
Your scheduler is not the problem

Martin Pieuchot
mpi@openbsd.org

EuroBSDcon, Paris

September 2017

Your OS doesn’t work

A consulting generally begins with:

� It’s OpenBSD fault
� It doesn’t scale
� The scheduler sucks
� I’ll switch to Linux

Fine, let’s take an example.

2 of 25

Agenda

Major Firefox regression

First little hacks

Real solution

Conclusion

3 of 25

Agenda

Major Firefox regression

First little hacks

Real solution

Conclusion

4 of 25

Firefox 40

� Released in August 2015
� Multiple complaints of regression
� Nothing obvious in the Changelog
� Switched to ESR then Chrome
� Problem fixed?

5 of 25

Complaints

On 06/01/16(Wed) 11:19, Landry Breuil wrote:

> [...]

> i’ve had multiple ppl coming to me privately about this - Yes,

> performance with firefox has been steadily degrading [...]

When you complain, don’t forget relevant information.

6 of 25

Black box analysis

Different metrics between old and new?

fstat(1), ifconfig(8), iostat(8), lsusb(8), netstat(1), nfsstat(1),
pfctl(8), ps(1), pstat(8), route(8), systat(1), vmstat(8), ...

7 of 25

Different metrics

� vmstat(8) reported 30K+ IPIs

$ vmstat -i

interrupt total rate

irq0/ipi 182906012 31511

...

� top(1) showed that CPUs play ping-pong

8 of 25

ktrace or it didn’t happen

13288/1032189 firefox-bin RET sched_yield 0

13288/1032189 firefox-bin CALL sched_yield()

13288/1010095 firefox-bin CALL sched_yield()

13288/1010095 firefox-bin RET sched_yield 0

13288/1010095 firefox-bin CALL sched_yield()

13288/1027370 firefox-bin CALL sched_yield()

13288/1032189 firefox-bin RET sched_yield 0

13288/1032189 firefox-bin CALL sched_yield()

13288/1027370 firefox-bin RET sched_yield 0

13288/1027370 firefox-bin CALL sched_yield()

13288/1032189 firefox-bin RET sched_yield 0

13288/1032189 firefox-bin CALL sched_yield()

13288/1027370 firefox-bin RET sched_yield 0

13288/1010095 firefox-bin RET sched_yield 0

13288/1027370 firefox-bin CALL sched_yield()

13288/1010095 firefox-bin CALL sched_yield()

13288/1032189 firefox-bin RET sched_yield 0

13288/1032189 firefox-bin CALL sched_yield()

13288/1027370 firefox-bin RET sched_yield 0

13288/1010095 firefox-bin RET sched_yield 0

9 of 25

Problem isolation

Difference between ESR and Nightly:

$ grep sched_yield kdump-esr.txt |wc -l

4

$ grep sched_yield kdump-nightly.txt |wc -l

89418

10 of 25

Limite the scope of research

Which code is being executed?

� Search sched yield(2) on bxr.su and dxr.mozilla.org
� used by Firefox directly
� used by librthread

� Let’s use ltrace(1)

$ LD_TRACE_PLT="" LD_TRACE_PLTSPEC="libpthread" DISPLAY=:0 firefox &

$ ltrace -p $pid -t cu -u libpthread ; sleep 2; ktrace -C

11 of 25

http://bxr.su/search?q=sched_yield&defs=&refs=&path=&project=OpenBSD
https://dxr.mozilla.org/mozilla-central/search?q=sched_yield

spinlock()

$ less kdump-nightly.txt

13288/1027370 firefox-bin USER .plt symbol: 11 bytes "_spinunlock"

13288/1010095 firefox-bin USER .plt symbol: 9 bytes "_spinlock"

13288/1010095 firefox-bin USER .plt symbol: 12 bytes "_atomic_lock"

13288/1010095 firefox-bin CALL sched_yield()

13288/1010095 firefox-bin RET sched_yield 0

13288/1027370 firefox-bin USER .plt symbol: 9 bytes "_spinlock"

13288/1010095 firefox-bin USER .plt symbol: 12 bytes "_atomic_lock"

13288/1027370 firefox-bin USER .plt symbol: 12 bytes "_atomic_lock"

13288/1010095 firefox-bin CALL sched_yield()

13288/1027370 firefox-bin CALL sched_yield()

13288/1032189 firefox-bin RET sched_yield 0

13288/1032189 firefox-bin USER .plt symbol: 12 bytes "_atomic_lock"

13288/1032189 firefox-bin CALL sched_yield()

13288/1027370 firefox-bin RET sched_yield 0

13288/1027370 firefox-bin USER .plt symbol: 12 bytes "_atomic_lock"

13288/1027370 firefox-bin CALL sched_yield()

13288/1032189 firefox-bin RET sched_yield 0

12 of 25

Agenda

Major Firefox regression

First little hacks

Real solution

Conclusion

13 of 25

Don’t guess

I started by ripping out per-CPU queues

� It worked
� I could watch HD videos again
� but why?

