
Google Hack Honeypot Manual
v. 1.1 release

http://ghh.sourceforge.net

Contents
1. FAQ

1. What is GHH?
1. What’s new in GHH v1.1?

2. What is a Honeypot?
3. What are search engine hackers?
4. What kind of damage can be done?
5. Why should I implement GHH on my site?
6. How does GHH work?

2. Installation
1. Prerequisites
2. Choosing a Honeypot
3. Download
4. Installation
5. Global Configuration
6. Honeypot Configuration

1. What about non *.php honeypots?
7. Indexing

3. Usage
1. Reading Logs

3.1.1 CSV Log Format
3.1.1 MySQL Log Format

2. Making Sense of It All
3. Multiple Honeypots

4. Advanced Usage
1. Custom Honeypots
2. Central Logging (Honeynet)
3. GHH and Security Policies

5.GHH Security
1. Secure Configuration Checklist
2. Index Avoidance
3. Security Policy Issues

6. Miscellaneous

1.FAQ
1.1What is GHH?

GHH is a reaction to an evolving type of malicious web traffic: search engine hacking.
GHH is a “Google Hack” honeypot. GHH is designed to provide reconnaissance against
attackers that use search engines as a hacking tool against your resources. GHH
implements honeypot theory to provide additional security to your web presence.

1.1.1 What’s new in GHH v1.1?
Four important updates and features have been added to make GHH v1.1 a much
more powerful tool:

• Proxy Detection. It is trivial for an attacker to mask reconnaissance and
attacks behind a proxy. GHH has added layers of proxy detection to
detect the true source of the attack.

• Centralized Logging Support. GHH logs to either CSV or MySQL based
logs. This allows centralized logging, essentially creating a honeynet.

• Spoofed File Extensions. Apache supports file type spoofing via .
htaccess. This allows GHH to spoof ASP, JSP and any other file type as
a honeypot.

• New Pre-Built Honeypots

1.2 What is a honeypot?
A honeypot is, to quote Lance Spitzner founder of the Honeynet Project:

 “An information system resource whose value lies in unauthorized
or illicit use of that resource.”

Simply put a honeypot is something that appears to be vulnerable, but in reality is
recording illicit use.

GHH allows administrators to track and profile malicious hosts. The honeypot allows
administrators to observe who is how attacks are executed via logs. The data generated
by this, or any other honeypot can be used to deny future access to attackers, notify
service providers of attacks originating from their networks or act as an input for
statistical analysis.

1.3 What are search engine hackers and why should I
care?

Google has developed a powerful tool. The search engine that Google has implemented
allows for searching on an immense amount of information. The Google index has
swelled past 8 billion pages [July 2005] and continues to grow daily. Mirroring the growth

of the Google index, an ever-increasing number of installations of web-based
applications such as message boards and remote administrative tools has resulted in an
increase in the number of poorly configured and vulnerable web apps available on the
Internet.

This insecure tools combined with the power of the search engine and index which
Google provides results in a convenient attack vector for malicious users. It is in your
best interest to be knowledgeable of, and protect yourself from this threat.

1.4 What kind of damage can be done?
A simple query on the Google search engine can reveal “wide open” sensitive data:

Search: “# -FrontPage-” inurl:service.pwd

This simple search string will return plain text passwords for administrative access via
Microsoft's FrontPage. A misconfiguration in the FrontPage software and web server
results in sensitive information to be available to anyone who either constructs the
search string, or visits an online database of malicious search strings. There are
hundreds of similar search engine hacks. Lack of foresight into security issues in web
applications is to blame.

1.5 Why should I implement Google Hack Honeypot on
my site?

GHH allows you to monitor attempts by malicious attackers to compromise your
security. The logging functions that GHH implements allows you, the administrator, to do
what you like with the information. You can use the attack database to gather statistics
on would-be-attackers, report activities to appropriate authorities and temporarily or
permanently deny access to resources.

1.6 How does Google Hack Honeypot work?
Reference http://ghh.sourceforge.net/introduction.php for details on the intersection of
theory/practical concerns that drive GHH.

2.Installation
(Flowchart available in package)

2.1 Prerequisites
A web server running Apache and PHP is needed, and optionally MySQL.

2.2 Choosing a Honeypot
Download honeypots from the GHH repository on SourceForge.
(http://ghh.sourceforge.net) There are multiple types of honeypots available which
emulate different types of Google Hack Database (GHDB) signatures. You can
download and configure an official GHH honeypot or follow the directions in the “Custom
Honeypot” section of this document to create your own. By picking or creating a
honeypot for a web application that is recently discovered to be vulnerable there is less
chance of your honeypot being avoided by search engine hackers.

2.3 Download
The latest version of GHH will be available at the official project website located at
http://ghh.sourceforge.net.

