be read from a CSV file
or defined in the document. However, there is a slight difference between the two approaches.

When data is loaded from a CSV file, null values can only occur where final columns are
missing. When data is loaded from a DTLTEX or DBTEX file (see §§3.15.1.2 & 3.15.1.3) or
when the database is constructed in the document (see §83.3.1.1 & 3.4) then null values can also
occur in intermediate columns.

The customers. csv data has null values where the final columns have been completely
omitted in a row (that is, there are no trailing separators with empty elements between or after
them), but the missing mid-column values are empty because there’s no way of completely
omitting them without interfering with the CSV syntax. So those values are empty, not null. See
the examples in §3.10.1.

If you have assigned a value to a placeholder command, for example with \DTLmapget-
values or with the ret urn option in \DTLmapget, then you can test if that command
represents a null value with:

X

\DTLifnull{{arg)} {(true)} { (false) }

This will do (frue) if the first argument is a single token that represents null and (false) otherwise.
Note that if the argument is empty or is a command whose expansion text is empty, this will do
(false), because null isn’t the same as empty.

If you want to test for null or empty, use:

\DTLifnullorempty{(arg)} {(true)} { (false)}

This will do (true) if the argument is empty or if the argument is a single token whose value is
empty or represents null, otherwise it will do (false).

[No trimming is performed in the null or empty tests.

Null values will cause different output to empty values when displaying data (see the examples
in §3.10.1), but they can also produce different results in other functions, such as sorting (see
Example 101), where a null value can trigger alternative behaviour but an empty value won'’t.

3.10.1. Examples

Example 94 loads the customers database (see §3.2.3) from the CSV file customers.csv.

311

(2194

3. Databases (datatool package)

,

\DTLsetup{default—-name=customers}
\DTLread{customers.csv}

This file has some missing final columns but also has some empty values. For example:

5,,Duck,Dickie, dd@example.com,

This has an empty value in the second column (Organisation, a string column) and in the final
column (Age, a numeric column). If these values are fetched from the database, they will expand
to empty. By way of contrast, the next line is missing the final column:

6,Newt Fellowship,Axolotl,Lizzie,lal@example.com

The difference is subtle (there’s no trailing comma) but in this case, if the age is fetched from
this row, a null value will be returned.
The data is displayed in tabular form using the d1 sp 1l avy action:

=

[\DTLaction{display}

String null values show as “NULL” and numeric null values show as 0. Whereas empty values
show nothing.

4 Example 94: CSV Data Containing Empty Cells and Missing Final Cells PE X2 A
Empty values show as a blank. Missing values show as NULL in string
columns and 0 in numeric columns.
Id Organisation Surname Forename Email Age
1 Parrot Polly ppQ@example.com 42
2 University of Somewhere Canary Mabel mc@example.com 0
3 University of Somewhere Zebra Zoé zz@example.com 21
4 Zinnia Florestry Arara José ja@example.com 42
5 Duck Dickie dd@example.com
6 Newt Fellowship Axolotl Lizzie la@Qexample.com 0
7 Avian Emporium Canary Fred fc@example.com 19
8 Newt Fellowship Molgina m@example.com 0
9 Mander Sally NULL 0
10 Elite Emporium Fant Eli ef@example.com 101

Example 95, in contrast, constructs the database in the document with actions (see §3.2.3). In
this case, the syntax does allow for mid-columns to be omitted when setting the values for a row.
For example:

(295

312

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 94 CSV Data Containing Empty Cells and Missing Final Cells
% Label: "ex:nullcsv"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{customers.csv}
Id,Organisation,Surname,Forename,Email,Age
1,,Parrot,Polly,pp@example.com,42
2,University of Somewhere,Canary,Mabel,mc@example.com
3,University of Somewhere,Zebra,Zoë,zz@example.com,21
4,Zinnia Florestry,Arara,José,ja@example.com,42
5,,Duck,Dickie,dd@example.com,
6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium,Canary,Fred,fc@example.com,19
8,Newt Fellowship,,Molgina,m@example.com
9,,Mander,Sally
10,Élite Emporium,Fant,Eli,ef@example.com,101
\end{filecontents}

\usepackage{datatool}
\DTLsetup{default-name=customers}
\DTLread{customers.csv}
\begin{document}
Empty values show as a blank. Missing values show as NULL in string columns and 0 in numeric columns.

\DTLaction{display}
\end{document}

Nicola Talbot
CSV Data Containing Empty Cells and Missing Final Cells (source code)
An example document that loads data from a CSV file and displays the content in a table (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example094.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example094.pdf

3. Databases (datatool package)

,

\DTLaction]|

assign={
Id = 5, Surname = {Duck}, Forename = {Dickie},
EFEmail = dd@example.com

}

] {new row}

In this case, the Organisation and Age column aren’t set for this row. This means that if an attempt
is made to fetch those values, null will be returned. Compare this with another row:

\DTLaction]|

assign={

Id = 9, Organisation = {},

Surname = {Mander}, Forename = {Sally}
}

] {new row}

.

Here, the Age and Email columns are missing but the Organisation column is set to empty. This
means that if an attempt is made to fetch the Age or Email from this row, null will be returned,
but an attempt to fetch the Organisation will return an empty value.

S Example 95: Constructed Data With Missing (Null) Values NEF ISR A
Empty values show as a blank. Missing values show as NULL in string

columns and 0 in numeric columns.

Id Organisation Surname Forename Email Age

1 NULL Parrot Polly ppQ@example.com 42

2 University of Somewhere Canary Mabel mc@example.com 0

3 University of Somewhere Zebra Z0oé zz@example.com 21

4 Zinnia Florestry Arara José ja@example.com 42

5 NULL Duck Dickie dd@example.com 0

6 Newt Fellowship Axolotl Lizzie la@example.com 0

7 Avian Emporium Canary Fred fc@example.com 19

8 Newt Fellowship NULL Molgina m@example.com 0

9 Mander Sally NULL 0

10 Elite Emporium Fant Eli ef@example.com 101

Example 96 modifies Example 95 to provide a custom command that tests if its argument is
null and will show a dash if so, otherwise it just does the argument:

(296

313

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 95 Constructed Data With Missing (Null) Values
% Label: "ex:nulldb"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage{datatool}
\DTLsetup{default-name=customers}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Id]{add column}
\DTLaction[key=Organisation]{add column}
\DTLaction[key=Surname]{add column}
\DTLaction[key=Forename]{add column}
\DTLaction[key=Email]{add column}
\DTLaction[key=Age]{add column}
% 1st row:
\DTLaction[
 assign={
 % Organisation not set
 Id = 1, Email = {pp@example.com},
 Surname = {Parrot}, Forename = {Polly}, Age = 42
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 % Age not set
 Id = 2, Organisation = {University of Somewhere},
 Email = {mc@example.com}, Surname = {Canary},
 Forename = {Mabel}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Id = 3, Organisation = {University of Somewhere},
 Age = 21, Email = {zz@example.com}, Surname = {Zebra},
 Forename = {Zoë}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Id = 4, Organisation = {Zinnia Florestry}, Age = 42,
 Email = {ja@example.com}, Surname = {Arara},
 Forename = {José}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 % Organisation and Age not set
 Id = 5, Surname = {Duck}, Forename = {Dickie},
 Email = {dd@example.com}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 % Age not set
 Id = 6, Organisation = {Newt Fellowship},
 Email = {la@example.com}, Surname = {Axolotl},
 Forename = {Lizzie}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Id = 7, Organisation = {Avian Emporium}, Age =19,
 Email = {fc@example.com}, Surname = {Canary},
 Forename = {Fred}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 % Age and Surname not set
 Id = 8, Organisation = {Newt Fellowship},
 Email = {m@example.com}, Forename = {Molgina}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 % Organisation empty and Age and Email not set
 Id = 9, Organisation = {},
 Surname = {Mander}, Forename = {Sally}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Id = 10, Organisation = {Élite Emporium}, Age = 101,
 Email = {ef@example.com}, Surname = {Fant},
 Forename = {Eli}
 }
]{new row}

\begin{document}
Empty values show as a blank. Missing values show as NULL in string columns and 0 in numeric columns.

\DTLaction{display}
\end{document}

Nicola Talbot
Constructed Data With Missing (Null) Values (source code)
An example document that constructs a database in the document with missing values and one empty value and displays the content in a table (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example095.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example095.pdf

3. Databases (datatool package)

=

\newcommand{\checkmissing} [1]{\DTLifnull{#1}{———}{#1}
t

The display action uses the same underlying function as \DTLdi splaydb which en-
capsulates strings with \dt 1 st ringformat, integers with \dt 1 int format, decimals
with \dtlrealformat and currency with \dt lcurrencyformat. The numeric
formatting commands all internally use \dt lnumericformat, soonly \dt1lstring-
format and \dt lnumericformat need to be redefined to use the custom command:

=

\renewcommand{\dtlstringformat}[1] {\checkmissing{#1}}

\renewcommand{\dt lnumericformat} [1] {\checkmissing{#1}

b

Note that the empty Organisation field is still shown as empty not as a dash. Use \DTL1 f-
nullorempty if you want to check for empty as well.

N Example 96: Display Data With Missing (Null) Values Shown as a Dash N\EFIE
Missing values are shown as a dash.

Id Organisation Surname Forename Email Age

1 — Parrot Polly pp@example.com 42

2 University of Somewhere Canary Mabel mcQ@example.com —

3 University of Somewhere Zebra Z0é zz@example.com 21

4 Zinnia Florestry Arara José ja@example.com 42

5 — Duck Dickie dd@example.com —

6 Newt Fellowship Axolotl Lizzie laQexample.com —

7 Avian Emporium Canary Fred fc@example.com 19

8 Newt Fellowship — Molgina m@example.com —

9 Mander Sally — —

10 Elite Emporium Fant Eli ef@example.com 101

Example 97 has a slightly different version of the custom command that also checks for empty
and will produce Missing instead of a dash:

[E97

B

\newcommand{\checkmissing} [1]{%
\DTLifnullorempty{#1}{\emph{Missing}}{#1}}

314

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 96 Display Data With Missing (Null) Values Shown as a Dash
% Label: "ex:displaydbnullmissing"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage{datatool}
\DTLsetup{default-name=customers}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Id]{add column}
\DTLaction[key=Organisation]{add column}
\DTLaction[key=Surname]{add column}
\DTLaction[key=Forename]{add column}
\DTLaction[key=Email]{add column}
\DTLaction[key=Age]{add column}
% 1st row:
\DTLaction[
 assign={
 % Organisation not set
 Id = 1, Email = {pp@example.com},
 Surname = {Parrot}, Forename = {Polly}, Age = 42
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 % Age not set
 Id = 2, Organisation = {University of Somewhere},
 Email = {mc@example.com}, Surname = {Canary},
 Forename = {Mabel}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Id = 3, Organisation = {University of Somewhere},
 Age = 21, Email = {zz@example.com}, Surname = {Zebra},
 Forename = {Zoë}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Id = 4, Organisation = {Zinnia Florestry}, Age = 42,
 Email = {ja@example.com}, Surname = {Arara},
 Forename = {José}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 % Organisation and Age not set
 Id = 5, Surname = {Duck}, Forename = {Dickie},
 Email = {dd@example.com}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 % Age not set
 Id = 6, Organisation = {Newt Fellowship},
 Email = {la@example.com}, Surname = {Axolotl},
 Forename = {Lizzie}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Id = 7, Organisation = {Avian Emporium}, Age =19,
 Email = {fc@example.com}, Surname = {Canary},
 Forename = {Fred}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 % Age and Surname not set
 Id = 8, Organisation = {Newt Fellowship},
 Email = {m@example.com}, Forename = {Molgina}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 % Organisation empty and Age and Email not set
 Id = 9, Organisation = {},
 Surname = {Mander}, Forename = {Sally}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Id = 10, Organisation = {Élite Emporium}, Age = 101,
 Email = {ef@example.com}, Surname = {Fant},
 Forename = {Eli}
 }
]{new row}

% Empty values are not the same as null values!
\newcommand{\checkmissing}[1]{\DTLifnull{#1}{---}{#1}}
\renewcommand{\dtlstringformat}[1]{\checkmissing{#1}}
\renewcommand{\dtlnumericformat}[1]{\checkmissing{#1}}
\begin{document}
Missing values are shown as a dash.

\DTLaction{display}
\end{document}

Nicola Talbot
Display Data With Missing (Null) Values Shown as a Dash (source code)
An example document that constructs a database in the document and displays the content in a table with missing values shown as a dash (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example096.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example096.pdf

3. Databases (datatool package)

The database is iterated over using \DTLmapdata. The forename, surname and organisation
can be shown for each customer:

,

\DTLmapdata/{
\DTLmapgetvalues

{\Surname=Surname, \Organisation=0rganisation}
Forename: \DTLmapget{key=Forename}.
Surname: \checkmissing{\Surname}.
Organisation: \checkmissing{\Organisation}.
\par

}

Note that it won’t work if you use \DTLmapget inthe argumentof \DTLifnull or \DTL-
ifnullorempty asthe command \DTLmapget {(options) } doesn’t represent null. Either
use \DTLmapgetvalues (as above) or get the value with ret urn. The actual code used
in Example 97 has a second custom command that both fetches and tests the value:
\newcommand{\showvalue}[1]{%
\DTLmapget{key=#1, return=\myReturnvVal}% fetch value
\checkmissing{\myReturnval}$%
}
\DTLmapdata({
Forename: \showvalue{Forename}.
Surname: \showvalue{Surname}.

Organisation: \showvalue{Organisation}.
\par

3.10.2. Advanced Commands

The following commands are actually provided by datatool—base rather than datatool as they are
used in datum tests or by the person package (which can be loaded without datatool).
The actual null command is:

[\dtlnovalue

This command should not be redefined and is provided for testing purposes. It’s not intended to
be typeset in the document.

In general, it shouldn’t be necessary to use this command, as you can test with \DTLifnull,
but you can do a simple test against \dt 1novalue. For example, with \ifdefequal

315

3. Databases (datatool package)

N

£ Example 97: Iterating Through Data with Empty or Missing Values \EEE

Polly. Surname: Parrot. Organisation: Missing.

Mabel. Surname: Canary. Organisation: University of Somewhere.
Zoé. Surname: Zebra. Organisation: University of Somewhere.
José. Surname: Arara. Organisation: Zinnia Florestry.

Dickie. Surname: Duck. Organisation: Missing.

Lizzie. Surname: Axolotl. Organisation: Newt Fellowship.

Fred. Surname: Canary. Organisation: Avian Emporium.
Molgina. Surname: Missing. Organisation: Newt Fellowship.
Sally. Surname: Mander. Organisation: Missing.

Eli. Surname: Fant. Organisation: Elite Emporium.

(provided by etoolbox). The difference is that \DTLifnull will also test for the string null
and number null commands, below.

