
Recent work in OpenBSD relayd
SSL Interception and other Advancements

Reyk Floeter (reyk@openbsd.org)

March 2013

Abstract

relayd first appeared[7] in OpenBSD 4.1, formerly
called hoststated, to provide a service that helps
Server Load Balancing (SLB) with OpenBSD’s PF.
It was written by Pierre-Yves Ritschard and Reyk
Floeter. The daemon initially provided health check-
ing capabilities of monitored backend servers and the
ability to dynamically load PF tables and “rdr” L3-
redirections based on the configuration and active
hosts. It has been extended with support for L7-
relaying of various protocols including TCP, UDP,
HTTP, DNS, and SSL with optional transparent prox-
ying capabilities and evolved into an Application Level
Gateway (ALG). This paper introduces some of the
latest enhancements, including integrated SSL inter-
ception or “SSL Man-in-the-middle (MITM)” support,
socket splicing support for enhanced performance, the
redesigned filtering subsystem for relays, and the file
descriptor accounting technique.

1 Introduction

relayd is a powerful tool that combines several heavy
networking duties in a typical - or not so typical -
OpenBSD daemon. It is a relay, proxy, application
level gateway, load balancer, link balancer or simply
the complementing service to OpenBSD’s Packet Fil-
ter (PF) in the kernel. It has a growing active user
base and runs in many production networks around
the world with millions of users a day.

This paper briefly introduces some of the recent fea-
tures and advancements in relayd. Most of these fea-
tures arose out of real use cases or will impact the way
that relayd operates in its day to day usage. Not all
of these features have been included in OpenBSD yet
but all of them will be part of a future release; the fol-
lowing table displays the availability of those features
based on the OpenBSD release:

Feature Release

SSL Interception OpenBSD 5.4
TCP socket splicing OpenBSD 5.0

HTTP socket splicing OpenBSD 5.4
Filter rewrite OpenBSD 5.4 (planned)

File descriptor accounting OpenBSD 5.3

In addition to the features, the daemon is be-
ing constantly improved by the OpenBSD com-
munity. Many bug fixes, improvements and
cleanups are actively done in relayd , with sup-
port from many fellow developers like most recently
Sebastian Benoit (benno@openbsd.org), Alexander
Bluhm (bluhm@openbsd.org) or Stuart Henderson
(sthen@openbsd.org). The CVS history shows com-
mits from 40 different developers over the years, not
counting any patches that have been provided by the
user community.

2 SSL Interception ahead

relayd already supports running as a transparent
non-caching HyperText Transfer Protocol (HTTP)
proxy that can be used for Uniform Resource Loca-
tor (URL) filtering and policy enforcements. It also
supports running as an Secure Sockets Layer (SSL)
server and can be used to terminate SSL connections
and to forward them as plain Transmission Control
Protocol (TCP). The marketing term for this is
“SSL acceleration” and is typically used to provide
HTTP with SSL (HTTPS) on the load balancer for
HTTP-only webservers in the pool.

Some time ago, additional support for running
relayd as an SSL client has been added which allows
to terminate plain TCP connections and transparently
tunnel them through SSL. In some ways, this func-
tionality can be compared with the popular stunnel[8]
program and can even be considered to be some kind
of an SSL VPN.

When combining both modes, SSL server and client,
it will become a man-in-the-middle that can filter be-
tween two SSL connections. This is actually already

possible with the current version of relayd . However,
for an effective SSL-MITM, or “SSL Interception”, it
also has to do some trickery with the certificates. An
SSL client, especially web browsers for HTTPS, will
normally check the server certificate to match at least
the following conditions:

a) Is the certificate valid?

b) Is it signed by a trusted and valid Certificate Au-
thority?

c) Does it pass additional policy checks, most impor-
tantly having a matching domain name in the cer-
tificate?