2.4 Installation
Follow these steps to install GHH onto your server:

1. GHH should be unzipped into a folder that is not in the document root of
your web server. (We don’t want Google to find us yet!)

2.5Global Configuration
Inside of the uncompressed installation package, locate config.php.

Decide which logging system to use, CVS or MySQL. Edit config.php so the variable
$LogType represents your choice, “MySQL” or “CSV” (caps sensitive) Below this is the
configuration section for both types of logs. Configure the section for the logging type
you chose.

CVS:
Create a file for your GHH log, anywhere but your document root.
Example: /apache/ghhlog.csv, Not: /apache/htdocs/ghhlog.csv
(If access to folders that are not in the document root is not available, use a
password protected folder, covered with .htaccess or similar)

chmod the log file so it is writable by Apache.

Change the $Filename variable to contain the (full) path to your CVS log file
you created in 2.4.2.

MySQL:
Configure config.php with your MySQL server information (i.e. username,
password, host)

Change the $RegisterGlobals variable to 'false' if you require register_globals to be
on in the server's php.ini (or if you are getting a blank page when viewing the honeypot
file).

2.6 Honeypot Configuration
There is a README.txt file in the downloaded package. Because different honeypots
may have different configuration instructions, this file is necessary for each separate
honeypot. README.txt contains instructions to setup the particular honeypot, and may
be intricate depending on the complexity of the implemented honeypot. Open the
README.txt file in the file you downloaded, and follow its configuration instructions. This
process will involve placing the honeypot into your document root, and building an .
htaccess file describe next (if necessary)…

1.6.1 What about non *.php honeypots?

For honeypots which require that the filetype does not end in “php” (honeypots
that end in “txt”, “asp”, “mdb”, etc) require a .htaccess file be created and placed
in the same directory as the honeypot.

The .htaccess file should contain the following (or similar, check the honeypot
README, there may be an htaccess in your honeypot package already):

AddHandler application/x-httpd-php .ext
AddType application/x-httpd-php .ext

This tells Apache to render any of the listed file extensions with PHP. Append or
remove file extensions as necessary for the honeypot being used. Make sure to
place this file in the same directory as the honeypot.

2.7 Indexing
In order for the honeypot to work, it must be visible to search engines. There are
different ways to accomplish this task. The GHH team recommends setting up a secret
hyperlink on a HTML of a page of your site. Add a link to a page that Google indexes, or
other search engines like so:

.

Where the “.” is the same color as the background of the page. This invisible link
attracts the attention of search engines. However, regular viewers of your site will not
notice or visit the link.

Note: If you are well versed with CSS & PHP, you can detect when the Googlebot comes around. When
normal visitors are around, use display:none to hide your honeypot link. When Googlebot comes around,
remove that style and let Google index your link! This lets other spiders index your site and hiding your link
from visitors. However, Googlebot doesn’t like display:none, making it necessary to switch it off when
Googlebot comes around.)

After the honeypot has been linked to it is time to set $SafeReferer variable. Set this
variable equal to the page that the honeypot is linked from.

$SafeReferer is used to detect when someone clicks the hidden hyperlink. This
variable is associated with the “Crawler Detected” alert used in the logs. It signifies one
of three things.

1. A search engine indexed the link.
2. An innocent browser found the link and clicked it.
3. The link was crawled with a tool like wget or an offline browser.

None of these types of access to your honeypot is a “true” intrusion. Thus these count
as a false-positive. GHH will look at the “HTTP_REFERER” header and determine if a
browser came from the $SafeReferer.

Search engines will not index your site immediately. Their spiders take time. If you are
impatient, try submitting the page directly to the engine.

https://www.google.com/webmasters/sitemaps/

3. Usage
3.1 Reading Logs

Logs are created in two different formats: CSV (Comma Separated Values), or MySQL.

3.1.1 CSV Log format:
HoneypotName : Name of the honeypot that was accessed.
DateTime : Date and time of the honeypot access.
Attack['IP'] : IP address of the attacker and proxy (if available).
Attack['request'] : Request made to the honeypot.
Attack['referer'] : URI of referrer which lead to honeypot.
Attack['accept'] : Media which browser accepts.
Attack['charset'] : Character set which browser accepts.
Attack['encoding'] : Encoding which browser accepts.
Attack['language'] : Language which browser accepts.
Attack['connection'] : Browser connection.
Attack['keep_alive'] : Browser Keep-Alive.
Attack['agent'] : User-Agent string of browser
Signatures : GHH determined signatures.

3.1.2 MySQL Log format:
ID : Primary Key for DB.
Owner : Owner of the honeypot.
Tripped : Name of accessed honeypot.
TimeOfAttack : Date and time of the honeypot access.
Host : IP address of the attacker and proxy (if available).
RequestURI : Request made to the honeypot.
Referrer : URI of referrer which lead to honeypot.
Accepts : Media which browser accepts.
AcceptsCharset : Character set which browser accepts.
AcceptLanguage : Language which browser accepts.
Connection : Browser connection.
keepalive : Browser Keep-Alive.
UserAgent : User-Agent string of browser.