When fetching values from a database, some commands (such as \DTLd1isplaydb) will set
the placeholder that stores the value of the current row and column to a “string null” or “numeric
null” according to the column type. So the \DTLifnull and \DTLifnullorempty
tests for null will also compare their first argument against the following.

X

\DTLstringnull

Represents null for values that are expected to be strings. This command should not be redefined
but may be tested against to determine if a placeholder command represents a null string.

X

\DTLnumbernull

Represents null for values that are expected to be numeric. This will fully expand to O if used in
calculations. This command should not be redefined but may be tested against to determine if a
placeholder command represents a null number.

X

\datatool_if_ null:NTFE (dvar) {(true)} {(false)}
\datatool_if null_p:N (dvar)

Tests if the given token list variable represents null. This will test (# var) for equality with
\dtlnovalue, \DTLstringnull and \DTLnumbernull.

X

\datatool_if_null_or_empty:NTF (dvar) {(rrue)} {(false)}
\datatool_if_ null_or_empty_p:N (dvar)

316

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 97 Iterating Through Data with Empty or Missing Values
% Label: "ex:mapnullemptymissing"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage{datatool}
\DTLsetup{default-name=customers}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Id]{add column}
\DTLaction[key=Organisation]{add column}
\DTLaction[key=Surname]{add column}
\DTLaction[key=Forename]{add column}
\DTLaction[key=Email]{add column}
\DTLaction[key=Age]{add column}
% 1st row:
\DTLaction[
 assign={
 % Organisation not set
 Id = 1, Email = {pp@example.com},
 Surname = {Parrot}, Forename = {Polly}, Age = 42
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 % Age not set
 Id = 2, Organisation = {University of Somewhere},
 Email = {mc@example.com}, Surname = {Canary},
 Forename = {Mabel}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Id = 3, Organisation = {University of Somewhere},
 Age = 21, Email = {zz@example.com}, Surname = {Zebra},
 Forename = {Zoë}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Id = 4, Organisation = {Zinnia Florestry}, Age = 42,
 Email = {ja@example.com}, Surname = {Arara},
 Forename = {José}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 % Organisation and Age not set
 Id = 5, Surname = {Duck}, Forename = {Dickie},
 Email = {dd@example.com}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 % Age not set
 Id = 6, Organisation = {Newt Fellowship},
 Email = {la@example.com}, Surname = {Axolotl},
 Forename = {Lizzie}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Id = 7, Organisation = {Avian Emporium}, Age =19,
 Email = {fc@example.com}, Surname = {Canary},
 Forename = {Fred}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 % Age and Surname not set
 Id = 8, Organisation = {Newt Fellowship},
 Email = {m@example.com}, Forename = {Molgina}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 % Organisation empty and Age and Email not set
 Id = 9, Organisation = {},
 Surname = {Mander}, Forename = {Sally}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Id = 10, Organisation = {Élite Emporium}, Age = 101,
 Email = {ef@example.com}, Surname = {Fant},
 Forename = {Eli}
 }
]{new row}

\newcommand{\checkmissing}[1]{%
 \DTLifnullorempty{#1}{\emph{Missing}}{#1}}
\newcommand{\showvalue}[1]{%
 \DTLmapget{key={#1},return=\myReturnVal}% fetch value
 \checkmissing{\myReturnVal}%
}
\begin{document}
\DTLmapdata{
 \showvalue{Forename}.
 Surname: \showvalue{Surname}.
 Organisation: \showvalue{Organisation}.
 \par
}
\end{document}

Nicola Talbot
Iterating Through Data with Empty or Missing Values (source code)
An example document that constructs a database in the document and iterates over the contents (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example097.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example097.pdf

3. Databases (datatool package)

Tests if the given token list variable is empty or represents null. This will test (# var) for
equality with \dt 1novalue, \DTLstringnull and \DTLnumbernull and the
empty datum constant \c_datatool_empty_datum_t1 as well as testing if the token
list variable has an empty value.

X

\datatool_if null:nTF {{d)} {(true)} {(false)}

If the argument is a single token, this will return the same result as \datatool_if_
null : NTF otherwise the result will be false. The higher level user command \DTLifnull
now simply uses \datatool_if_null:nTF.

X

\datatool_if_null_or_empty:nTF {{d)} {(true)} {{false)}

If the argument is a single token, this will return the same result as \datatool_if_null
_or_empty :NTF otherwise it will be true if the argument is empty and false otherwise. The
higher level user command \DTLifnullorempty now simply uses \datatool_if_
null_or_empty:nTF.

o

If () isn’t a single token, \datatool_if null_or_empty:nTF won't test
for the string or numeric null values represented by \DTLstringnull and \DTL~-
numbernull.

3.11. Special Values

A special value is an entry that’s added to a database where the value starts with:

\dtlspecialvalue{ (text)}

This simply expands to its argument but its presence at the start of a value indicates that special
treatment is required for that entry when adding the entry to the database and when writing the
database to a DBTEX file. When adding a value that starts with this command to a database,
the new-value-trim, new-value—-expand and store—datum options will be
ignored.

(]
If you use an action to add the value, such as the new ent rvy action, the expand

—value and expand—once—value will remove the special command and it won’t
be considered a special value.

317

3. Databases (datatool package)

When writing the database to an external DBTEX file with \DTLwrite, any entry starting
with \dt 1 specialvalue will be allowed to expand, regardless of the I/O e xpand setting.
Note that if there is any trailing content after the argument of \dt 1 specialvalue that
will also expand. This doesn’t apply to any of the other file formats. For example, if you export to
DTLTEX or CSV then \dt 1specialvalue will be included with expand=none.

This command was added for the benefit of the datagidx package to encapsulate values in
internal columns such as Used to allow them to be reset for use at the start of the next IXIEX run
when the database saved at the end of the previous run is read in the preamble of the next.

A
You can’t perform a quick lookup by value (for example, with the se Llect row action)
where the entry has the \dt 1specialvalue command.

3.12. Editing Database Rows

Rows can be edited whilst looping through a database with \DTLmapdata with the a1l 1low
—edit s option set (see §3.8.1.2 and Example 87) or with the unstarred \DTLforeach (see
§3.8.2.1 and Example 92).

It’s also possible to edit a single row of the database outside of those loop commands. In
order to do this, it’s first necessary to select the required row and set it as the current row. This
stores the row information in the \dt 1 current row token register, the preceding rows in
the \dt 1be forerow token register, and the following rows in the \dt lafterrow token
register.

Modifications can then be performed on the \dt 1 current row register using the com-
mands described in §3.16.1. Once all the required changes have been made, the database contents
can then be updated using \dt 1 recombine or, if the row should be deleted, \dt 1 re-
combineomitcurrent.

o

If you need to modify a number of rows, it’s simpler to use \DTLmapdata withallow
—edits.

The current row can be setup using commands such as \dt 1get row or you can use the
select row action (or the £1nd action with the option select=true).

Note that although iterative commands such as \DTLdisplaydb and \DTLforeach
set the current row, if you use and of the editing commands described in §3.16.1 within the
loop body, they will cause interference. Within \DTLforeach, use the designated commands
described in §3.8.2.1.

Within \DTLdisplaydb, the current row is only set to allow querying values from the
hooks while the tabular contents are being constructed (for example, to fetch an entry from
the current row or to compute aggregates with the current row valuesorcurrent
row aggregate actions).

318

3. Databases (datatool package)

Example 98 selects the row from the “customers” database (see §3.2.3) where the Td column
is equal to 9. This happens to be the ninth row, so the row could be selected by its row index with =8
\dtlgetrow:

\dtlgetrow{customers}{9}

B

If it’s possible that the row index may not be the same as the Id value, \dt lgetrowfor-
value may be used (since the Id column has unique values). The column index (not the key) is
needed in the reference. In this case the Td column has index 1:

\dtlgetrowforvalue{customers}{1}{9}

If the index isn’t known, it can be obtained with \dt 1columnindex:

\dtlgetrowforvalue{customers}
{\dtlcolumnindex{customers}{Id}}% column index
{9}% value

Alternatively, the se Llect row action may be used:

8L 0 LB

[\DTLaction[key=Id,value=9]{select row}

If a more complex selection criteria is required, the £ 1 nd action can be used. Remember that
the select option should be set if the £ 1 nd action should select the current row.

The customer with Id set to 9 has an empty Organisation column. This means that
the column has actually been set in the current row, so it needs to be replaced rather than set:

\dtlreplaceentryincurrentrow
{Newt Fellowship}% new value
{\dtlcolumnindex{customers}{Organisation}}

o

% column index

B

This row doesn’t have the Age and Email columns set. These can be appended, but note that in
this case the column key rather than column index is supplied. This is because a new column will
be created if it hasn’t already been defined for the database.

319

3. Databases (datatool package)

\dtlappendentrytocurrentrow
{Email}% column key
{s@example.com}% value

_ B

Alternatively, \dt lupdateentryincurrentrow may be used to update an entry if
the column is already set or append it otherwise. This again takes the key rather than the column
index as the first argument:

\dtlupdateentryincurrentrow
{Age}% column key
{23}% wvalue

_ B

Once all modifications have been made, the \dt 1lbeforerow, \dtlcurrentrow
and \dt lafterrow content needs to be recombined in order to finish the updates:

\dtlrecombine

B

Suppose now, the customer with Id 2 needs to be remove. The required row again needs to be
selected first:

\dtlgetrowforvalue{customers}
{\dtlcolumnindex{customers}{Id}}% column index
{2}% wvalue

The database now needs to be reconstructed without this row:

\dtlrecombineomitcurrent

8 L 8

Example 98 then redisplays the data after these modifications. (Compare with the original data
shown in Example 94.)

320

3. Databases (datatool package)

* Example 98: Editing a Row of Data W LB
Id Organisation Surname Forename Email Ag
1 Parrot Polly pp@example.com L
3 University of Somewhere Zebra Zoé zz@example.com :
4 Zinnia Florestry Arara José ja@Qexample.com ¢
5 Duck Dickie dd@example.com
6 Newt Fellowship Axolotl Lizzie la@example.com
7 Avian Emporium Canary Fred fc@example.com
8 Newt Fellowship Molgina m@Q@example.com
9 Newt Fellowship Mander Sally sally. mander@example.com p
10 Elite Emporium Fant Eli ef@example.com 1(

3.13. Arithmetical Computations on Database Entries
[@

=
The aggregate action (see §3.3) provides a way of aggregating numeric data in one

or two columns of a database. Alternatively, you can use the commands listed here.
Aside from \DTLcomputebounds, the aggregate commands in this section return
formatted numbers. Additionally, rows may be filtered according to a condition. This
is different to the aggregate action which returns plain numbers with the default
datum=fal se action setting (see Example 69).

. 7

The commands described in §2.5 may be used on database values. Remember that if you
database contains formatted numbers rather than plain numbers, you will need to use the commands
in §2.5.2 to parse the formatted number to obtain the numeric value.

o

If you need to repeatedly parse numeric values in a database, you can increase efficiency
by setting st ore—datum=t rue before loading or creating a database.

The commands described in §2.5 are dependent on the mat h processor. As from version 3.0,
the aggregate commands described here directly use the I13fp library after converting formatted
numbers to reduce the parsing overhead.

X

\DTLsumforkeys [{condition)] [(assign-list)] { (db list) } { (key list) } { (cmd) }

Sums all numeric values in the columns identified by the keys in the comma-separated (key list) for
all databases listed in the comma-separated (db list) and assigns (cmd) to the total as a formatted
number. If st ore-datum=true, (cmd) will be a datum control sequence, otherwise (cmd)
will simply expand to the formatted number.

321

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 98 Editing a Row of Data
% Label: "ex:selectandeditrow"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{customers.csv}
Id,Organisation,Surname,Forename,Email,Age
1,,Parrot,Polly,pp@example.com,42
2,University of Somewhere,Canary,Mabel,mc@example.com
3,University of Somewhere,Zebra,Zoë,zz@example.com,21
4,Zinnia Florestry,Arara,José,ja@example.com,42
5,,Duck,Dickie,dd@example.com,
6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium,Canary,Fred,fc@example.com,19
8,Newt Fellowship,,Molgina,m@example.com
9,,Mander,Sally
10,Élite Emporium,Fant,Eli,ef@example.com,101
\end{filecontents}

\usepackage{datatool}
\DTLsetup{default-name=customers}
\DTLread{customers.csv}
\begin{document}
% Edit ID 9
\DTLaction[key=Id,value=9]{select row}
\dtlreplaceentryincurrentrow
{Newt Fellowship}% new value
{\dtlcolumnindex{customers}{Organisation}}% column index
\dtlappendentrytocurrentrow
{Email}% column key
{sally.mander@example.com}% value
\dtlupdateentryincurrentrow
{Age}% column key
{23}% value
\dtlrecombine

% Remove ID 2
\dtlgetrowforvalue{customers} {\dtlcolumnindex{customers}{Id}}% column index
{2}% value
\dtlrecombineomitcurrent

\DTLaction{display}
\end{document}

Nicola Talbot
Editing a Row of Data (source code)
An example document that loads data from a CSV file, edits a row and displays the content in a table (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example098.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example098.pdf

3. Databases (datatool package)

The first optional argument (condition) may be set to a boolean that’s suitable for use in the first
argument of \ifthenelse. The second optional argument (assign-list) may be set to the
(cs)=(key) assignment list suitable for use in \DTLmapgetvalues so that the placeholder
commands (cs) may be referenced in (condition). If the condition evaluates to false, the row will
be omitted from the total. Note that any non-numeric values will automatically be skipped.

A quicker alternative in the case of only one database, one column and no condition is:

X

\DTLsumcolumn{(db)}{ (key)} { (cmd)}

This sums over all numeric items in the column with the label (key) of the database identified
by (db) and stores the result as a formatted number in the control sequence (cmd). If store
—datum=true, (cmd) will be a datum control sequence, otherwise (cmd) will simply expand
to the formatted number.

X

\DTLmeanforkeys [{condition)] [(assign-list)] { (db list) } { (key list) } { (cmd) }

Computes the mean (average) of all numeric values in the columns identified by the keys in the
comma-separated (key list) for all databases listed in the comma-separated (db list) and assigns
(cmd) to the result as a formatted number. If st ore—datum=true, (cmd) will be a datum
control sequence, otherwise (cmd) will simply expand to the formatted number. The optional
arguments are as for \DTLsumforkeys.

A quicker alternative in the case of only one database, one column and no condition is:

\DTLmeanforcolumn{(db)}{(key)} {{(cmd)}

This computes the mean over all numeric items in the column with the label (key) of the database
identified by (db) and stores the result as a formatted number in the control sequence (cmd).
If store-datum=true, (cmd) will be a datum control sequence, otherwise (cmd) will
simply expand to the formatted number.