Some existing solutions and firewall vendors support
SSL interception (e.g. for URL filtering on secured
connections) by generating client certificates on-the-
fly with a local Certificate Authority (CA) that is ac-
cepted by the clients. This way, secured HTTPS con-
nections from web browsers behind a corporate gate-
way can be URL-filtered and “intercepted”. The re-
maining problem is that the web browsers normally
dont recognize the local CA, but having a corporate
infrastructure allows the deployment of a custom CA
certificate on internal clients. Another solution is to
obtain an official CA with private key or to get an in-
termediate CA - a local CA signed by an official CA.
Getting an official CA or intermediate CA for SSL In-
terception is normally only possible for governmental
authorities (e.g. TURKTRUST in Turkey), or people
who have access to a possibly compromised CA (e.g.
DigiNotar in the Netherlands). Regarding the large
number of official CAs that are accepted by modern
browsers, it is supposedly a fairly common practice
that keeps on questioning the CA model itself.

The major problem is that the CA model obviously
depends on third parties that can only marginally be
trusted. Server certificates are only signed by a single
CA - it is a hierarchical model and not a network of
trust - and browsers do not offer a user-visible way to
double-check the certificates over an alternative chan-
nel.

There is currently no active solution to improve the
situation yet and this practical paper neither proposes
an effective solution nor discusses any other proposals.
However, there a few countermeasures that are used
to mitigate the problem:

Client-side SSL storage: The OS and application
implementations simply try to make it harder to in-
stall custom CAs and to display even more warnings if
anything suspicious has been detected. The Safari web
browser on Apple’s OSX uses the system key chain
that requires superuser privileges to import custom
CA Root certificates - simply accepting and trusting
the certificate in the browser will not stop Safari from
warning the user about the unofficial certificate.

Server-side monitoring: It has been reported that
Google is actively monitoring the certificates when ac-
cessing its own servers with the Chrome browser which
allows the company to detect possible interception at-
tempts. This shouldn’t be a problem for interception
behind a corporate gateway with a local CA - but it
allowed Google to detect the misused CA certificate
that was issued by TURKTRUST[3] to a governmen-
tal authority in Turkey.

Manual validation: And, of course, users can try to
compare the returned server certificates over different
channels, for example by accessing a public SSL side
from different locations and Internet connections like
the corporate network and a mobile network.

2.1 A controversial Implementation

This situation inspired the implementation of SSL In-
terception for relayd . If “SSL Interception” is a
fairly common feature in commercial firewall products,
for example from Juniper[5] or Check Point[4], why
shouldn’t it be freely available in OpenBSD as open
source software? This might even have the effect that
the increased availability of the feature will raise the
awareness of the problem and lead to practical solu-
tions in the future.

The code is not part of OpenBSD’s official source
tree yet, but a patch has been posted to its
“tech@openbsd.org”[6] mailing list, will be committed
soon and will be included in the next official OpenBSD
5.4 release.

When relayd is configured for SSL Interception, it
will listen for incoming connections that have been di-
verted to the local socket by PF. Before accepting and
negotiating the incoming SSL connection as a server,
it will look up the original destination address on the
diverted socket, and pre-connect to the target server as
an SSL client to obtain the remote SSL certificate. It
will update or “patch” the obtained SSL certificate by
replacing the included public key with its local server
key because it doesnt have the private key of the re-
mote server certificate. It also updates the X.509 is-
suer name to the local CA subject name and signs the
certificate with its local CA key. This way it keeps
all the other X.509 attributes that are already present
in the server certificate, including the “green bar” ex-
tended validation attributes. Now it finally accepts
the SSL connection from the diverted client using the
updated certificate and continues to handle the con-
nection and to connect to the remote server.

2.2 Configure the Man in the Middle

This section describes a simple configuration to test
the SSL Interception with HTTPS connections by us-
ing a local CA. It depends on the latest version of

relayd in OpenBSD 5.3 and the patch that can be
found in the mailing list archives, if it is not already
part of the official source tree. As an obligatory dis-
claimer: this should only be used with a CA certificate
and private key that were legally created or obtained
and it should carefully respect if the privacy policy
of the individual environment allows to intercept en-
crypted HTTPS/SSL connections.

