
Mitigations and other real security features

Largely invisible security improvements

Software will never be perfect

Erroneous condition logic fails, then cascades through
successive failures, often externally controllable

Attackers can perform illegal access+control of code in
program & libraries, or toy with kernel surface

Attacker‘s knowledge and methods are improving fast

Developer tools & practices insufficient at preventing bugs

We need multiple layers of defense, including mitigations

I work on mitigations

Mitigations are inexpensive tweaks which increase the
difficulty of performing attack methods:

 - low impact on normal operation
 - huge impact during attack-scenario operation

Also, they act as pressure towards robustness in software.

When defect is detected, goal is to Fail-Closed

Robust (adj.)

When used to describe software or computer systems,
robust can describe one or more of several qualities:
– a system that does not break down easily or is not wholly

affected by a single application failure
– a system that either recovers quickly from or holds up

well under exceptional circumstances
– a system that is not wholly affected by a bug in one

aspect of it

„

“
● I strongly disagree – error-recovery is an unsound

practice, and detection mechanisms do not exist
● If memory has been overwritten, how does one continue?

Justifying Fail-Closed

1. User becomes aware of bug (in a painful way... but probably less
painful than if an attacker does it first)

2. Hopefully some mitigation "detects-and-terminates" execution before
control-flow creates a further mess of the stack, which may result in a
weaker bug report

3. User files bug report

4. Programmer fixes bug, ships new software

This is Best Current Practice for building good software

Other approaches for handling bugs

Fixing bugs is what happens after you become aware

17 years of mitigation work

ASLR

W^X

StackProtector
 per-DSO StackProtectorRETGUARD..

...RETGUARD4

fork+exec (never reuse an address space)

pledge()

stackghost

Kernel W^X

privsep

privdrop

Library-relinking

KARL
 random KERNBASE

sshd relinking?

X-only kernel?

X-only .text? kbind(2)

.openbsd.randomdata

These changes cause "weirdʺ or un-standardized operations
to fail-closed (crash right now, please)

otto-malloc()atexit()-hardening

pledgepath()

sendsyslog()

PIE

setjmp() cookiessigreturn() SROP cookie RELRO

trapsleds

Lots of arc4random

cc deadreg-clearing

poly-ret scrubbing

guard pages

Rev memcpy() detectsyscall sp check%rbx move

Features of mitigations

● Diminishes effectiveness of a specific attack method
● Efficient, low overhead
● Easy to understand
● Easy to incorporate/apply to old & new code
● One mitigation doesn‘t need to fix ALL

the problems

● Exposes bugs earlier – improves triage

Components attackers use

Knowledge +

A software bug or two..

Substantial consistancy

Location of objects (relative
and absolute)

Gadgets, constants, pointers,
regvalues, etc.

Mechanism +

ROP, etc

Code Reuse

Syscalls

Act upon Objects

Filesystem

open fd‘s

Leftovers on the
stack

Knowledge: API, ABI, and beneath

Implementation

API

ABI

Details of ABI and Implementation
sneak upwards, providing attackers
with data to use during attack

These details land on the stack and in
registers, and get left behind

Left behind long enough for attackers
to use...

ABI+Implementation leakage

{

int i;

void *p = &i;

If a crash happens in following code, you can find the return
address based upon the register p is stored in.

Such low-level details are well-known, defacto-standardized, and
exposed for performance reasons – but need it be so always?

Knowledge: stack, register leaks

Implementation details dribble onto the stack and registers

Attackers run the same binaries as you, in a nearly identical
environment – therefore they can easily determine what-is-
where – this is the surface ROP operates upon

When a bug crashes, they know the regs & stack offsets
where many deterministic (integer and pointer) and relative-
deterministic (pointer offset) leftovers are found

They just need mechanisms to pivot into control

Attacker tooling: ROP

Hijack instruction sequences using false return frames

Gadget is any small sequence of register/memory transfers
above a true ret (or polymorphic ret) instruction

Attacker needs to know where gadgets are, and address of
the stack

Other methods: JOP, SROP, etc.

Even scarier: BROP – Blind ROP

An address-space oracle

Repeated probes against reused address-space learns
enough to perform minimum ROP operations

Can discover (and thus bypass) certain mitigations

Then, continue using various ROP methods...

(BROP is defeated by never-reuse-an-address-space)

Stack protector example

Implementation

API

ABI

Attacker depends on knowing:
- Location in memory of stack
- ordering or stack objects
- callframe ordering:
 (in-args, savepc, savefp, locals)

Stack protector disturbs the
simplest attack methodologies

(We have a better strack protector brewing)

ASLR effect?

Implementation

API

ABI

Attack methods use 3 kinds of
values found in stack/registers:
- absolute integer values
- relative addresses (offsets)
- absolute addresses (pointers)
To 3 places: code, data, stack.

ASLR increases difficulty of attack

Costs – time for a discussion

● Not all migitations will be performance-cost-free
● Processors have gotten faster
● What % of performance would you spend on security?
● Most mitigations are a reimplementation of an existing

mechanism, just more strictly

Shared library improvements

Progressive improvements – in the old days the GOT & PLT were
writeable!

● Secure-PLT
● No more relocs
● RELRO
● kbind()
● DT_BIND_NOW

Takes decades to add strictness / security

Malloc hardening

OpenBSD malloc hardened in 20 ways or more

- significant randomness, object rotation, meta-data
protection, double-free and use-after-free detection, heap-
overflow detection, …

Half of hardening features enabled by default

(Expensive ones not enabled, but available during devcycle)

Also API hardening: reallocarray(), recallocarray() freezero()

wpath
sendfd

rpath
cpath

Pledge: Realistic POSIX subsets

recvfd

stdio

No subtle behaviour
changes

No error returns

Fails-closed

Illegal operations
crash

Easy to learn

How does pledge help?

2nd specification of a program‘s behaviour and requirements
is embedded directly into the program.

No behaviour changes -- only detects that the programmer‘s
2nd specification has been violated

2nd specification allows programmer to test their
assumptions about system call use

Privilege Separation + Pledge

Pledge does an excellent job ENFORCING the security-
specialization when a task is privilege-seperated:

NETWORK
SPEAKER

CRAP STRING
HANDLING

pledge(″stdio″)pledge(″stdio inet″)

Common ideas behind mitigations

● Reduce externally-discoverable knowledge
● Improve historical weaknesses of permission models
● Disrupt non-standard control-flow methods
● Education of seperation-of-duty during program design
● Reduce syscall availability during execution

Mitigations change details which are
not specified by any standard

In ways which seem to harm current
attack methods, and help us debug

code

Resistance against mitigations

● Some await language/compiler advances to save us all
● Some prefer long-term binary-compatibity over attempts at

security
● Some run a business model that requires ignoring security
● Some say techology-X-will-save-us, but when X-fails-to-

compile-perl, they scurry away in silence
● NIH syndrome remains strong

Limiting choice is related to safety

 Safety System Innovations are crucial

● Old solutions may not match modern problems
● World market for computers now

exceeds 5
● Don‘t get tied down by policy of

backwards compatibility forever
● Innovation is crucial to the success

of any technical endeavour
● Don‘t sleep on shoulders of giants

Questions?

Postel‘s maxim is dangerous

IETF: draft-thomson-postel-was-wrong-02.txt

In network protocols, there are evolutionary risk factors due
to non-strict specification

Similar problem with conserving ABI+below, which benefits
attackers greatly

POSIX (standard) is already too liberal

POSIX (implementations) are full of historical defacto-
standard behaviours which attackers can rely upon