X

\DTLvarianceforkeys [{condition)] [(assign-list)] { (db list) } { (key
list) } { (cmd) }

Computes the variance of all numeric values in the columns identified by the keys in the comma-
separated (key list) for all databases listed in the comma-separated (db list) and assigns (cmd) to
the result as a formatted number. If st ore—datum=true, (cmd) will be a datum control
sequence, otherwise (cmd) will simply expand to the formatted number. The optional arguments
are as for \DTLsumforkeys.

A quicker alternative in the case of only one database, one column and no condition is:

\DTLvarianceforcolumn{(db)} {(key)} {(cmd)}

322

3. Databases (datatool package)

This computes the variance of all numeric items in the column with the label (key) of the database
identified by (db) and stores the result as a formatted number in the control sequence (cmd).
If store-datum=true, (cmd) will be a datum control sequence, otherwise (cmd) will
simply expand to the formatted number.

X

\DTLsdforkeys [(condition)] [{assign-list)] { {db list) } { (key list) } { (cmd) }

Computes the standard deviation of all numeric values in the columns identified by the keys in the
comma-separated (key list) for all databases listed in the comma-separated (db list) and assigns
(cmd) to the result as a formatted number. If st ore—datum=true, (cmd) will be a datum
control sequence, otherwise (cmd) will simply expand to the formatted number. The optional
arguments are as for \DTLsumforkeys.

A quicker alternative in the case of only one database, one column and no condition is:

\DTLsdforcolumn{(db)} {(key)}{{cmd)}

This computes the standard deviation of all numeric items in the column with the label (key) of
the database identified by (db) and stores the result as a formatted number in the control sequence
(emd). If store—datum=true, (cmd) will be a datum control sequence, otherwise (cmd)
will simply expand to the formatted number.

X

\DTLminforkeys [{condition)] [{assign-list)] { (db list) } { (key list) } { (cmd) }

Determines the minimum value over all numeric values in the columns identified by the keys
in the comma-separated (key list) for all databases listed in the comma-separated (db list) and
assigns (cmd) to the result as a formatted number. If st ore-datum=true, (cmd) will be
a datum control sequence, otherwise (cmd) will simply expand to the formatted number. The
optional arguments are as for \DTLsumforkeys.

A quicker alternative in the case of only one database, one column and no condition is:

\DTLminforcolumn{ (db)} { (key)} {{cmd)}

This determines the minimum value over all numeric items in the column with the label (key) of
the database identified by (db) and stores the result as a formatted number in the control sequence
(emd). If store—datum=true, (cmd) will be a datum control sequence, otherwise (cmd)
will simply expand to the formatted number.

X

\DTLmaxforkeys [(condition)] [(assign-list)] { (db list) } { (key list) } { (cmd) }

Determines the maximum value over all numeric values in the columns identified by the keys
in the comma-separated (key list) for all databases listed in the comma-separated (db list) and
assigns (cmd) to the result as a formatted number. If st ore-datum=true, (cmd) will be

323

3. Databases (datatool package)

a datum control sequence, otherwise (cmd) will simply expand to the formatted number. The
optional arguments are as for \DTLsumforkeys.
A quicker alternative in the case of only one database, one column and no condition is:

\DTLmaxforcolumn{ (db)} { (key)} {{cmd)}

This determines the maximum value over all numeric items in the column with the label (key) of
the database identified by (db) and stores the result as a formatted number in the control sequence
(emd). If store—datum=true, (cmd) will be a datum control sequence, otherwise (cmd)
will simply expand to the formatted number.

If you need the sum, mean, standard deviation, minimum and maximum values for a column
of just one database, it’s more efficient to use the aggregate action. Note, however, that
specifying two columns in the aggregat e action indicates two separate sets of data, whereas
two columns with commands like \DTLsumforkeys treats both columns as a single block
of data.

X

\DTLcomputebounds [{(condition)] { (db-list) } { (x-key) } { {y-key) } { (minX
cmd) } { (minY ecmd) } { (maxX cmd) } { (max¥ cmd) }

Computes the maximum and minimum z and y values over all the databases listed in the comma-
separated (db-list), where the x values are in the column identified by the label (x-key) and the y
values are in the column identified by the label (y-key).

The optional (condition) may be used to filter rows. If provided (condition) should be in the
form suitable for use in the first argument of \ i ft henelse. Only values in rows where the
conditional evaluates to true will be referenced.

The results are stored as plain numbers in the control sequences (minX cmd) (the minimum x
value), (minY cmd) (the minimum y value), (maxX cmd) (the maximum z value), and (maxY
cmd) (the maximum y value).

If you only have one database and no condition, you may prefer to use the aggregate
action:

\DTLaction

[

key=(x-key),

key2=(y-key),

options={min, max}

Y1 {aggregate}

\DTLget [min] { (minX cmd) }
\DTLget [min2] { (minY cmd) }
\DTLget [max] { (maxX cmd) }
\DTLget [max2] { (maxY cmd)}

324

3. Databases (datatool package)

3.14. Sorting a Database
(i)

=
If you have a large database, it’'s much more efficient to sort using datatooltk or

some other external tool which can save to a file format that datatool can load.

7

If your database isn’t too large and you are unable to include an external tool into your document
to perform sorting, then it’s possible to sort a database with the commands described in this
section.

Version 3.0 has introduced a new command \DTLsortdata (described in §3.14.1), which
is analogous to \DTLsortwordlist. It’s more efficient and more flexible than the older
\dtlsort (described in §3.14.2).

3.14.1. Sorting with \DTLsortdata

\DTLsortdata [(options)] { (db-name) } { {criteria) }

This command sorts the data (in the database identified by (db-name)) according to the given
criteria. It uses the same underlying methodology as \DTLsortwordlist, in that it first
converts all the sort values into byte sequences using a handler function, such as \DTLsort-
wordhandler, and then sorts the byte sequences. This makes sorting faster as it doesn’t have
to repeatedly parse each sort value.

o

The modification to the database will match the gl obal setting.

The (db-name) argument may be empty, which indicates that the default database (identified
with default-name in \DTLsetup) should be sorted. Available (options) are described
in §3.14.1.1 and the (criteria) argument is described in §3.14.1.2.

3.14.1.1. \DTLsortdata Options

The optional argument (options) of \DTLsortdata should be a (key)=(value) list of any of

the following:
I =

|

funct ion={function) initial: \DTLsortwordhandler

The handler function to use (see §2.9.5.2).

325

3. Databases (datatool package)

=

e

encap={cs)

The value should be a command that takes three arguments: { (value) } { (col-idx) } { (db-name) }.
If set, all non-null values will be encapsulated with this command and expanded before being
passed to the handler function. The first argument (value) is the actual value, the second (col-idx)
is the column index from which the value was obtained, and (db-name) is the database name.

The value will expand differently with encap set. Be careful of fragile commands in the
database if this option is used.

An empty setting encap=1{ } indicates no encapsulation. Example 183 in §7.10.1 uses this
option to encapsulate values with \DTLbibsortencap.
=

=
replace=(value) initial: null or empty

This determines whether or not a missing value should be replaced (if the replacements
column option is set). The value may be either nul 1, which will only replace null values, or
null or empty, which will replace null or empty values.

[=

=
missing-column-action=(value) initial: exrror

This option indicates what to do if a column key referenced in the sort criteria doesn’t exist. The
value may be one of: error (trigger an error), warn (issue a warning) or 1gnore (ignore

the reference).
[==

=
save—group-key={(col-key) initial: empty

If this option is set to a non-empty value, \DTLsortdata will obtain the letter group (using
\DTLassignlettergroup) from the sort value and save it in the column identified by
(col-key). If the column doesn’t exist, it will be created. After obtaining the letter group, the
value will be post-processed by:

X

\datatool_post_process_lettergroup:N (d var)

This requires IAEX3 syntax and does nothing by default. The argument is the token list variable
used to store the letter group.
[=

=
save—group-column={col-idx) initial: 0

As save—group—key but identifies the column by its index. Note that in this case, the

326

3. Databases (datatool package)

column must either exist or be one more than the database’s column count.

I E
=
save—group
A shortcut for save—-group—key=group.
[=
Ul
save-sort—key=(col-key) initial: empty

If this option is set to a non-empty value, \DTLsortdata will save the sort value in the
column identified by (col-key). If the column doesn’t exist, it will be created. This is primarily
intended for debugging. If the resulting order is unexpected, this can be used to check that the
sort values were correctly set. Alternatively, you can use the verbose package option to view
the information in the transcript.

=
save-sort—column=(col-idx) initial: O

As save—sort —key butidentifies the column by its index. Note that in this case, the column
must either exist or be one more than the database’s column count.

| S

save—sort

A shortcut for save-sort-key=sort.

3.14.1.2. \DTLsortdata Column Options

The (criteria) argument of \DTLsortdat a should be a comma-separated list where each item
is in the form (column-key)={ (column-options) } where (column-key) is the label identifying a
column to sort and (column-options) is a (key)=(value) list of options that apply to that column.
The = { (column-options) } part may be omitted if the default options should be used. If present,
the following options are available:
[©
|l

ascending=(boolean) default: true; initial: true

If this boolean option is true, the sort will be in ascending order. For columns with a numerical
data type, this will be in ascending numerical order, otherwise it will be in ascending lexicographic

order.
I E
=
asc
A valueless shortcut for ascending=true.
(D
descending=(boolean) default: true; initial: false

An antonym of ascending. If true, the sort will be in descending order.

327

3. Databases (datatool package)

l E
=
desc
A valueless shortcut for descending=true.
=
replacement s=(list) initial: empty

If set, the value should be a comma-separated list of column keys to use as a replacement if a
missing value (as determined by replace) is encountered.
The first (column-key) in the criteria list is the primary sort column. If there are any identical

values in that column, then the sort values from the second (column-key) will be used, and so on.

For example, the “marks” database (§3.2.1) has three students with the surname “Brown” and
two of them have the surname “Jane”. The student number disambiguates them. So the following
will first sort by surname, then (for identical surnames) by forename, and finally (for identical
surname and forename) by student number:

B

[\DTLsortdata{marks}{Surname, Forename, StudentNo}

If a column has missing (null) values, then those values will be treated as empty for string
columns or O for numeric columns. This means that sorting a string column in ascending order
will place all the null values at the top with the empty values. The secondary sort columns in the
criteria list will then determine their relative order.

If you want to specify an alternative column to use if a value is missing, then you need to identify
the replacement column with the replacement s option in (column-options). Whether or not
an empty value (as opposed to a null value) is considered missing is determined by the replace
option, which may be supplied in the optional argument of \DTLsortdata.

3.14.1.3. \DTLsortdata Examples

Example 99 loads the “customers” database from the customers. csv file (see §3.2.3),
which has some empty values in the Organisation column. This data is then sorted with:

Ej

\DTLsortdata{customers}
{Organisation, Surname, Forename}

In this case, no replacement columns are provided, so the sort value for the Organisation column in
the Polly Parrot, Dickie Duck and Sally Mander rows will be empty and those rows will be placed
at the start. Their relative order is then determined by their Surname, so the Dickie Duck row
comes first. (Compare Example 99 with the near identical Example 102 which has localisation
support.)

The null values are shown as “NULL” (for string columns) or O (for numeric columns) by
\DTLdisplaydb. Whereas empty values show as empty. This is why Dickie Duck’s age is

328

(99

3. Databases (datatool package)

blank in the Age column, because it was set to empty, but the missing ages (where there was no
trailing comma at the end of the line in the CSV file) show as 0.

4 Example 99: Sorting CSV Data Using \DTLsortdata by Organisation, NERIE
Surname and Forename With No Replacements
1d Organisation Surname Forename Email Age
5 Duck Dickie dd@example.com
9 Mander Sally NULL 0
1 Parrot Polly pp@example.com 42
7 Avian Emporium Canary Fred fc@example.com 19
8 Newt Fellowship Molgina m@example.com 0
6 Newt Fellowship Axolotl Lizzie la@example.com 0
2 University of Somewhere Canary Mabel mc@example.com 0
3 University of Somewhere Zebra Z.0é zz@example.com 21
4 Zinnia Florestry Arara José ja@example.com 42
10 Elite Emporium Fant Eli ef@example.com 101

Example 100, in contrast, has:

\DTLsortdata{customers}

{
Organisation={replacements={Surname, Forename}},
Surname={replacements={Forename}},
Forename

t

In this case, if the sort value is missing from the designated column, the first column within the
corresponding replacement s list that doesn’t have a missing value will be used.

Primary In this example, the primary sort value is obtained from the Organisation column. If
that value is missing, the primary sort value will be obtained from the Surname column,
but if that is also missing then the primary sort value will be obtained from the Forename
column. If that is also missing, then the primary sort value will be empty.

Secondary The secondary sort value is only used if the primary sort values are identical when
comparing two rows. In this case, the secondary sort value is obtained from the Surname
column. If that value is missing, the secondary sort value will be obtained from the
Forename column. If that value is also missing, the secondary sort value will be empty.

Tertiary The tertiary sort value is only used if both the primary and secondary sort values are
identical when comparing two rows. In this case, the tertiary sort value is obtained from
the Forename column. However, no replacement columns have been identified, so if the
Forename column is empty, the tertiary sort value will be empty.

329

2100

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 99 Sorting CSV Data Using \DTLsortdata by Organisation, Surname and Forename With No Replacements
% Label: "ex:sortcsvnorepl"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{customers.csv}
Id,Organisation,Surname,Forename,Email,Age
1,,Parrot,Polly,pp@example.com,42
2,University of Somewhere,Canary,Mabel,mc@example.com
3,University of Somewhere,Zebra,Zoë,zz@example.com,21
4,Zinnia Florestry,Arara,José,ja@example.com,42
5,,Duck,Dickie,dd@example.com,
6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium,Canary,Fred,fc@example.com,19
8,Newt Fellowship,,Molgina,m@example.com
9,,Mander,Sally
10,Élite Emporium,Fant,Eli,ef@example.com,101
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=customers}
\DTLread{customers.csv}
\begin{document}
% sort data by Organisation, then Surname, then Forename
\DTLsortdata{customers}{Organisation,Surname,Forename}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting CSV Data Using \DTLsortdata by Organisation, Surname and Forename With No Replacements (source code)
An example document that loads data from a CSV file and sorts it according to the Organisation, Surname and Forename from each row (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example099.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example099.pdf

3. Databases (datatool package)

£ Example 100: Sorting CSV Data Using \DTLsortdata by \EEE
Organisation, Surname and Forename With Replacements
1d Organisation Surname Forename Email Age
7 Avian Emporium Canary Fred fc@example.com 19
5 Duck Dickie dd@example.com
9 Mander Sally NULL 0
6 Newt Fellowship Axolotl Lizzie la@example.com 0
8 Newt Fellowship Molgina m@example.com 0
1 Parrot Polly pp@example.com 42
2 University of Somewhere Canary Mabel mc@example.com 0
3 University of Somewhere Zebra Z0é zz@example.com 21
4 Zinnia Florestry Arara José ja@example.com 42
10 Elite Emporium Fant Eli ef@example.com 101

Example 101 defines the customer data in the document using action commands instead of
loading the data from a CSV file (see §3.2.3). This means that some of the rows have a missing
Organisation column, which can’t occur with the CSV file (except where missing columns are
occur at the end). The default replace={null or empty} setting will treat empty

values as missing, so in Example 101

\DTLsortdata[replace=null or empty]{customers}

{
Organisation={replacements={Surname, Forename}},
Surname={replacements={Forename}},
Forename

}

the resulting order is the same as for Example 100. However, changing the setting so that only
null (not empty) values are treated as missing results in a different order.