The first step is to generate a local CA key and
certificate that will be used for intercepted SSL con-
nections. The resulting ca.crt file includes the public
CA certificate in Privacy Enhanced Mail (PEM) for-
mat that should be installed on the clients - the web
browsers or SSL keychains. Most systems support im-
porting the CA certificate by simply opening it in the
browser from a URL or file.

openssl req -x509 -days 365 -newkey

rsa:2048 -keyout /etc/ssl/private/ca.key

-out /etc/ssl/ca.crt

The relay SSL server also needs a private
key and certificate for the 127.0.0.1 address.
relayd will attempt to look up a private key in
/etc/ssl/private/127.0.0.1:8443.key and a
public certificate in /etc/ssl/127.0.0.1:8443.crt.
If these files are not present, it will continue to
look for /etc/ssl/private/127.0.0.1.key and
/etc/ssl/127.0.0.1.crt without the port specifica-
tion. The certificate will not be used in interception
mode, as it will be replaced on-the-fly, but is required
to start the SSL service.

The next step is to configure an appropriate line
for PF in /etc/pf.conf that will divert any HTTPS
traffic that is coming from an internal interface to the
local relay service. Please note “divert-to” method
is the preferred way for redirecting traffic to a local
service and should be used instead of the older “rdr-
to” whenever applicable.

PF configuration in /etc/pf.conf:

Divert incoming HTTPS traffic to relayd

pass in on vlan1 inet proto tcp to port 443\

divert-to localhost port 8443

The final step is to configure and run relayd . The
relayd.conf configuration file must include two new
“ssl ca” directives that specify the CA key with a
mandatory password and the related CA certificate.

relayd configuration in /etc/relayd.conf:

http protocol httpfilter {

return error

label "Get back to work!"

request url filter "facebook.com/"

New directives for SSL Interception

ssl ca key "/etc/ssl/private/ca.key"

password "humppa"

ssl ca cert "/etc/ssl/ca.crt"

}

relay sslmitm {

listen on 127.0.0.1 port 8443 ssl

protocol httpfilter

forward with ssl to destination

}

When testing the SSL Interception, clients can recog-
nize that all server certificates are signed by the same
local CA.

3 High-speed with Socket Splicing

In a traditional configuration, an application layer re-
lay accepts and terminates a connection from a client,
opens a second connection to a selected server and
passes - or “relays” - all data between client and server
with the additional ability to filter content and head-
ers of the OSI Layer 7 (L7) protocol. All the data of
the received packets have to be send from the kernel
to the relay process in user space, copied to the other
socket and copied back to the kernel that sends out
data to the other side. In contrast to normal forward-
ing or routing that is completely done on the IP-level
in the kernel, this introduces a significant performance
penalty.

Socket splicing is a kernel-supported feature that
can significantly improve the performance of TCP or
User Datagram Protocol (UDP) relaying. It was im-
plemented by Alexander Bluhm (bluhm@openbsd.org)
in early 2011 and first available in the OpenBSD 5.0
release. The idea behind socket splicing is that the
kernel can be instructed to directly forward any data
between two opened sockets without copying it to a
user space process. Just passing the stream of socket
buffer data from one socket to another in the kernel
can gain a performance that is almost comparable to
pure OSI Layer 3 (L3) routing, especially when using
an effective “zero-copy” in the kernel.

The socket splicing implementation for OpenBSD al-
lows to connect two socket file descriptors. The
SO SPLICE socket option can instruct the kernel to
pass any subsequent data directly between the speci-
fied socket without sending anything to the user space
process:

if (setsockopt(fd1, SOL_SOCKET,

SO_SPLICE, &fd2, sizeof(int)) == -1)

return (-1);

The initial implementation only allowed to enable
socket splicing for a given connection once and for
an unspecified amount of data. This only worked
for plain TCP connections without any content
inspection by the user space process or with simple
application protocols with single initial headers. In
the HTTP case, this would allow to inspect a single
request or response header in user space and switch
to splicing for the remaining content body. This
obviously fails with connections that include multiple
requests and responses, like “HTTP Keep-Alive” or
“Chunked Encoding” in HTTP 1.1.