� Is this problem inside the scheduler?

CPU0 CPU1 CPU3 CPU3

p0

p1

...

pn

14 of 25

Deeper inspection

� gdb(1)
� needs debug symbols for ports
� needs better support for threaded programs

� printf debugging

0x13da04988d00 called yield() 900 times from <_rthread_mutex_lock+0x58>

0x13da8a19de00 called yield() 1000 times from <pthread_cond_timedwait+0x363>

0x13da04988d00 called yield() 1000 times from <_rthread_mutex_lock+0x58>

0x13da8a19de00 called yield() 1100 times from <pthread_cond_timedwait+0x363>

0x13da04988d00 called yield() 1100 times from <_rthread_mutex_lock+0x58>

0x13da8a19de00 called yield() 1200 times from <pthread_cond_timedwait+0x363>

0x13da04988d00 called yield() 1200 times from <_rthread_mutex_lock+0x58>

15 of 25

Read some code

Scheduling priorities are:

� Inherited from 4.4BSD
� Recalculated when sleeping
� Decreased when running
� sched yield(2) doesn’t guarantee progress

� Keep running until your priority drops

16 of 25

Thread yield hack

Overwrite priority of yielding thread:

/*

* If one of the threads of a multi-threaded process called

* sched_yield(2), drop its priority to ensure its siblings

* can make some progress.

*/

p->p_priority = p->p_usrpri;

TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)

p->p_priority = max(p->p_priority, q->p_priority);

� Improve 3rd party: ffmpeg, Java, chromium, MariaDB...
� no matter if they use sched yield(2) directly or not

17 of 25

Agenda

Major Firefox regression

First little hacks

Real solution

Conclusion

18 of 25

6.1 pthread mutex lock(3)

� Internal state protected by a lock:
� based on a Spinlock, and
� trhsleep(2):

� atomically release a lock
� go to sleep

� In the contented case:
� spin before & after sleeping
� N atomic operations
� N syscalls

_spinlock() sched_yield(2)

Owned by
another thread?

__thrsleep(2)

 Yes

Grab it!

 No

_spinunlock()

Snowball effect with sched yield(2) & Scheduler.

19 of 25

6.2 pthread mutex lock(3)

� Internal state is the lock:
� based on a Compare And Swap,
� an atomic Swap,
� a memory barrier, and
� futex(2):

� sleep until unlock

� In the contented case:
� no spinning
� 1+1 atomic operations
� 1+1 syscall

CAS

Grabbed? futex(2)
 No

membar

 Yes

SWAP

Improve latency of threaded programs: git, chrome, GNOME...

20 of 25

Why futex(2)?

Make it easier for others to contribute. NIH, so we can rely on:

� Existing literature, blogs, papers
� well described in Futexes Are Tricky from U. Drepper

� Multiple kernel implementations
� Multiple libc implementations

� glibc, musl, bionic
� Existing regression tests

21 of 25

https://www.akkadia.org/drepper/futex.pdf

Software is never finished

� Test & convert more architectures
� enabled on x86 and mips64 for the moment.
� take care of hardware not providing CAS

� Get rid of the remaining spinning bits
� pthread mutex *() and pthread convar *() for the moment
� sched yield(2)-free libpthread

� Continue improving the scheduler
� current bottleneck is in the kernel

22 of 25

Agenda

Major Firefox regression

First little hacks

Real solution

Conclusion

23 of 25

Conclusion

� OSes will always have problems, complaining will not help
� Gathering basic information is trivial and helps

� top(1) & systat(1)
� ktrace(1) or it didn’t happen

� Be sure you understand the bottleneck, guesses are dangerous
� A change might hide the real problem
� The Scheduler wasn’t the problem here

� Finding where the bottleneck is, that’s hard
� Fixing it, that’s generally easier & fun

� Yes, a dynamic tracer would help and I’m working on that

24 of 25

Questions?

Slides on https://www.openbsd.org/papers/

More stories on http://www.grenadille.net

You have a similar problem? Come talk to me!

25 of 25

https://www.openbsd.org/papers/
http://www.grenadille.net

	Major Firefox regression
	First little hacks
	Real solution
	Conclusion