\DTLsortdata[replace=null] {customers}

{
Organisation={replacements={Surname, Forename}},
Surname={replacements={Forename}},
Forename

330

2101

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 100 Sorting CSV Data Using \DTLsortdata by Organisation, Surname and Forename With Replacements
% Label: "ex:sortcsvrepl"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents}[noheader,overwrite]{customers.csv}
Id,Organisation,Surname,Forename,Email,Age
1,,Parrot,Polly,pp@example.com,42
2,University of Somewhere,Canary,Mabel,mc@example.com
3,University of Somewhere,Zebra,Zoë,zz@example.com,21
4,Zinnia Florestry,Arara,José,ja@example.com,42
5,,Duck,Dickie,dd@example.com,
6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium,Canary,Fred,fc@example.com,19
8,Newt Fellowship,,Molgina,m@example.com
9,,Mander,Sally
10,Élite Emporium,Fant,Eli,ef@example.com,101
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=customers}
\DTLread{customers.csv}
\begin{document}
\DTLsortdata{customers}
{
 Organisation={replacements={Surname,Forename}},
 Surname={replacements={Forename}},
 Forename
}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting CSV Data Using \DTLsortdata by Organisation, Surname and Forename With Replacements (source code)
An example document that loads data from a CSV file and sorts it according to the Organisation, Surname and Forename from each row with replacements for the missing elements (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example100.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example100.pdf

3. Databases (datatool package)

(Null vs Empty)
Sort replacing null or empty values.
Id Organisation Surname
7 Avian Emporium Canary
5 NULL Duck
9 Mander
6 Newt Fellowship Axolotl
8 Newt Fellowship NULL
1 NULL Parrot
2 University of Somewhere Canary
3 University of Somewhere Zebra
4 Zinnia Florestry Arara
10 Elite Emporium Fant
Sort replacing null (not empty) values.
Id Organisation Surname
9 Mander
7 Avian Emporium Canary
5 NULL Duck
6 Newt Fellowship Axolotl
8 Newt Fellowship NULL
1 NULL Parrot
2 University of Somewhere Canary
3 University of Somewhere Zebra
4 Zinnia Florestry Arara
10 Elite Emporium Fant

£ Example 101: Sorting Data Using \DTLsortdata With Replacements

Forename
Fred
Dickie
Sally
Lizzie
Molgina
Polly
Mabel
Zoé
José

Eli

Forename
Sally
Fred
Dickie
Lizzie
Molgina
Polly
Mabel
Zoe
José

Eli

W LB

Email Age
fc@example.com 19
dd@example.com 0
NULL 0
laQexample.com 0
m@example.com 0
ppQexample.com 42
mcQ@example.com 0
zzQexample.com 21
jaQexample.com 42
ef@example.com 101
Email Age
NULL 0
fc@example.com 19
dd@example.com 0
la@example.com 0
m@example.com 0
ppQexample.com 42
mc@example.com 0
zzQexample.com 21
jaQexample.com 42
ef@example.com 101

(@]

=
In all the above examples, “E” comes after “Z” because the examples haven’t used any
localisation support.

J

Example 102 adapts Example 99 to use the GB English localisation support. This requires
datatool—english to also be installed. The only difference in the document code between the two

examples is the locale identification:

=

[\usepackage[locales=en-GB] {datatool}

331

Eil

02

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 101 Sorting Data Using \DTLsortdata With Replacements (Null vs Empty)
% Label: "ex:sortdbrepl"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage{datatool}
\DTLsetup{default-name=customers}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Id]{add column}
\DTLaction[key=Organisation]{add column}
\DTLaction[key=Surname]{add column}
\DTLaction[key=Forename]{add column}
\DTLaction[key=Email]{add column}
\DTLaction[key=Age]{add column}
% 1st row:
\DTLaction[
 assign={
 % Organisation not set
 Id = 1, Email = {pp@example.com},
 Surname = {Parrot}, Forename = {Polly}, Age = 42
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 % Age not set
 Id = 2, Organisation = {University of Somewhere},
 Email = {mc@example.com}, Surname = {Canary},
 Forename = {Mabel}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Id = 3, Organisation = {University of Somewhere},
 Age = 21, Email = {zz@example.com}, Surname = {Zebra},
 Forename = {Zoë}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Id = 4, Organisation = {Zinnia Florestry}, Age = 42,
 Email = {ja@example.com}, Surname = {Arara},
 Forename = {José}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 % Organisation and Age not set
 Id = 5, Surname = {Duck}, Forename = {Dickie},
 Email = {dd@example.com}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 % Age not set
 Id = 6, Organisation = {Newt Fellowship},
 Email = {la@example.com}, Surname = {Axolotl},
 Forename = {Lizzie}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Id = 7, Organisation = {Avian Emporium}, Age =19,
 Email = {fc@example.com}, Surname = {Canary},
 Forename = {Fred}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 % Age and Surname not set
 Id = 8, Organisation = {Newt Fellowship},
 Email = {m@example.com}, Forename = {Molgina}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 % Organisation empty and Age and Email not set
 Id = 9, Organisation = {},
 Surname = {Mander}, Forename = {Sally}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Id = 10, Organisation = {Élite Emporium}, Age = 101,
 Email = {ef@example.com}, Surname = {Fant},
 Forename = {Eli}
 }
]{new row}

\begin{document}
{% scope to limit the change
 \DTLsetup {global=false}
Sort replacing null or empty values.
\DTLsortdata[replace=null or empty]{customers}
{
 Organisation={replacements={Surname,Forename}},
 Surname={replacements={Forename}},
 Forename
}

\DTLdisplaydb{customers}
}

Sort replacing null (not empty) values.
\DTLsortdata[replace=null]{customers}
{
 Organisation={replacements={Surname,Forename}},
 Surname={replacements={Forename}},
 Forename
}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting Data Using \DTLsortdata With Replacements (Null vs Empty) (source code)
An example document that defines data with missing columns and sorts it according to the Organisation, Surname and Forename from each row with replacements for the missing elements. In the first case both null and empty values are considered missing. In the second case only null values are considered missing (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example101.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example101.pdf

3. Databases (datatool package)

£ Example 102: Sorting CSV Data Using \DTLsortdata With Language \EEE
Support
1d Organisation Surname Forename Email Age
) Duck Dickie dd@example.com
9 Mander Sally NULL 0
1 Parrot Polly pp@example.com 42
7 Avian Emporium Canary Fred fc@example.com 19
10 Elite Emporium Fant Eli ef@example.com 101
8 Newt Fellowship Molgina m@example.com 0
6 Newt Fellowship Axolotl Lizzie la@example.com 0
2 University of Somewhere Canary Mabel mc@example.com 0
3 University of Somewhere Zebra Z.0é zz@example.com 21
4 Zinnia Florestry Arara José ja@example.com 42

Examples 103 & 104 both sort the data first by the Age column (which is numerical) and then
by the Surname column:

B

\DTLsortdata{customers}{Age, Surname}

The difference between the two is that Example 103 uses data from the CSV file, which has an
empty age element as well as missing age elements, whereas Example 104 uses the data created
within the document via action commands, which has missing but not empty age elements. (There
is an empty Organisation element, but that column isn’t contributing to the sort.)

4 Example 103: Sorting Data Using \DTLsortdata on Age then PFE X2 A
Surname (Empty or Null Values)
Id Organisation Surname Forename Email Age
8 Newt Fellowship Molgina m@example.com 0
6 Newt Fellowship Axolotl Lizzie la@example.com 0
2 University of Somewhere Canary Mabel mc@example.com 0
5 Duck Dickie dd@example.com
9 Mander Sally NULL 0
7 Avian Emporium Canary Fred fc@example.com 19
3 University of Somewhere Zebra Z.0é zz@example.com 21
4 Zinnia Florestry Arara José ja@example.com 42
1 Parrot Polly pp@example.com 42
10 Elite Emporium Fant Eli ef@example.com 101

332

21103
2104

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 102 Sorting CSV Data Using \DTLsortdata With Language Support
% Label: "ex:sortlocale"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{customers.csv}
Id,Organisation,Surname,Forename,Email,Age
1,,Parrot,Polly,pp@example.com,42
2,University of Somewhere,Canary,Mabel,mc@example.com
3,University of Somewhere,Zebra,Zoë,zz@example.com,21
4,Zinnia Florestry,Arara,José,ja@example.com,42
5,,Duck,Dickie,dd@example.com,
6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium,Canary,Fred,fc@example.com,19
8,Newt Fellowship,,Molgina,m@example.com
9,,Mander,Sally
10,Élite Emporium,Fant,Eli,ef@example.com,101
\end{filecontents}

\usepackage[locales=en-GB]{datatool}
\DTLsetup{store-datum,default-name=customers}
\DTLread{customers.csv}
\begin{document}
% sort data by Organisation, then Surname, then Forename
\DTLsortdata{customers}{Organisation,Surname,Forename}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting CSV Data Using \DTLsortdata With Language Support (source code)
An example document that loads data from a CSV file and sorts it according to the Organisation, Surname and Forename from each row using the GB English localisation support (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 103 Sorting Data Using \DTLsortdata on Age then Surname (Empty or Null Values)
% Label: "ex:sortcsvage"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{customers.csv}
Id,Organisation,Surname,Forename,Email,Age
1,,Parrot,Polly,pp@example.com,42
2,University of Somewhere,Canary,Mabel,mc@example.com
3,University of Somewhere,Zebra,Zoë,zz@example.com,21
4,Zinnia Florestry,Arara,José,ja@example.com,42
5,,Duck,Dickie,dd@example.com,
6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium,Canary,Fred,fc@example.com,19
8,Newt Fellowship,,Molgina,m@example.com
9,,Mander,Sally
10,Élite Emporium,Fant,Eli,ef@example.com,101
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=customers}
\DTLread{customers.csv}
\begin{document}
\DTLsortdata{customers}{Age,Surname}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting Data Using \DTLsortdata on Age then Surname (Empty or Null Values) (source code)
An example document that defines data with missing or empty Age elements and sorts it according to the Age and then Surname columns (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example102.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example102.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example103.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example103.pdf

3. Databases (datatool package)

£ Example 104: Sorting Data Using \DTLsortdata on Age then \EEE
Surname (No Empty Sort Values)

1d Organisation Surname Forename Email Age

8 Newt Fellowship NULL Molgina m@example.com 0

6 Newt Fellowship Axolotl Lizzie la@example.com 0

2 University of Somewhere Canary Mabel mc@example.com 0

5 NULL Duck Dickie dd@example.com 0

9 Mander Sally NULL 0

7 Avian Emporium Canary Fred fc@example.com 19

3 University of Somewhere Zebra Zoé zz@example.com 21

4 Zinnia Florestry Arara José ja@example.com 42

1 NULL Parrot Polly pp@example.com 42

10 Elite Emporium Fant Eli ef@example.com 101

Example 105 sorts the “marks” database (see §3.2.1) in descending order of marks for the first
assignment column (Assignl). The secondary sort (where the marks are identical) is by the
Surname column in ascending order:

,

\DTLsortdata{marks}
{

Assignl={descending=true},
Surname={ascending=true}

}

R105

.

This means that the students who obtained the same mark for assignment 1 are listed in alphabetical
order relative to each other.

Since ascending=true is the default, that may be omitted for the Surname column,
and descending=t rue may have the value omitted if it’s true, so the Assignl column
criteria can be written as Assignl={descending} and since the part after the equals (=)
doesn’t contain any commas or equals the outer bracing may be omitted. So the above can be
written more succinctly as:

Ei

\DTLsortdata{marks}{Assignl=descending, Surname}

Since desc is a synonym of descending=true, this can also be written as:

\DTLsortdata{marks}{Assignl=desc, Surname}

333

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 104 Sorting Data Using \DTLsortdata on Age then Surname (No Empty Sort Values)
% Label: "ex:sortdbage"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \usepackage{datatool}
\DTLsetup{default-name=customers}
% define database:
\DTLaction{new}
% add columns in desired order:
\DTLaction[key=Id]{add column}
\DTLaction[key=Organisation]{add column}
\DTLaction[key=Surname]{add column}
\DTLaction[key=Forename]{add column}
\DTLaction[key=Email]{add column}
\DTLaction[key=Age]{add column}
% 1st row:
\DTLaction[
 assign={
 % Organisation not set
 Id = 1, Email = {pp@example.com},
 Surname = {Parrot}, Forename = {Polly}, Age = 42
 }
]{new row}
% 2nd row:
\DTLaction[
 assign={
 % Age not set
 Id = 2, Organisation = {University of Somewhere},
 Email = {mc@example.com}, Surname = {Canary},
 Forename = {Mabel}
 }
]{new row}
% 3rd row:
\DTLaction[
 assign={
 Id = 3, Organisation = {University of Somewhere},
 Age = 21, Email = {zz@example.com}, Surname = {Zebra},
 Forename = {Zoë}
 }
]{new row}
% 4th row:
\DTLaction[
 assign={
 Id = 4, Organisation = {Zinnia Florestry}, Age = 42,
 Email = {ja@example.com}, Surname = {Arara},
 Forename = {José}
 }
]{new row}
% 5th row:
\DTLaction[
 assign={
 % Organisation and Age not set
 Id = 5, Surname = {Duck}, Forename = {Dickie},
 Email = {dd@example.com}
 }
]{new row}
% 6th row:
\DTLaction[
 assign={
 % Age not set
 Id = 6, Organisation = {Newt Fellowship},
 Email = {la@example.com}, Surname = {Axolotl},
 Forename = {Lizzie}
 }
]{new row}
% 7th row:
\DTLaction[
 assign={
 Id = 7, Organisation = {Avian Emporium}, Age =19,
 Email = {fc@example.com}, Surname = {Canary},
 Forename = {Fred}
 }
]{new row}
% 8th row:
\DTLaction[
 assign={
 % Age and Surname not set
 Id = 8, Organisation = {Newt Fellowship},
 Email = {m@example.com}, Forename = {Molgina}
 }
]{new row}
% 9th row:
\DTLaction[
 assign={
 % Organisation empty and Age and Email not set
 Id = 9, Organisation = {},
 Surname = {Mander}, Forename = {Sally}
 }
]{new row}
% 10th row:
\DTLaction[
 assign={
 Id = 10, Organisation = {Élite Emporium}, Age = 101,
 Email = {ef@example.com}, Surname = {Fant},
 Forename = {Eli}
 }
]{new row}

\begin{document}
\DTLsortdata{customers}{Age,Surname}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting Data Using \DTLsortdata on Age then Surname (No Empty Sort Values) (source code)
An example document that defines data with missing but not empty Age elements and sorts it according to the Age and then Surname columns (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example104.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example104.pdf

3. Databases (datatool package)

£ Example 105: Sorting Data Using \DTLsortdata by Descending \EEE
Numeric and Ascending String Values

Surname Forename StudentNo Assignl Assign2 Assign3

Brown Jane 102647 75 84 80

Brady Roger 106872 68 60 62

Smith, Jr John 102689 68 o7 72

Brown Jane 102646 64 92 79

Adams Zoé 105987 52 48 o7

Verdon Clare 104356 45 50 48

Brown Andy 103569 42 52 54

3.14.2. Sorting with \dtlsort

The older \dt 1sort command is less efficient than the newer \DTLsortdata, although
\dt 1lsort has been rewritten in version 3.0 to use IXTEX3’s sequence sorting.