As an extension, an optional alternative form of the
socket option call allows to pass a maximum content
length and timeout to the kernel, before it returns
to normal operation and continues to pass any sub-
sequent data to the user space process again:

bzero(&sp, sizeof(sp));

sp.sp_fd = fd2;

sp.sp_max = content_length;

sp.sp_idle = timeout;

if (setsockopt(fd1, SOL_SOCKET,

SO_SPLICE, &sp, sizeof(sp)) == -1)

return (-1);

This allows to handle mixed control/data or
header/body streams. It was only partially adopted
for relayd until recently in 5.3-current and the dae-
mon now fully supports splicing of persistent HTTP
connections with normal or chunked encoding trans-
fers.

3.1 Zero configuration zero copy

The configuration of splicing in relayd.conf is very
simple: it is enabled by default and does not need
any additional configuration options. relayd will use
splicing for all supported scenarios unless it is explic-
itly disabled with the tcp no splice configuration
directive in the relay’s protocol section.

4 Announcing the Filter Rewrite

The current implementation for relaying HTTP(S)
connections provides a yet powerful filtering API that
allows to operate on HTTP headers, cookies and URL
elements. It can be used for various actions support-
ing the HTTP relay, including modification of headers
or URL filtering. For example, a load balancer might
inject an X-Forwarded-For header that includes the
original client address or a transparent proxy might
use URL filter lists to restrict access to public web
pages.

The current implementation has been proven and
works well with “huge” filter lists; relayd supports
millions of URLs in the filter. Nevertheless, the filter-
ing grammar and API lack some desired features that
would be hard to implement in the current way. It
is built around an HTTP-centric view that does not
allow to filter on other parameters of the connection
and it does not allow more advanced actions, like tar-
get host selection based on an URL path.

The new implementation will replace the current
one by introducing a completely new grammar and
by replacing the internal code of the filtering imple-
mentation. It follows the following design decisions:

• Use a new grammar that is loosely based on PF’s
style.

• Provide a more flexible interface that can also fil-
ter on TCP/IP options and other protocol head-
ers like DNS.

• Improve and simplify the internal implementation
and “filter hooks”.

• Turn relayd into an ALG.

4.1 Filter Hooks

The original implementation tried to filter and modify
the headers inline directly when the data stream is
red. It was also based on a red-black (RB) tree to
look up headers and values quickly. This worked well
with the initial implementation but added problems
after adding additional features that could not always
allow inline modification of the header stream or would
not work with the RB tree. The code was modified
to handle all kinds of special cases by adding many
different “HOOKs” and by extending the RB tree with
attached linked lists.

Old filtering HOOKs

Each HOOK calls the filtering subsystem to look up
certain attributes in the tree and its connected lists. It
ended up with four different places that independently
use their HOOKs based on fairly complicated states in
relayd ’s internal HTTP session handling. The effi-
ciency of the inline modifications might improve the
performance of the header handling and lower the ini-
tial connection latency but the complexity of the code
has grown in a way that introduced a potentially crit-
ical and hardly maintainable complexity.

1. per-line header filter

a) gather information

• path → HOOK

• url → HOOK

• http header → HOOK

b) modify/delete headers

c) action

2. after headers: resolve information

a) append/check headers → HOOK

b) action

New filtering HOOKs

The new filtering implementation replaces the RB tree
and attached linked lists of the filter rules with a linked
list of last matching filtering rules. Additional tree-
based lookups will only be used for large lists of sim-
ilar items, like URL filter lists. The implementation
is heavily inspired by PF’s internals and is using its
“skip step” algorithm to speed up the otherwise linear
scan through the list. When loading the rules, relayd
calculates skip steps to determine the next applicable
rule for a possible input. For example, if a connection
is TCP and the next 100 hundred rules only match for
UDP, the “skip steps” would pre-calculate a pointer
to the next rule that could possibly match and the fil-
ter would not have to evaluate these 100 rules for the
current connection. Support for inline modifications
of the header stream has been removed and replaced
with a simple approach that is much more flexible.
The relay code will always gather information about
the connection and collect all headers and related in-
formation in a meta header (or “descriptor”) first. It
only uses one HOOK into the filter engine that han-
dles all supported lookup types in the single list of
filter rules. Any modifications to the headers are ap-
plied to the meta header before the final forwarding
decision is done (block, pass or alternative target se-
lection) and a newly constructed header is written to
the output stream.