3.2 Making Sense of It All
Do not panic if your log file has a large number of requests in it. Honeypots are
designed to be accessed. This log is a potent source of information.

3.3 Multiple Honeypots
Inside of each honeypot file, there is a variable for setting a common configuration file,
$ConfigFile. With multiple honeypots or honeypot files, you can include the same
standard configuration file and have each honeypot write to the same log file. The
honeypot’s name will appear as the first value in the logs. It is a smart idea to remove
configuration files you are not using with GHH. We include one in each release by
default. This may include extra htaccess files, depending on the honeypots.

4.Advanced Usage
4.1 Custom Honeypots

To make a custom honeypot, use the template file in the download section of the GHH
project page on Sourceforge. The link there will be available on
http://ghh.sourceforge.net. This is a template file for a simple honeypot, and will be
setup as a dummy vulnerable page as an example. Download the “Custom Honeypot
Template” File from a mirror and find template.php file inside. Look for the “Begin
Custom Honeypot Section” of the code.

The first task is to change the $HoneypotName variable to reflect the name of your
honeypot. This will appear in the logs when your honeypot is visited over the web. The
next line is an echo statement; this outputs the source HTML of the honeypot.
Template.php uses PHP Shell 1.7 as an example. To customize file replace the source
found in the echo code with the source another vulnerable web application.

Once the honeypot HTML is echo'd to the attacker, it’s time to determine what means
he/she took to find our honeypot. This is done by checking the HTTP_REFERER header
sent by the attacker’s browser. If there is no HTTP_REFERER header, the default
signatures will identify it.

You can retrieve the HTTP_REFERER header sent by the attacker with the $Attack
['referer'] variable. There are two examples in the template. The first searches for the
name of the vulnerable target in the HTTP_REFERER string, because popular search
engines include the query in the URL of their query results. The second example
searches for the Google Hacking Data Base query in the HTTP_REFERER string, which
highlight that the attacker most likely found the honeypot using a GHDB signature.
Whatever signatures you decide to create, append them to the $Signature[] array and
they will be put in the logs. The two signatures included in the template have examples
of this. You should remove or edit the example signatures.

4.2 Central Logging (Honeynet)
With our v1.1 release, we have included MySQL support in GHH honeypots. We are
releasing a .sql create script that will create a MySQL table that GHH can log to.
Included in that package is a log viewer that can read those logs. To use the viewer,
configure index.php in that package to include a username and password, as well as
MySQL connection information. This package can be found on our Sourceforge project
page. All honeypots select database ‘ghh’ by default.

A simple honeynet flowchart resides in the documentation package.

4.3 GHH and Security Policies
Our number one priority is to serve as a research too. All security policies derived from
Carefully scrutinized GHH logs because false positives are possible in all honeypots and
GHH is no exception. Contact the GHH team if you have queries related to honeypot
policy.

5.GHH Security
5.1 Secure Configuration Checklist

To secure GHH, implement and verify that the following measures are working as noted:

• The log file cannot be reached by URL without authentication [outside the
document root or protected in a .htaccess protected directory].

• A .phps file extension won’t reveal your honeypot’s source code.
• Your security policies will not introduce vulnerability if the honeypot is

fingerprinted.
• Your database, database viewer, and anything else related to GHH that isn’t

a honeypot is not accessible over the web.

5.2 Index Avoidance
If it is a requirement to place the log file and config file in the document root of a web
server, then here are some tips to protect your log file and config.php file:

• Place your log and config.php file in a password protected directory, using
a .htaccess or similar authentication mechanism.

• Verify that directory listing is disabled, or else place an index.html or
index.php file in the directory to prevent the contents of a directory from
being displayed. If you password protect a directory, this should not be
necessary.

5.3 Security Policies
As said previously, GHH is meant to be a research tool to help develop security policy.
By creating a script that automates a security policy based on the GHH log file you may
introduce vulnerability to your network. It cannot be assumed that GHH logs do not
contain false positives, and because of this policies should be carefully developed when
GHH logs are involved. Policy is important!

6.Miscellaneous
Working on a Free Open Source Software project has been quite an experience. There
are many people we would like to thank:

• Google. Your search engine has provided to be an interesting tool and helped
drive us towards this endlessly interesting project.

• Honeynet Project. The research, theory, and implementations that have come
from your excellent work have provided an excellent reference point for some of
the difficult design decisions we had to make.

• Google Hack Database. Community driven and constantly refreshed, the GHDB
provides the “meat” on the “bones” of GHH. (at http://johnny.ihackstuff.com)

– The GHH Team
– http://ghh.sourceforge.net