X

\dt1lsort [(replacements)] { (criteria) } { (db-name) } { (handler-cs) }

Sorts the database identified by (db-name) using the given (handler-cs) function for the com-
parisons, which should be of the type described in §2.9.5.1. Unlike \DTLsortdata, the
(db-name) argument can’t be empty.

i

[The modification to the database will match the gl obal setting.

The (criteria) argument should be a comma-separated list of column keys, where each item in
the list may be just the key or in the form (col-key)=(order). The (order) may be ascending
or descending. If omitted, ascending is assumed.

(@]

=
Unlike \DTLsortdata, where you may specify more information with (col-

key)={ (options) }, with \dtlsort, only the keywords “ascending” or
“descending” may be used.

7

The other difference between \dt 1 sort and \DTLsortdata isthat with \DTLsort-
data, the list of replacements is set for specific columns, whereas with \dt L sort, a single
list of replacement columns may be provided in the optional argument, which will be used if any
of the columns listed in (criteria) have a missing value. Also with \dt 1 sort, the replacements
are only used for null values (see §3.10) not for empty values.

If any listed column in either (criteria) or (replacements) is undefined, a warning will occur
and the column will be dropped from the list. (Unlike \DTLsortdata, there’s no option

334

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 105 Sorting Data Using \DTLsortdata by Descending Numeric and Ascending String Values
% Label: "ex:sortmarksdes"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
 \begin{filecontents}[noheader,overwrite]{studentmarks.csv}
Surname,Forename,StudentNo,Assign1,Assign2,Assign3
"Smith, Jr",John,102689,68,57,72
"Brown",Jane,102647,75,84,80
"Brown",Jane,102646,64,92,79
"Brown",Andy,103569,42,52,54
"Adams",Zoë,105987,52,48,57
"Brady",Roger,106872,68,60,62
"Verdon",Clare,104356,45,50,48
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=marks}
\DTLread{studentmarks.csv}
\begin{document}
\DTLsortdata{marks}{Assign1=descending,Surname}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting Data Using \DTLsortdata by Descending Numeric and Ascending String Values (source code)
An example document that sorts data first by assignment mark in descending numerical order and then by surname in ascending lexicographical order (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example105.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example105.pdf

3. Databases (datatool package)

to suppress the warning.) The list of replacements may be omitted or empty but the (criteria)
argument must have at least one defined column.

If any column has been identified as a numeric column, a numerical comparison will be used
(with \DTLnumcompare). In the event that two numeric values are deemed equivalent, their
string value will be compared using the provided handler.

For example,

\dtlsort [Editor, Title] {Author}{books}
{\dtlwordindexcompare}

This will sort the “books” database on the “Author” column (in ascending order). Any row that

doesn’t have the Author column set will have the sort value obtained from the “Editor” column

instead. If that column also isn’t set, the sort value will be obtained from the “Title” column.
Compare this with:

=

\dtlsort [Title] {Author, Series,Volume}{books}
{\dtlwordindexcompare}

In this case, the database will be sorted by the “Author” column first. If that column isn’t set for a
particular row, the sort value will be obtained from the “Title” column. If the sort value (Author,
if set, or Editor otherwise) is equivalent to the other row being compared (that is, the sort handler
returns 0), then the two rows will be compared on the “Series” column. If that column isn’t set,
the Title will be used for the comparison instead. If this secondary comparison is also considered
equivalent, the two rows will then be compared on the “Volume” column.

This means that if the Author, Series and Volume columns are all missing for a particular row,

then the primary, secondary and tertiary sort values will all be the value from the Title column.

Contrast this with the more flexible \DTLsortdata:

\DTLsortdata{books}{
Author={replacements={Editor,Organisation}},

Series={replacements={Title}},
Volume

3

\DTLsort [(replacements)] { (criteria) } { (db-name) } modifier: *

A shortcut command that uses \dt 1 sort. The starred version uses \dt 1icompare as
the handler function, and the unstarred version uses \dt 1compare.

Example 106 is the closest equivalent to Example 100 that uses \dt 1sort instead of
\DTLsortdata:

335

21106

3. Databases (datatool package)

\dtlsort [Surname, Forename]% replacements
{Organisation, Surname, Forename}% sort criteria
{customers}% database
{\dtlwordindexcompare}% handler

Note that this has produced a different result to Example 100 because with \dt 1sort the
replacements are only used for null values not for empty values. Remember that in both examples,
localisation support will need to be added to correctly order values that contain non-ASCII
characters.

4 Example 106: Sorting CSV Data Using \dt 1 sort by Organisation, N\ERIE
Surname and Forename With Replacements
Id Organisation Surname Forename Email Age
5 Duck Dickie dd@example.com
9 Mander Sally NULL 0
1 Parrot Polly pp@example.com 42
7 Avian Emporium Canary Fred fc@example.com 19
8 Newt Fellowship Molgina m@example.com 0
6 Newt Fellowship Axolotl Lizzie la@example.com 0
2 University of Somewhere Canary Mabel mc@example.com 0
3 University of Somewhere Zebra Z.0é zz@example.com 21
4 Zinnia Florestry Arara José ja@example.com 42
10 Elite Emporium Fant Eli ef@example.com 101

3.15. Database Files (1/0)

The data stored in the database can be saved to an external file with \DTLwr it e, described in
§3.15.4, or a new database can be created by reading in a file with \DTLread, described in
§3.15.3.

3.15.1. File Formats

There are essentially two different types of file format according to how that data can be read into
a ISTEX document:

* plain text which needs to be parsed and converted into a datatool database (CSV and TSV);

* IATEX code which can simply be input into the document to recreate the database.

In the second case, the file extension would ordinarily be t ex but there is a danger with
\DTLwrite of accidentally overwriting a required document file, so the default file extension

336

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 106 Sorting CSV Data Using \dtlsort by Organisation, Surname and Forename With Replacements
% Label: "ex:dtlsortcsvrepl"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents}[noheader,overwrite]{customers.csv}
Id,Organisation,Surname,Forename,Email,Age
1,,Parrot,Polly,pp@example.com,42
2,University of Somewhere,Canary,Mabel,mc@example.com
3,University of Somewhere,Zebra,Zoë,zz@example.com,21
4,Zinnia Florestry,Arara,José,ja@example.com,42
5,,Duck,Dickie,dd@example.com,
6,Newt Fellowship,Axolotl,Lizzie,la@example.com
7,Avian Emporium,Canary,Fred,fc@example.com,19
8,Newt Fellowship,,Molgina,m@example.com
9,,Mander,Sally
10,Élite Emporium,Fant,Eli,ef@example.com,101
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum,default-name=customers}
\DTLread{customers.csv}
\begin{document}
% replacements are only used for null not empy values. Compare with example "ex:sortcsvrepl" that uses \DTLsortdata
\dtlsort[Surname,Forename]{Organisation,Surname,Forename}{customers}{\dtlwordindexcompare}

\DTLaction{display}
\end{document}

Nicola Talbot
Sorting CSV Data Using \dtlsort by Organisation, Surname and Forename With Replacements (source code)
An example document that loads data from a CSV file and sorts it according to the Organisation, Surname and Forename but the replacements are not used for empty values (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example106.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example106.pdf

3. Databases (datatool package)

is either dt 1t ex (for files containing user commands, such as \DTLnewdb) or dbtex (for
files containing special internal commands that aren’t designed to be edited by hand).

The dt 1t ex files are easier to read and edit, but are slower to load. The dbt ex format has
two versions: 2.0, which is very hard to read but is the fastest to load, and 3.0, which is easier to
read and still much faster that the dt 1t ex file format. Note that datatooltk version 1.9
can read dbtex v2.0 but not v3.0 (which was only introduced to datatool v3.0). The pending (at
the time of writing) datatooltk version 2.0 will be able to read the newer format. Datum
markup is only preserved for format=dbtex—3. It will be stripped when writing to all other
formats.

Note that, while it is also possible to create a file containing a set of \DTLact i on commands
that define a database, this is slower to load than the dt 1t ex formats. If you want to load such
afile, just use \input or \Input IfFileEx1ists asusual. There’s no provision to save
a file in this form.

A
Be aware that if a database contains values with characters that don’t have their usual
category code, this information will be lost when writing the database to an external file.
This is particularly a problem for the dt 1 tex and dbtex files.

The format is specified with the format setting in the optional argument of \DTLread
and \DTLwrite or within the 10 value in \DTLsetup. The defaultis format=csv.

3.15.1.1. CSV and TSV Files

The default file format for both \DTLwrite and \DTLread is CSV. The only difference
between format=csv and format=t sv is the default file extension (csv or t sv), and
format=t sv will additionally implement \DTLsettabseparator to set the separator
to a tab character and change the category code of the tab character to 12 (other).

If the file contains I£TEX code, for example:

Product,Price (\9)
Book, \$

the use the csv—content=tex option. If the file contains characters that are normally
special to IATEX but need to be treated literally then use the csv—content=1iteral
option. For example:

Product,Price (9)
Book, $

The default separator for the csv format is a comma (,), and can be changed with the
separator option. Note that if separator comes after format=tsv in the same
option list, this will change the separator but leave the default extension as t sv.

337

3. Databases (datatool package)

The default separator is a double-quote ("), and can be changed with the delimiter
option. The delimiter will always be searched for when loading a CSV/TSV file with \DTL-
read, but you can control whether or not the delimiter is written with \DTLwxr it e with the
add-delimiter option.

Spaces between the separator and delimiter are always trimmed. Leading and trailing spaces
inside the delimiter, or when there is no delimiter present, is determined by the general new

—value—trimoption. This needs to be setin \DTLset up, not in the optional argument of
\DTLread. For example, to switch off trimming:

=

[\DTLsetup{new-value-trim=false}

Datum markup is not preserved when writing to a CSV or TSV file nor is the database name.

3.15.1.2. DTLTEX Files

The dt 1tex files are simply ISTEX files that contain the user level commands required to define
a database. These are easier to read and edit by hand, but are slower to load. There are two
supported formats:

2.0 (format=dtltex—2) This has the database name hardcoded in the file and will always
try to define the database. This format contains commands like \DTLnewdb but \DTL-
read locally sets the g1 oba 1 option to true (as the internal workings of \DTLread
need to be scoped). If you need a local definition, you can simply input the file, with a
command such as \ input.

3.0 (format=dt1ltex—3) This has the database name identified near the start of the file but
it’s designed to allow the name option to override it and the L oad—action=append
option will prevent the database from being created (to allow the content to be appended to
another database).

Datum markup is not preserved for either version.

(i

The remainder of this section is for advanced users who want to understand the file format.

When written by \DTLwr ite, both start with the line:

% DTLTEX (version) (encoding)

where (version) identifies the DTLTEX version number (either 2 . 0 or 3. 0), and (encoding) is
the document encoding (obtained by expanding \ TrackLangEncodingName). Note that
this will be incorrect if the encoding changes are datatool is loaded. There’s no way of knowing
if the encoding was changed after the database was created. In general it’s best to establish the
document encoding as early as possible.

338

3. Databases (datatool package)

The next comment line provides information about file creator and creation date. In the case
of a file created by datatool, this will have the datatool version details. The creation date will be
obtained by expanding \DTMnow (provided by the datetime2 package), if that command has
been defined, otherwise \ t oday will be used.

DTLTEX version 2.0 was designed to work with \ input, so it only contains normal user-
level commands that have an argument to identify the database name (see §3.4): \DTLnewdb,
\DTLnewrow, and \DTLnewdbent ry. The column headers will then be set with \DTL-
setheader (regardless of the no—header option). Finally, \dt1lastloadeddbis
defined to the database name:

\def\dtllastloadeddb{(db-name)}

(This line was introduced in datatool v2.15, so any file that matches the rest of the format
but omits this line should be considered DTLTEX v1.0.) Note that although \def is used,
\DTLread will change this to a global definition. Note that since these are all document-level
commands, the file can simply be loaded with \ input. This method can be used to locally
define the database (provided gl obal=false is set).

DTLTEX version 3.0 defines the database with the commands listed below. These are only
intended for use within \DTLread, although the file can simply be \ input.

X

\DTLdbProvideData

If the file is input within \DTLread, this command will locally set the de fault-name to
either the name value, if set, or (db-name), otherwise, and will create the database if required
by load—action.

If \DTLdbProvideData is used outside of the context of \DTLread, it will set the
default-name to (db-name) and define the database if it doesn’t already exist.

In either case, both \dt 11ast loadeddb is defined to the database name, and the (default-
name) is also set to the same value to allow the database to be referenced in the following
commands:

I
\DTLdbNewRow
Equivalent to:
\DTLnewrow* { (default-name) }
X
\DTLdbNewEnt ry{(col key) } { (value) }

339

3. Databases (datatool package)

Equivalent to

\DTLnewdbent ry* { (default-name) } { (col key) } { (value) }

Unless suppressed by no-header, \DTLwrite will also include code to set the header
for each column with:

X

\DTLdbSetHeader {{col key) } { (header) }

This is equivalent to

~

\DTLsetheader* {(default-name) } { {col key) } { (header) }

Note that this is different to DTLTEX v2.0, which always has the header code.

3.15.1.3. DBTEX Files

The dbtex files are ISIEX files that contain internal commands required to define a database.
These are harder to read and edit by hand, but are faster to load than the other file formats. There
are two supported formats:

2.0 (format=dbtex—2) This has the database name hardcoded in the file and will always
try to define the database.