1. gather information

a) read input header

b) create meta header (“descriptor”)

2. resolve information

a) scan/modify meta header ⇒ HOOK

b) action

c) create output header

4.2 Grammar

Old HTTP-centric view

+--------+ request relayd +--------+

| |------------------------>| |

| client | response | server |

| |<------------------------| |

+--------+ +--------+

As the filter language was implemented to handle
HTTP filtering, it was built around HTTP features.
The request/response-based protocol with an almost
consequent use of key/value pairs and a strict separa-
tion between client and server is hard to adopt to some
other more bidirectional and stream-oriented proto-
cols. Additionally, the original language does not have
any obvious matching order because the implementa-
tion uses a tree-based “best match” of the rules. And
last, this approach made it almost impossible to add
any advanced actions to the session handling, for ex-
ample the possibility to select an alternative forward-
ing target based on various filtering criteria.

header append "$REMOTE_ADDR" \

to "X-Forwarded-For"

header append "$SERVER_ADDR:$SERVER_PORT" \

to "X-Forwarded-By"

header change "Connection" to "close"

Block disallowed sites

label "URL filtered!"

request url filter "www.example.com/"

Block disallowed browsers

label "Please try a different

Browser"

header filter \

"Mozilla/4.0 (compatible; MSIE *" \

from "User-Agent"

Block some well-known Instant Messengers

label "Instant messenger disallowed!"

response header \

filter "application/x-msn-messenger" \

from "Content-Type"

response header filter "application/x-icq" \

from "Content-Type"

response header filter "AIM/HTTP" \

from "Content-Type"

New PF-style filter language

+--------+ in +--------+ out +--------+

| |------>| |------->| |

| client |req out| relayd | resp in| server |

| |<------| |<-------| |

+--------+ +--------+ +--------+

The new grammar uses some well-known keywords
from PF including block, pass and match. The lan-
guage introduces last matching rules that will be eval-
uated in linear order. The match keyword allows to
add sticky actions to matching input but does not al-
ter the decision of subsequent block or pass rules if
the connection will be rejected and closed. The new
implementation also adds support for filtering based
on TCP/IP information (addresses, protocols, ports

etc.) and is extensible for any other application pro-
tocol. A much desired feature is finally available: the
relay-to directive and the ability to select a forward-
ing target based on filter matches. Any supported
filtering option of a match or pass rule can be used
to alter the default forwarding target. For example,
this could be an URL path to send all requests for the
“/images” directory to a different server or a source
IP address that will get to a different backend.

match request header \

append "X-Forwarded-For" \

value "$REMOTE_ADDR"

match request header \

append "X-Forwarded-By" \

value "$REMOTE_ADDR:$SERVER_PORT"

match request header \

set "Connect" value "close"

block client in url "www.example.com/" tag

"URL filtered!"

pass client in from 10.0.0.1 url

"www.example.com/"

match request header "User-Agent" \

tag "Please try a different

Browser"

block request header "User-Agent" \

value "Mozilla/4.0 (compatible; MSIE *"

block response header "Content-Type" value {

"application/x-msn-messenger"

"application/x-icq"

"AIM/HTTP"

}

match request path "/images" \

relay-to 10.1.1.1

The language design and the implementation of the
new filters have not been finished yet but can be fol-
lowed in a separated GIT repository[1] outside of the
OpenBSD tree. It will be merged into OpenBSD at a
later point and finished in the tree.

5 File descriptor accounting

Sebastian Benoit (benno@openbsd.org) implemented
a carefully designed file descriptor accounting mecha-
nism that helps relayd to prevent file descriptor ex-
haustion problems. It is built as a wrapper around
the accept() call and will additionally check if a) the
number of opened file descriptors plus b) the num-
ber of statically reserved file descriptors and c) the
number of “in-flight” sessions that aim to open a new
file descriptor do not exceed the number of available
file descriptors. The implementation will defer accept-

ing new connections until enough file descriptors are
available again. The number of statically reserved file
descriptors will respect any potential file descriptors
that might be required by library routines, including
libc calls.