Datum markup is not preserved. Any spaces at the start of an element value will be lost.
3.0 (format=dbtex-3) This has the database name identified near the start of the file but
it’s designed to allow the name option to override it.

Datum markup is preserved.

The load—action=append option is not supported for this format (for either version).

(i]

[B

The remainder of this section is for advanced users who want to understand the file format.

As with the DTLTEX format, \DTLwr it e will start the file with comment lines. The first
identifies the format:

[% DBTEX (version) (encoding)

where (version) identifies the DTLTEX version number (either 2 . 0 or 3. 0), and (encoding) is
the document encoding, as for DTLTEX. The second comment line is the creation information,
as for DTLTEX.

The v2.0 format then starts with a check for the existence of the database and exits the file
input if it already exists:

340

3. Databases (datatool package)

\DTLifdbexists{(db-name)}%
{\PackageError{datatool}{Database ° (db-
name)' already exists}{}%
\aftergroup\endinput}{}%

The rest of the file consists of low-level internal commands that define the underlying registers and
commands used to store the database information. This means that @ needs to have its category
code set to “letter”. A local scope is introduced to limit the effect of \makeatletter anda
message will be written to the transcript if verbose mode is on:

\bgroup\makeatletter
\dtl@message{Reconstructing database ° (db-name)'}%

This means that the internal commands used to store the database information must be globally
defined. (Note that \global is redundant as all registers are globally defined, but this is now
part of the DBTEX v2.0 file format.) The column meta data is stored in a token register, which
needs to be defined and then set:

\expandafter\global\expandafter
\newtoks\csname dtlkeys@(db-name)\endcsname
\expandafter\global

\csname dtlkeys@(db-name)\endcsname=/{ (header markup)}

Similarly, the database content is stored in a token register, which needs to be defined and then
set:

\expandafter\global\expandafter
\newtoks\csname dtldb@(db-name)\endcsname
\expandafter\global

\csname dt1db@(db-name)\endcsname={ (body markup) }

The total number of rows is stored in a count register that needs to be defined and set:

\expandafter\global
\expandafter\newcount\csname dtlrowsQ@(db-
name)\endcsname
\expandafter\global
\csname dtlrows(@(db-name)\endcsname=(num-rows)\relax

Similarly, the total number of columns is stored in a count register that needs to be defined and
set:

341

3. Databases (datatool package)

\expandafter\global

\expandafter\newcount\csname dtlcols@(db-
name)\endcsname
\expandafter\global

\csname dtlcols@(db-name)\endcsname=(num-columns)\relax

The column key to index mapping is implemented by defining:

\expandafter
\gdef\csname dtl@ci@(db-name)@ {key)\endcsname {(column-idx)}%

This is done for each column. Finally, the local scope is ended and \dt11lastloadeddb
is defined:

\egroup
\def\dtllastloadeddb{(db-name)}%

Note that \dt 11last loadeddb was only introduced in datatool v2.15, so if the last line is
omitted, the file should be considered DBTEX v1.0.

The (header markup) consists of sub-blocks that contain the meta data for each column in the
form:

\db@plist@eltQw
\db@col@id@w (column-idx)%
\dbRcol@id@endR@ %
\db@key@id@w (key)%
\dbRkeyRid@end@ %
\dbRtype@id@w (rype)%
\dbRtype@id@endR %
\db@header@id@w (header)%
\db@header@id@end@ %
\db@col@id@w (column-idx)%
\db@col@id@end@ %
\db@plist@elt@endl %

These commands are quarks and have no meaning. Unpredictable results can occur in loops if
the header blocks aren’t in order of the column index. It depends on whether the loop iterates
over the column index or maps over the header blocks.

Note that \DTLwr ite automatically inserts the comment character at the end of most lines,
even though they are not always required. If you are writing a tool that reads DBTEX files,
remember to discard the comments.

The (body markup) is more complicated but has a similar design.> This consists of sub-blocks

3Thanks to Morten Hggholm for the design.

342

3. Databases (datatool package)

({row-markup)) that contain the data for each row:

\db@row@elt@w %
\db@row@id@w (row-idx)%
\db@row@id@end@ %
\db@row@eltQw %

(entry markup)
\db@row@elt@w %
\db@row@id@w (row-idx)%
\db@rowl@id@end@ %

\.

Again, these commands are quarks and have no meaning, and unpredictable results can occur if
the blocks aren’t ordered according to the row index. The (entry markup) consists of sub-blocks
({entry column markup)) that contain the data for each entry in the given row and column:

\db@col@id@w (column-idx)%
\db@col@id@end@ %
\db@colRelt@w (value)%
\db@col@elt@end@ %
\db@col@id@w (column-idx)%
\db@col@id@end@ %

where (column-idx) is the column index and (value) is the value for that column. Again, these
commands are quarks and have no meaning, and unpredictable results can occur if the blocks
aren’t ordered according to the column index.

Note that with DBTEX v2.0, as mentioned earlier, \makeatletter is used to allow
internal commands, which means that @ will have a letter category code. This will affect any
data contained in the database that includes the @ character (for example, if the database has an
email column). See Example 111. Although the quarks have no meaning, spaces following those
commands are ignored. This means that if an entry starts with a space that space will be lost.

It’s not possible to switch to ISTEX3 syntax for a new file format as the data will likely contain
one or more of the characters that have their category code changed by \ExplSyntaxOn
(most notably the space character). Therefore, the datum items markup is stripped by \DTL-
wrilte, since it contains IS[EX3 commands. The only way to retain it is via DBTEX v3.0, which
hides the IZTEX3 syntax within its custom reconstruction commands, which expand the content
before setting the underlying token registers. This is faster than constructing the content with
\DTLnewdbentry, but not as fast as explicitly setting the token register, as is done with
DBTEX v2.0.

Although DBTEX v2.0 is the fastest format to load, you need to be aware of its limitations.

The DBTEX v3.0 format, starts with the same command as for DTLTEX v3.0:

343

3. Databases (datatool package)

\DTLdbProvideData/ (db-name)}

This sets up the (default-name) to either the name setting, if provided, or (db-name), otherwise.
This allows the appropriate name to be used in the subsequent commands. Note that this command
also defines \dt1lastloadeddb to the database name, but within \DTLread it doesn’t
define the database with the DBTEX formats as the database internals are either explicitly defined
(format=dbtex—2), or they are constructed by the following command:

X

\DTLreconstructdatabase{ (num-rows) } { (num-columns) } { (header
code) } { (body code) } { (key-index code) }

This creates a database with (num-rows) rows and (num-columns) columns, where the content
of the internal token register used to store the header markup is obtained by expanding (header
code), and the content of the internal token register used to store the database body is obtained
by expanding (body code). The (key-index code) is the code required to reconstruct the mapping
from column key to column index.

The (header code) should only consist of an ordered series of:

\dtldbheaderreconstruct { (column-idx) } { (key) } { (type) } { (header) }

where (column-idx) is the column index (starting from 1), (key) is the unique column key, (type)
is the data type numeric identifier (0: string, 1: integer, 2: decimal, 3: currency), and (header).
Note that (header code) is designed to expand to the explicit (header markup), describe above
for DBTEX v2.0.

The (index-key code) is a reverse mapping from column key to column index, which consists
of a series of:

7

\dtldbreconstructkeyindex{ (key)} { (column-idx) }

(This corresponds to defining the commands \ dt 1 @c i @ (db-name) @ (key) to expand to (column-
idx), described above for DBTEX v2.0.)

Every column in (header code) must have a corresponding key to index mapping. For example:

344

3. Databases (datatool package)

\DTLreconstructdatabase

{(num-rows) } {4}%

{% Header
\dtldbheaderreconstruct{l}{Name}{0}{Name}%
\dtldbheaderreconstruct{2}{Age}{1}{Age}%
\dtldbheaderreconstruct{3}{Score}{2}{Score (\%)}%
\dtldbheaderreconstruct{4}{Award}{2}
{Award (\protect \$)}%

}% End of Header

{(body code) }

{%$ Key to index
\dtldbreconstructkeyindex{Name}{1}%
\dtldbreconstructkeyindex{Age}{2}%
\dtldbreconstructkeyindex{Score}{3}%
\dtldbreconstructkeyindex{Award}4%

}% End of key to index

The (body code) is more complicated, but is designed to expand to the explicit (body markup),
describe above for DBTEX v2.0.
The (body code) consists of an ordered set of row blocks, where each block is identified with:

X

\dtldbrowreconstruct { (row-idx) } { (row code) }

(This is designed to expand to the (row-markup) sub-block, described above.) The (row-idx)
argument is the row index (starting from 1) and (row code) is the row content, which should
consist of an ordered set of column blocks:

X

\dtldbcolreconstruct {{(column-idx) } { (content) }

(This is designed to expand to the (entry column markup), described above.) The (column-idx)
argument is the column index and (content) is the content for the given column in the given row.
This may be the actual content which will be encapsulated with:

I
\dtldbvaluereconstruct {(sring) }
or it could be a datum item, in which case (content) will be in the form:
I
\dtldbdatumreconstruct { (string) } { (numeric) } { (currency) } { (type) }

where (string) is the original value (such as \ $12, 500), (numeric) is the plain number numeric
value (for example, 12500) or empty if the value is a string, (currency) is the currency symbol
(for example, \ $), and (type) is the numeric data type identifier.

345

3. Databases (datatool package)

3.15.2. 1/0 Settings

Data can be loaded from an external file using \DTLread, described in §3.15.3, and saved to
an external file using \DTLwrite, described in §3.15.4. Both commands have an optional
argument with the settings that govern the format. Some of the settings are only applicable to a
particular format or to either reading or writing a file.

When passed to the optional argument of \DTLread or \DTLwrite, these settings only
have a local effect within the read or write action. You can set up defaults with the 1 © option in

\DTLsetup. For example:

\DTLsetup{
1o0={
separator = {;},
delimiter = {'},
format = {csv}
}
t

If a column key can’t be obtained (either from the file or from the ke vy s option) when reading
a csv or t sv file, then a default key will be used with the column index prefixed with:

X

\dtldefaultkey

So the default key for a column with index (n) is obtained by expanding \dt 1defaultkey
(n) (for example, the default key for column 4 will be “Column4”).
[=

=
add-delimiter=(value) initial: detect

This option is only applicable with \DTLwr ite, and determines whether or not to use the
delimiter when writing to a csv or t sv file. This option has no effect on other formats. The
value may be one of the following.
[
(A

add-delimiter=always

Always add the delimiter.

0

add-delimiter=never

Never add the delimiter.

346

3. Databases (datatool package)

g

add-delimiter=detect

Only add the delimiters if the separator is found in the value.

9

auto-keys=(boolean) initial: false

The column keys will be the default key (obtained by expanding \dt 1defaultkey (n)),
regardless of whether or not the file has a header row. This option overrides any previous kevy s
setting and is only applicable when reading a csv or t sv file.

[=
=
autokeys=(boolean) alias: auto-keys
Equivalent to auto—keys.
(@
convert-numbers={boolean) initial: £alse

Any columns that have had their data type identified as an integer, decimal or currency, will
have the value read from the CSV or TSV file converted to the current localisation settings using
\DTLdecimaltolocaleor \DTLdecimaltocurrency, respectively. Any other
type of column will be parsed as usual (except in the case of csv—content=no-parse).
See Example 110.

Only has an effect when \DTLread parses format=csv or format=tsv files. This
option is ignored by the other formats. If all columns are plain numbers you may want to consider
using this option with csv—content=no—-parse and store—datum=true.

(o]

= |
This setting should be used with dat a—t ypes, and the values in the indicated columns

should be plain numbers. The column data type will be updated if a value in that column is
found to be incompatible with the identified type (except in the case of csv—content
=no-parse).

[=
=
csv-blank=(value) initial: ignore

This option is only applicable with \DTLread and determines how to act if an empty line is
encountered in a csv and t sv file. This option has no effect with other formats.

Note that a blank line means an empty line in the file unless it occurs within grouped content
with csv—-content=tex.

347

3. Databases (datatool package)

g

csv-blank=ignore

Blank lines are ignored.

<]

csv-blank=empty—-row

Blank lines will be treated as an empty row to be added to the database.

3

csv—-blank=end

A blank line indicates that parsing should stop. Any following content is ignored.

|

csv-content=(value) initial: 1iteral

This option is only applicable with \DTLread and determines how the content of csv and
t s files should be interpreted. This option has no effect with other formats.

If you don’t intend to use any numerical operations on the data or if the data consists only of
plain numbers or text that either has no I£TEX special characters or has valid IZTEX syntax, then
the fastest method of loading a CSV file is with csv—content=no—parse. The other
options will parse the elements in each row to determine the data type.

For example, if the first two lines of the file consist of:

Name , Score (\%), {Award

(\S)}

Then with csv—content=tex this will be read in as a single header row. The grouping
allows an element value to be split across multiple lines. The first column will have the header
Name, the second column will have the header Score (\%) and the third column will have
the header Award (\S).

Whereas with csv—content=1iteral this will be read in as a header row on line 1
and a row containing a single column on line 2. The header for the first column is again Name,
but the header for the second column will be Score (\textbackslash \%), and the
header for the third column will be \ { Award. The entry of the first column in the first row will
be (\textbackslash \$)\}.

Note that in both case, the column keys would need to be set with auto—keys or keys as
the headers for the second and third columns are inappropriate for keys.

Suppose now that the next line is:

["Chlo\"e",89,5.50

In this case, the result depends on the csv—escape—-chars setting, which determines
whether or not to strip the backslash in front of the double-quote. With csv—-escape—chars

348

3. Databases (datatool package)

=none the backslash isn’t removed, so the value with csv—content=1iteral will end
upas Chlo\textbackslash "e (Chlo\’e). Whereas with csv—content=tex the
value will end up as Ch 1o\ "e (Chlog). With the other csv—-escape—chars settings, the
backslash will be removed in both cases, and the value will be Ch1o" e. Since the category code
for the delimiter is automatically set to 12 (other) at the start of \DTLread, that’s the category
code it will have in the value.

(&]

| A

csv—content=tex

The content includes IXTEX markup. These means that grouping can also be used to delimit values.
The file is read line by line, but any line break occurring within a group will ensure that subsequent
lines are appended until the grouping is balanced. Once the line has been read, it will then be split
on the separator and the delimiter pairs will be removed. Any escape backslashes (\)
will be stripped according to csv—escape—-chars.

(o]

| S

csv—content=no—parse

This is similar to csv—content=tex but the items are not parsed to determine their data
type. If data—types has not been set then each item will be assumed a string (even if it’s
empty). If data—types is set, then if the current column type is numerical then the item is
expected to be a plain number (even if the data type is currency). If the current column number
is greater than the number of items in data—t ypes then the final data type listed will be
assumed for all remaining columns. See Example 108.

For example, if you have a CSV file with six columns of plain numbers then the file can be
read with:

,
\DTLsetup{store—-datum}
\DTLread][

format=csv,

csv—-content=no-parse,

data-types=decimal,
l]{data.csv}

.

Note that this won’t check that the values are actually numerical (unless you have convert

—numbers on). If they’re not and you try performing a numerical operation with them, you
will get an error.

If you do intend using the values in a numerical operation that expects formatted numbers
(including plotting) then switch on the st o re—dat um setting before loading the data, otherwise
the values will be parsed during the numerical operation according to the current localisation
settings.

If you specify a column as currency, each item in that column must still be a plain number
without a currency symbol. In this case, the string part of the element will be set to the given item
encapsulated with \DTLcurrency unless you also have the convert-numbers setting

349

3. Databases (datatool package)

on, in which case \DTLdecimaltocurrency will be used instead.
If convert-—numbers is on, the plain numbers will be converted according to the data
type for the current column.
[&

| S

csv—content=literal

The content should be interpreted literally. Each line in the file is read in as a detokenized string,
which is then split according to the separator and delimiter. Each element is then
processed according to the following steps:

1. strip any backslashes according to csv—-escape—chars;

2. perform a “replace all cases” regular expression which substitutes the sequences \n, \ r
and \ £ with a space character, the sequence \t with a tab character and the TgX special
characters with I£I[EX commands (see Table 3.1);

3. rescan the value to ensure all tokens have their correct category code according to the
current setting;

4. apply user mappings.

The regular expression in the second step uses \regex_replace_case_all :nN with
the cases provided in the token list variable:

X

\1l_datatool_str_csv_regex_cases_tl

The default substitutions are listed in Table 3.1. If you want to redefine this token list, remember
that the input string will only contain “other” and space tokens when the substitution is performed.

The final user mappings are applied after the value has been rescanned. There are none by
default, but mappings can be added with:

X

\DTLrawmap { (original) } { (replacement) }

This indicates that all instances of (original) should be replaced by (replacement). Note that this
appends the mapping. It won’t override an existing mapping for (original). This command was
originally provided for use with \DTL1oadrawdb and is retained for backward-compatibility.

[=
Sl
csv-escape—-chars=(value) initial: double—delim

Determines if a literal instance of the delimiter should simply be doubled (the standard for CSV
files) or whether or not the backslash (\) and de 1 im1iter characters that occur within a value
in a CSV or TSV file should be escaped. (That is, the character should have a backslash inserted
in front of it.)

This setting is only applicable with format=csv and format=t sv. Note that if a value
contains the separator character, it should be delimited.

350

3. Databases (datatool package)

Table 3.1.: Mappings Used with csv—content=11iteral Before Re-Scanning

Original Substituted

\#

$ \$

% \'%

& \ &

\ \textbackslash
A \textasciicircum
_ _

{ \ {

} \}

~ \textasciitilde
\f space

\n space

\r space

\t tab character

~

csv-escape-chars=double—-delim

The delimiter should be doubled.

(&

[csv—-escape-chars=delim

Only the delimiter should be escaped. \DTLwr ite will insert a leading backslash and \DTL-
read will strip a leading backslash from the de 1 imit er character but not from a backslash

character.
3

csv—escape-chars=delim+bksl

Both the de 1 imiter and backslash characters should be escaped. \DTLwrite will insert
a leading backslash and \DTLread will strip a leading backslash from the de1imiter and

backslash characters.
[&
A

csv—escape—-chars=none

No escaping. \DTLwrite won’t insert a leading backslash or double the delimiter and \DTL-
read won't strip a leading backslash or convert a double delimiter to a single instance.

=
csv-skip-1lines=(value) initial: O

The value may be the keyword false (which is equivalent to csv—-skip—-1lines=0)ora

351

3. Databases (datatool package)

non-negative integer. If the value is greater than zero, then \DTLread will skip the first (n)
linesina format=csv or format=tsv file where (n) is the supplied value. This option
has no effect on other formats.

Note that with csv—content=tex, a “line” may actually cover multiple lines if a line
break occurs within a group. For example, if the file starts with:

Name , Score (\%), {Award

(\S) }
"Chlo\"e",89,5.50

Then with csv—content=1literal and csv-skip—1ines=1 then the first line to
be parsed will be the line:

(\S) }

whereas with csv—content=texand csv—-skip—-1ines=1, thefirst line to be parsed
will be the line:

"Chlo\"e",89,5.50

data-types={(list)

The value should be a comma-separated list of keywords that identify the corresponding column
data type. The keywords may be one of: unknown, string, integer, decimal,
currency, datetime, date, or time. Only has an effect when \DTLread parses
format=csvor format=tsv files. This option is ignored by the other formats.

o

The column data type will be updated if a value in that column is found to be incompatible
with the identified type (except in the case of csv—content=no-parse).

If there are more columns than are listed in data—-types then csv—-content=no-
parse will assume all remaining columns have the same type as the last listed (or string if the
list is empty). With the other csv—content settings, any remaining columns will updated as
usual, according to the data type identified from parsing the items in the column. See Example 108.

--—
—

=
delimiter=(char) initial: "'

Sets the delimiter for format=csv and format=tsv files to (char), which must be a
single token. This setting is ignored by format=dbtex and format=dt1ltex files.
The default delimiter may also be set via the de 1 imiter package option or with:

352

3. Databases (datatool package)

\DTLsetdelimitexr{(char)}

If you don’t want a delimiter when saving a file, use the add—delimiter=never option.
[=
=
expand=(value) default: protected,; initial: varies

This option governs element expansion when the data is written to the file for all formats. This
option also changes new—value—expand, which affects element expansion when data is
read in from a file, except for the dlbt e x formats where no expansion is applied to the values. If
the value is omitted, expand=protected is assumed.

The default setting for \DTLwrite is expand=none. The default for \DTLread is
the current new—va lue—expand setting. If the value is omitted, expand=protected
is assumed. The value may be one of the following.

(&]
(A

expand=none

No expansion. Automatically implements new—value—-expand=false.

3

expand=protected

Protected expansion, except for the dlot e x formats where this option is equivalent to e xpand
=none. Automatically implements new—value—-expand=true.
>

expand=full

Full expansion. Make sure that the database doesn’t contain fragile commands with this setting.
Automatically implements new—-value—expand=true.

Bear in mind that if you add content to databases that contain characters that should have
non-standard category codes, this information may be lost unless it’s hidden inside a robust
command that ensures the correct category codes are used. Normally with expand=none,
\DTLwrite will prevent expansion of an element while writing to a file. However, with the
DBTEX formats, if a database element starts with the special datum item markup or if the
element starts with the command \dt 1 specialvalue then the datum item will be stripped
in DBTEX v2.0 and \dt 1 specialvalue will be allowed to expand. (The datagidx package
uses this to clear the “Used” and “Location” columns when writing the index/glossary database to
a file for the next run.)

[(=]

=
format=(value) initial: csv

Indicates the file format for both \DTLread and \DTLwrite. The default setting is
format=csv (even if you have separately set the separator to the tab character). The format

353

3. Databases (datatool package)

may be one of the following values:

B

| S

format=csv

The CSV file format with the separator given by the separat or option and the delimiter given
by the delimiter option. The default file extension is set to csv. Note that the designated
separator and delimiter will have their category code set to “other”.

(&]

\

format=tsvwv

The TSV file format with a tab character separator and the delimiter given by the delimiter
option. The default file extension is set to csV.

If the separator option is specified affer this option, then that separator will be used
instead, but the file extension will still default to t sv.
[i
=
The following formats are all files that contain I£TEX code and all use the same underlying

function with \DTLread. The file is input as per a normal IKTgX file with gl obal=
t rue and scoping to limit the effect of the options and some local redefinitions. In terms
of \DTLread, the difference between the specific format values simply determines
the default file extension.

(>

format=dtltex-2

This indicates DTLTEX v2.0 format (see §3.15.1.2). The default file extension is set to dt 1 t e x.
When used with \DTLwr ite, the data will be written to the file with document level user
commands that include the database name, such as \DTLnewdb.
[&
A

format=dtltex-3

This indicates DTLTEX v3.0 format (see §3.15.1.2). The default file extension is set to dt 1t e x.

When used with \DTLwrite, the data will be written to the file with v3.0 document level
user commands described in §3.15.1.2.

(@]

(A

format=dtltex

The latest DTLTEX format. This is currently equivalent to format=dt ltex—-3.

3

format=dbtex-2

This indicates DBTEX v2.0 format (see §3.15.1.3). The default file extension is set to dbtex.
When used with \DTLwrite, the data will be written to the file in DBTEX v2.0 format,

354

3. Databases (datatool package)

which uses low-level internal commands to define and set the registers used to store the data.
Note that this will cause any instance of @ in the database to have a letter category code (see
Example 111) and leading spaces at the start of database elements will be lost. The DBTEX v3.0

format is better.
[&

| S

format=dbtex-3

This indicates DBTEX v3.0 format (see §3.15.1.3). The default file extension is set to dbt ex.
When used with \DTLwrite, the data will be written to the file in DBTEX v3.0 format,

which uses higher level internal commands.
(&]

format=dbtex

The latest DBTEX format. This is currently equivalent to format=dbtex-3.

headers=(list)

Identifies the column headers to be used when \DTLread parses format=csvor format
=t sv files. This option is ignored by the other formats.

Leading and trailing spaces and empty elements in (list) will be stripped, regardless of
the t rimand skip—empty settings. If you specifically want to retain these, you will
need to use braces around the item.

| =%fe]

If headers is set to empty (the default), or there is no item in the (list) that corresponds to
a given column, then that column header will be the same as the column key.
For example:

\DTLread{headers={ Name ,,Email, {},Notes, }}
{(csv-file) }

This is equivalent to:

\DTLread{headers={Name, Email, {}, Notes}}
{{csv-file) }

_ 8 LB

The first column will be given the header “Name” and the second column will be given the header
“Email”. The third column will have an empty header, and the fourth column will be given the
header “Notes”. If a fifth column is found in the file, the header for that column will be the same
as the key for that column.

355

3. Databases (datatool package)

keys=(list)

Identifies the column keys to be used when \DTLread parses format=csvor format=
t sv files. This option is ignored by the other formats.

G
;‘
Leading and trailing spaces and empty elements in (/ist) will be stripped, regardless of

the trimand skip—empty settings. If you specifically want to retain these, you will
need to use braces around the item.

J

If keys is set to empty and aut o—keys=false (the default), then the keys will be the
column headers supplied in the file. If there are no column headers (no—header=true) or
the header is empty for a given column, then the corresponding key in (list) will be used. If there
is no corresponding key in (list), or if the corresponding key is empty, then the default key is used.

G
k_d
If keys is used with a non-empty list (after stripping extraneous spaces and commas)

then it will automatically implement auto—-keys=false. If auto-keys=true
is subsequently used, it will override the key s setting.

For example:

B
\DTLread{keys={ Name ,,Email, {},Notes, }}
{(csv-file) }

This is equivalent to:

\DTLread{keys={Name, Email, {},Notes}}
{(csv-file) }

This will set the key to “Name” for the first column and “Email” for the second. The third column
will either pick up the key from the header row in the file or, if that is missing, the key will
be \dtldefaultkey (n) (“Column3”). The fourth column will have the key “Notes”. If
additional columns are found in the file, they will act as for an empty element in the list. So a fifth
column will either pick up the key from the header row in the file or, if that is missing, the key
willbe \dt ldefaultkey (n) (“Column5”).

load-action=(value) initial: old—-style

Determines whether or not \DTLread should create a new database or append to an existing

356

3. Databases (datatool package)

one. This append setting does not support format=dt1ltex—2 or any dbtex format.

i

Remember that the database name depends on the name setting and the format.

(>

load—action=detect

Detects the appropriate action: if a database with the given name exists, it behaves as 1 oad—
action=append, otherwise it behaves as load—-action=create.

<]

load—-action=create

A new database will be created. If a database already exists, an error will occur.

<]

load—-action=append

A new database won’t be created. If the database doesn’t already exist, an error will occur.
Appended data will match on the column key not the index. This may cause null values in the
database if there are extra or missing columns in the appended data.

<]

load—action=overwrite

If the database with the given name already exists, it will be cleared first instead of attempting to

define it.
| L 3
|

load—-action=old-style

For backward-compatibility with old versions of datatool, this setting will test the conditional:

I}
\ifDTLnewdbonload (true)\else (false)\f1i initial: \ i ftrueDeprecated

If true, this behaves like 1 oad—act ion=create otherwise it behaves like 1 oad—action
=append.

name=(value)

The database name. This option is supported by \DTLwrite for all formats, and identifies the
database to save. If omitted, the general de fault —name setting will be used.
Note that the argument is expanded when the option is set. For example:

357

3. Databases (datatool package)

\newcommand{ \mydatacmd} {mydata}
\DTLsetup{io={name=\mydatacmd}}
\renewcommand{\mydatacmd} {otherdata}

In the above, the database name remains “mydata” after \mydat acmd is redefined.

With \DTLread, this option identifies the database name but isn’t supported by all formats.
This option is ignored by dt 1 tex—2 and dbtex—2. If omitted, the default behaviour depends
on the format: csv and t sv will fallback on the de fault-name setting, but dotex—3
and dt 1t ex—3 will use the name provided in the file.

[O

el
no—header=(boolean) initial: false

A boolean option that determines if \DTLwr ite should omit header information in the file.
This option has no effect with format=dtltex-2, format=dbtex-2 and format
=dbtex-3.

With \DTLread, this option only has an effect with the format=csv and format
=t sv formats. If no-header=true, then there’s no header row in the file (taking into
account any offset introduced with csv—skip—1ines). The column keys will either be
obtained from the key s setting or will be set to the default for the given column index. The
column headers will either be obtained from the heade rs setting or will be set to the key.

With dt 1tex files, this option will locally redefine the underlying command used by \DTL-
setheader to do nothing, unless a corresponding value is found in the headers option.
This means that the header will be the same as the column key unless the headers value
supplies an alternative.

With \DTLwrite, this option will omit the header line for the format=csvand format
=t sv formats. So the database content will start on the first line of the file. With format=
dt ltex—3, this will omit the code that sets the column headers (but the column keys will still
be used).

=
noheader=(boolean) alias: no—header
A synonym of no—header.
=
only-reformat-columns={(list) initial: empty

Similar to the aut o—reformat numeric option and the auto-reformat datetime
option. The value should be a comma-separated list of column index numbers.

This option identifies the indexes of the columns that should be automatically reformatted
(but only for data types identified by aut o—reformat-types)when \DTLread parses
format=csvor format=tsv files. This option is ignored by the other formats.