6 Appendix

6.1 About the Author

Reyk Floeter[2] works as a freelance consultant and
software developer with a focus on OpenBSD, net-
working, and security. He lives in Hannover, Germany,
but works with international customers like Internet
Initiative Japan Inc. (IIJ) in Tokyo. As a member of
the OpenBSD project, he contributed various features,
fixes, networking drivers and daemons since 2004, like
OpenBSD’s ath, trunk, vic, hostapd, relayd, snmpd,
and iked. For more than nine years and until mid-
2011, he was the CTO & Co-Founder of .vantronix
where he gained experience in building, selling and
deploying enterprise-class network security appliances
based on OpenBSD.

References

[1] Reyk Floeter, relayd filter development branch,
https://github.com/reyk/relayd/tree/

filter.

[2] , Reyk Floeter Consulting, http://www.

reykfloeter.com/.

[3] The H, Fatal error leads TURKTRUST to is-
sue dangerous SSL certificates, http://www.h-

online.com/security/news/item/Fatal-

error-leads-TURKTRUST-to-issue-dangerous-

SSL-certificates-1777291.html.

[4] Check Point Software Technologies Ltd., HTTPS
Inspection FAQ, https://supportcenter.

checkpoint.com/supportcenter/portal?

solutionid=sk65123.

[5] Juniper Networks, Inspection of SSL Traffic
Overview, http://www.juniper.net/techpubs/

en_US/idp5.0/topics/concept/intrusion-

detection-prevention-ssl-decryption-

overview.html.

[6] OpenBSD, Mailing Lists, http://www.openbsd.

org/mail.html.

[7] , OpenBSD relayd, http://www.openbsd.
org/cgi-bin/cvsweb/src/usr.sbin/relayd/.

[8] Michal Trojnara, The stunnel Program, http://

www.stunnel.org.

https://github.com/reyk/relayd/tree/filter
https://github.com/reyk/relayd/tree/filter
http://www.reykfloeter.com/
http://www.reykfloeter.com/
http://www.h-online.com/security/news/item/Fatal-error-leads-TURKTRUST-to-issue-dangerous-SSL-certificates-1777291.html
http://www.h-online.com/security/news/item/Fatal-error-leads-TURKTRUST-to-issue-dangerous-SSL-certificates-1777291.html
http://www.h-online.com/security/news/item/Fatal-error-leads-TURKTRUST-to-issue-dangerous-SSL-certificates-1777291.html
http://www.h-online.com/security/news/item/Fatal-error-leads-TURKTRUST-to-issue-dangerous-SSL-certificates-1777291.html
https://supportcenter.checkpoint.com/supportcenter/portal?solutionid=sk65123
https://supportcenter.checkpoint.com/supportcenter/portal?solutionid=sk65123
https://supportcenter.checkpoint.com/supportcenter/portal?solutionid=sk65123
http://www.juniper.net/techpubs/en_US/idp5.0/topics/concept/intrusion-detection-prevention-ssl-decryption-overview.html
http://www.juniper.net/techpubs/en_US/idp5.0/topics/concept/intrusion-detection-prevention-ssl-decryption-overview.html
http://www.juniper.net/techpubs/en_US/idp5.0/topics/concept/intrusion-detection-prevention-ssl-decryption-overview.html
http://www.juniper.net/techpubs/en_US/idp5.0/topics/concept/intrusion-detection-prevention-ssl-decryption-overview.html
http://www.openbsd.org/mail.html
http://www.openbsd.org/mail.html
http://www.openbsd.org/cgi-bin/cvsweb/src/usr.sbin/relayd/
http://www.openbsd.org/cgi-bin/cvsweb/src/usr.sbin/relayd/
http://www.stunnel.org
http://www.stunnel.org

	Introduction
	SSL Interception ahead
	Client-side SSL storage:
	Server-side monitoring:
	Manual validation:

	A controversial Implementation
	Configure the Man in the Middle
	PF configuration
	relayd configuration

	High-speed with Socket Splicing
	Zero configuration zero copy

	Announcing the Filter Rewrite
	Filter Hooks
	Old filtering HOOKs
	New filtering HOOKs

	Grammar
	Old HTTP-centric view
	New PF-style filter language

	File descriptor accounting
	Appendix
	About the Author