358

3. Databases (datatool package)

(o]

=
The option simply locally switches on the corresponding aut o—reformat numeric

option and the aut o—reformat datetime option when parsing a column that’s included
inthe only—-reformat—-columns list. If the list is empty, then no change will be
made, so whatever setting was in effect before the file was opened will be obeyed.

omitlines=(n) initial: 0

Provided for backward compatibility, this option is like csv—skip—1ines but doesn’t allow
the keyword fal se and doesn’t trigger an error for negative values.
[=
S

overwrite=(value) initial: exrroxr

A boolean option that governs whether or not an existing file should be overwritten. Only applicable
with \DTLwrite. The value may be one of the following.

<]

overwrite=error

Trigger an error and don’t allow the file to be overwritten.

<]

overwrite=warn

Trigger a warning and don’t allow the file to be overwritten.

overwrite=allow

Allow the file to be overwritten.

(Ul
separator={char) initial: ,
Sets the separator for CSV files to (char), which must be a single token.
The default separator may also be set with:
) §

\DTLsetseparator{{(char)}

The tab character in TSV files is awkward as the tab character is usually treated the same as a
space by IXTEX. This means that in order to read a tab character correctly, the category code first
needs to be changed. The following command:

X

\DTLsettabseparator

359

3. Databases (datatool package)

changes the category code of the tab character to 12 (“other”) and then sets the tab character as
the separator. Note that this will affect any tab characters in the document code unless the change
is localised. The simplest method is to use the setting format=tsv.

=
t r im=(boolean)

Equivalentto \DTLsetup{new-value—trim=(boolean)}. Only applicable with \DT L-
read but not for the dbt ex formats.

3.15.3. Loading a Database from an External File

\DTLread [(options)] { (filename) }

Loads the data from the file given by (filename) and globally defines a database containing that
data. If the file extension is omitted, the default extension associated with the format will be used.
The options are as for those listed in §3.15.2 that are identified as working with \DTLread.

The CSV and TSV files don’t have the database name included in the file, so the name option
may be used to specify the database name to override the de fault —name setting. The name
option may also be used to override the name supplied in DBTEX 3.0 and DTLTEX 3.0 files, but
the name is hardcoded in DBTEX 2.0 and DTLTEX 2.0 files, so the name option will have no
effect (other than to generate a warning).

After the file has been read, the command \dt 11lastloadeddb is defined to expand to
the database name.

For example, the “xydata” database described in §3.2.11 is in a CSV file with two columns
of numbers with decimal points. Since there are no special characters to worry about, if the
current decimal character is a decimal point then either csv—content=1iteral or csv

—content=tex may be used, but csv—content=tex is faster, since it doesn’t need to
convert any characters. However, since these are all plain numbers, it’s even faster to load with
csv—content=no—-parse.

Example 107 loads the data with csv—content=no-parse but doesn’t identify the

data as decimal values:

\DTLread[
name=xydata,
format=csv,
csv—content=no—-parse

] {xydata.csv}

This will assume that all content is just text, which becomes evident when the data is sorted and
displayed:

360

107

3. Databases (datatool package)

\DTLsortdata{xydata}{Y}
\DTLdisplaydb{xydata}

Because the columns are identified as having the string data type, the sorting uses a string
comparison and \DTLd1i splaydb uses left alignment.

4 Example 107: Loading Data With No Parsing \ER IR 1
X Y

3.2 -04

-2.5 -1

-3.5 -2.75

1 -4.2

-1 1.5

26 1.8

-3 3

Example 108 identifies the data as decimal values and also sets st ore—dat um beforehand,
which means that values won’t have to be parsed later:

\DTLsetup{store-datum}
\DTLread[

name=xydata,
format=csv,
csv—-content=no-parse,
data-types=decimal

] {xydata.csv}

Again the data is sorted (on column Y) and displayed as before, but now the sorting is numerical
and the columns are right aligned. Note that with csv—content=no-parse, the data
—types setting doesn’t need a type for each column. The type for just the first column is set
and following columns are assumed to have the same type. This is different from the behaviour
of data—types when parsing is on.

361

En

08

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 107 Loading Data With No Parsing
% Label: "ex:loadxynoparse"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents}[noheader,overwrite]{xydata.csv}
X,Y
-3.5,-2.75
-3,3
-2.5,-1
-1,1.5
1,-4.2
2.6,1.8
3.2,-0.4
\end{filecontents}

\usepackage{datatool}
% This will assume that all data is just text:
\DTLread[
 name=xydata,
 format=csv,
 csv-content=no-parse]{xydata.csv}
\begin{document}
% since the columns are identified as strings, this just does a string sort:
\DTLsortdata{xydata}{Y}
\DTLdisplaydb{xydata}
\end{document}

Nicola Talbot
Loading Data With No Parsing (source code)
An example document loads X/Y data without parsing (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example107.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example107.pdf

3. Databases (datatool package)

£ Example 108: Loading Data With No Parsing and Columns Identified as N\EFIE
Decimal

1 -4.2
-3.5 -2.75
-2.5 -1
3.2 -04
-1 1.5
2.6 1.8
-3 3

Example 109 identifies the data in the first column as decimal and the data in the second column
as currency. Note that with csv—-content=no-parse, columns identified as currency
must also be plain numbers without a currency symbol (as is the case here):

2109

\DTLsetup{store—-datum}
\DTLread[

name=xydata,

format=csv,
csv—content=no-parse,
data-types={decimal, currency}
] {xydata.csv}

\.

Again the data is sorted (on column Y) and displayed as before. Note that the second column
has the original value encapsulated with \DTLcurrency. Since st ore—datumis on, the
actual value provided in the CSV file is embedded in the data for easy access.

N Example 109: Loading Data With No Parsing and Columns Identified as N\EEE
Decimal and Currency

X Y
1 —3$4.2
-3.5 —$2.75
-2.5 —$1
32 %04
-1 $1.5
2.6 $1.8
-3 $3

Example 110 has the localisation settings on. (This will require datatool—regions and datatool
—english to also be installed.) EBU

362

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 108 Loading Data With No Parsing and Columns Identified as Decimal
% Label: "ex:loadxynoparsedecimal"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents}[noheader,overwrite]{xydata.csv}
X,Y
-3.5,-2.75
-3,3
-2.5,-1
-1,1.5
1,-4.2
2.6,1.8
3.2,-0.4
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum}
\DTLread[
 name=xydata,
 format=csv,
 csv-content=no-parse,
 data-types=decimal
]{xydata.csv}
\begin{document}
\DTLsortdata{xydata}{Y}
\DTLdisplaydb{xydata}
\end{document}

Nicola Talbot
Loading Data With No Parsing and Columns Identified as Decimal (source code)
An example document loads X/Y data without parsing but columns are identified as decimal (source code)

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 109 Loading Data With No Parsing and Columns Identified as Decimal and Currency
% Label: "ex:loadxynoparsedecimalcurr"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents}[noheader,overwrite]{xydata.csv}
X,Y
-3.5,-2.75
-3,3
-2.5,-1
-1,1.5
1,-4.2
2.6,1.8
3.2,-0.4
\end{filecontents}

\usepackage{datatool}
\DTLsetup{store-datum}
\DTLread[
 name=xydata,
 format=csv,
 csv-content=no-parse,
 data-types={decimal,currency}
]{xydata.csv}
\begin{document}
\DTLsortdata{xydata}{Y}
\DTLdisplaydb{xydata}
\end{document}

Nicola Talbot
Loading Data With No Parsing and Columns Identified as Decimal and Currency (source code)
An example document loads X/Y data without parsing but the two columns are identified as decimal and currency (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example108.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example108.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example109.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example109.pdf

3. Databases (datatool package)

=

[\usepackage[locales=en-BE] {datatool}

This means that the decimal character is now a comma not a decimal point, but this isn’t a prob-
lem because csv—content=no-parse is used. However, the convert-—numbers
option will reformat the values according to the current localisation setting. (Note that the aut o
—reformat option isn’t applicable with csv—content=no—parse as no parsing takes

place.)

\DTLsetup{store—-datum}
\DTLread]|

name=xydata,

format=csv,
csv—-content=no-parse,
data-types={decimal, currency},
convert—numbers

] {xydata.csv}

Again the data is sorted (on column Y) and displayed as before.

4 Example 110: Loading Data With No Parsing and Columns Identified as \ERE
Decimal and Currency with Reformatting
X Y
1 —4,20€
-3,5 —2,75€
-2,5 —1,00€
3,2 —0,40€
-1 1,50€
2,6 1,80€
-3 3,00€
)
\DTLloaddbtex{(cs)} { (filename) } Deprecated

Inputs the file identified by (filename) and defines the control sequence (cs) to expand to the
database name. In datatool v3.0, this command has been rewritten to simply do:

\DTLread [name={}, format=dbtex] { (filename) }
\let(cs)\dtllastloadeddb

363

% This file is embedded in datatool-user.pdf version 3.4.1 2025-04-25
% Example 110 Loading Data With No Parsing and Columns Identified as Decimal and Currency with Reformatting
% Label: "ex:loadxynoparsedecimalcurrconvert"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents}[noheader,overwrite]{xydata.csv}
X,Y
-3.5,-2.75
-3,3
-2.5,-1
-1,1.5
1,-4.2
2.6,1.8
3.2,-0.4
\end{filecontents}

% requires datatool-english and datatool-regions to also be installed:
\usepackage[locales={en-BE}]{datatool}
\DTLsetup{store-datum}
\DTLread[
 name=xydata,
 format=csv,
 csv-content=no-parse,
 data-types={decimal,currency},
 convert-numbers
]{xydata.csv}
\begin{document}
\DTLsortdata{xydata}{Y}
\DTLdisplaydb{xydata}
\end{document}

Nicola Talbot
Loading Data With No Parsing and Columns Identified as Decimal and Currency with Reformatting (source code)
An example document loads X/Y data without parsing but the two columns are identified as decimal and currency and reformatted according to the localisation settings (source code)

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example110.tex
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-user-examples/datatool-user-example110.pdf

3. Databases (datatool package)

Ty
\DTL1loaddb [({options)] { (db-name) } { (filename) } Deprecated
This deprecated command now simply does:
\DTLread [name={(db-name)}, format=csv, csv-content=
tex, (options)] { (filename) }
Ty
\DTLloadrawdb [(options)] { (db-name) } { {filename) } Deprecated
This deprecated command now simply does:
\DTLread [name={(db-name)}, format=csv, csv-content=
literal, (options)] { (filename) }
3.15.4. Saving a Database to an External File
X

\DTLwrite [(options)] { (filename) }

Saves the data from a database to the file given by (filename). If the file extension is omitted,
the default extension associated with the format will be used. The options are as for those listed
in §3.15.2 that are identified as working with \DTLread. The name option identifies the
database. If that setting isn’t provided, the de fault —name is assumed.

)
\DTLsavedb/{ (db-name) } { (filename) } Deprecated

This deprecated command now simply does:

\DTLwrite [name={(db-name)}, overwrite=warn, format=
csv, expand=none, add-delimiter=detect] { (filename) }

Ty
\DTLsaverawdb{ (db-name) } { (filename) } Deprecated

This deprecated command now simply does:

\DTLwrite [name={(db-name)}, overwrite=warn, format=dbtex—
2,expand=full] {(filename)}

364

3. Databases (datatool package)

]
\DTLprotectedsaverawdb/{ (db-name)} { (filename) } Deprecated

This deprecated command now simply does:

\DTLwrite [name={(db-name)}, overwrite=warn, format=dbtex-
2, expand=none] { (filename) }

—
————4

i
\DTLsavetexdb{ (db-name)} { (filename) } Deprecated

This deprecated command now simply does:

\DTLwrite [name={(db-name)}, overwrite=warn, format=
dtltex—-2,expand=full] {(filename)}

3.15.5. 1/0 Examples

The “customers” database (see §3.2.3) may be loaded from the CSV file customers.csv: 111

=

[\DTLread[name=customers, format=csv] {customers.csv}

Alternatively, you can setup the default database name first, to avoid having to repeatedly specify
it. The file extension may also be omitted, as can £ o rmat=csv which is the default:

=

\DTLsetup{default—-name=customers}
\DTLread{customers}% parse customers.csv

Example 111 does this in the preamble. Setting the default name makes it easier to use actions
without having to repeatedly write the database name.

The select row action can be used to find the row where the Ema il column is set to
the email address fc@example.com. If successful, the row index can be accessed with
\dt lrownum.

=

\DTLaction[key=Email,value=fc@example.com]
{select row}
Row: \number\dtlrownum.

The database hasn’t been modified, but it can be saved to the DBTEX v3.0 format with:

365

3. Databases (datatool package)

\DTLwrite[format=dbtex—-3,overwrite=allow]
{customers-v3}

(The overwrite setting allows the test document to be re-compiled afterwards without

triggering an error.) This will create a file called customers-v3.dbtex. (If you try this

example, compare the DBTEX v3.0 file with and without the st ore—datum setting on.)
Example 111 then reads this new file back in with:

=

\DTLread[format=dbtex, name=customers—v3]
{customers—-v3}

Note that although the DBTEX v3.0 file format includes the database name (which will be “cus-
tomers” in this example), this can be overridden with the name option (but not with default
—name, which can’t be used to override the database name if it’s hard-coded in the file).

This has created a second identical database called “customers-v3”. The select row
action is again used to look up the row with the email fc@example . com but note that the
database name now needs to be specified, since it’s not the default:

\DTLaction]|

name=customers-v3,

key=Email, value=fclexample.com
]{select row}
Row: \number\dtlrownum.

Example 111 then re-saves the original “customers” database in the DBTEX v2.0 format. (The
default name is still set to “customers”.)

=

\DTLwrite[format=dbtex—-2,overwrite=allow]
{customers-v2}

This creates a file called customers-v2.dbtex.

The DBTEX v2.0 format has the database name hard-coded in the file and doesn’t allow it
to be changed (even if the name option is used) nor does it support any load action other than
load—action={create}. This means that the “customers” database must be deleted
before this new file can be loaded:

=

\DTLaction{delete}
\DTLread[format=dbtex] {customers-v2}

366

3. Databases (datatool package)

This should in theory still be identical to the original but it’s not because the DBTEX v2.0 file
format requires the category code of @ to be set to “letter”. This means that the row look up will
now fail.

=

\DTLaction[key=Email, value=fcl@example.com]
{select row}
Row: \number\dtlrownum.

This results in “Row: 0” (without an error) indicating that no match was found because the
@ character in value=fc@example.com has its usual “other” category code, but the
fclexample.com within the database has the letter category code.

4 Example 111: Loading and Saving Data (Be Careful of Category Codes) NERE
Row: 7.
Row: 7.
Row: 0.

As described in §3.2.10, the “growthdata” database can be obtained by parsing the example

file growth .t sv as follows:

\DTLsetup{store-datum, default-name=growthdata}
\DTLread[

format=tsv, csv-skip-lines=1,
keys={ExplTime, ExplCount, Exp2Time, Exp2Count},
csv—-content=