
OpenBSD/x-ray

Henning Brauer
BS Web Services GmbH

1 Abstract

Modern, digital x-ray machines are pretty com-
plex systems. Different architectures exist -
some of them require interconnection of mul-
tiple networked system components, but all of
them require a connection to the hospital or
doctor’s office network.

For various reasons, patching a networked
medical device to fix security vulnerabilities is
not as easy as it might be the case for other IT
products. For largely tye same reasons it of-
ten takes a long time for legacy network proto-
cols to disappear from the medical device land-
scape.

Managing security in such environments is a
challenge for both the vendors as well as the
healthcare providers. As one important layer of
defense, a firewall can achieve a reduction of
attack surface of legacy devices.

Philips Healthcare, DXR (Diagnostic X-
Ray), is offering a firewall for its medical sys-
tems for more than 10 years now. It is based
on OpenBSD with bridge, pf and an ARP fil-
ter extension (ARPF). This system has recently
been redone and various improvements, includ-
ing ARPF, were proposed to the OpenBSD tree
and have since then been included.

2 Medical Environment

A digital clinical workflow usually involves
managing patient data and scheduling an ex-
amination in a radiology information system
(RIS). The needed patient- and examination-
data is transmitted to the x-ray machine, the
operator performs the image acquisitions and
on its completion all data is sent to a PACS
(picture archiving and communication system)
for review and diagnosis as well as long-term
archiving.

For old analog x-ray systems (with plain old
films), many medical device manufacturers of-
fer digital upgrades. Films are replaced with
digital (reusable) cassettes. When such a cas-
sette is exposed to x-ray, it must be inserted into
a cassette reader (CR Reader). The reader ex-
tracts the image and erases the cassette so it is
ready for the next exposure. The read out im-
age is sent to a workstation, where image post-
processing happens as well as the linking be-
tween the image and the correct patient. CR
Readers may be connected anywhere in the net-
work and even though they are legacy devices
nowadays, many modern digital systems still
support their communication protocols.

Digital medical devices must comply to spe-
cific regulation and obtain approvals and certi-
fications before it can be sold and ”used on pa-
tients”. Any design change of a medical device
(software or hardware) is guided by processes

1



and includes extensive system verification and
validation, as well as a safety risk management.
This is to protect patients and operators from
various harms. On the other hand, these well
justified efforts hardly permit to release secu-
rity patches in a timely or frequent manner. On
top of that, x-ray systems have a long lifetime
(10+ years), usually a lot longer than the sup-
port phases of 3rd party software suppliers. So
it is just a matter of time until medical systems
become unpatchable - unless the vendor and the
healthcare provider agree on a business model
or service contract which includes major com-
ponent replacements in order to stay current.

Medical device regulations impose limits on
remote management of the devices. For exam-
ple, the system may not be used on patients
while in maintenance mode. The system soft-
ware may not be updated remotely in a silent
way, rather a new software is first uploaded to
the system, a person on-site starts the installa-
tion (during a non-critical period) and performs
a final quality-assurance test.

These circumstances make changes hard and
often costly, thus the common incremental ap-
proach doesn’t really work in this environment.

In medical environments, protection of pa-
tient data is of special concern. Other areas
see heavy regulation too, i. e. PCI for credit
card processors, but protecting electronic pa-
tient health information (ePHI) is more critical.
Unlike a stolen credit card number, which can
be voided, a stolen x-ray image or other ePHI is
out there and cannot be voided, because in the
majority of cases the affected ”medical facts”
(like broken bone or breast cancer) cannot be
easily changed.

3 architecture of a modern digital
x-ray machine

Various types of digital x-ray systems exist to
meet the needs of today’s clinical workflows.
For example a compact, mobile unit is used

to perform x-ray at the patient’s bed. Fully
equipped x-ray rooms allow for a wide range of
types of examinations. This includes not only
single-shot x-ray but as well fluoroscopy (think
x-ray video).

Common architectural elements for those
systems are:

• generator and x-ray tube along with cir-
cuits and controllers to make sure the pa-
tient is exposed to x-ray only with the
needed energy and duration.

• An image chain, nowadays usually based
on a wireless, digital x-ray detector

• Various hardware in the examination
room, like a table, wall stand, foot switch

• A workstation which does image process-
ing, links the images with patients and
communicates with RIS and PACS servers
in the customers network infrastructure

Some of these systems or components are
from third-party suppliers and largely out of the
control of the x-ray machine vendor. Due to the
relatively small market, high development and
certification costs there is little to no compe-
tition and thus little to no incentive for third-
party suppliers to adapt their components to the
vendors wishes.

The system with its components is connected
to the hospital’s or doctor’s offices network - all
being in the same layer 2 network.

There is a management system that connects
to and configures all other subsystems.

4 Introducing OpenBSD/x-ray

To isolate and protect the system and its
internal components from external influ-
ences Philips introduced a firewall based on
OpenBSD about 10 years ago. Since the
system may be shut off by cutting power at
any time, a ramdisk based approach has been

2



chosen. The hardware is an embedded i386
system with, depending on generation, at least
4 Ethernet interfaces.

OpenBSD runs as bridge here, using the
bridge(4) subsystem. pf(4) is used to filter net-
work traffic, and the bridge’s filter is used for
additional layer 2 filtering. The filter rules are
set up by the management system.

4.1 arp filtering in the bridge
While pf provides almost everything one could
wish for to filter IP traffic, including higher lay-
ers like TCP, the bridge filters are kinda lim-
ited, and lacked control over arp traffic and thus
MAC address learning. Static MAC-IP map-
pings in all internal systems aren’t feasible.

ARP packets are relatively simple and in the-
ory address family independent, but it is really
only used for Ethernet and IPv4.

When nodeA with IP address 10.0.0.1
and MAC address 11:22:33:44:55:66 wants
to talk to nodeB with IP 10.0.0.2 and MAC
77:88:99:aa:bb:cc, but nodeA doesn’t know
nodeB’s MAC address yet, it sends an arp re-
quest (arp who-has) to the broadcast address
ff:ff:ff:ff:ff with it’s own MAC address in SHA,
it’s own IP address in SPA, and 10.0.0.2 in
TPA. NodeB will reply to the requestor’s MAC
address, copying SHA and SPA from the re-
quest into THA and TPA, it’s own MAC ad-
dress 77:88:99:aa:bb:cc in SHA and it’s own
IP adress 10.0.0.2 in SPA. NodeA learns the IP
10.0.0.2 to MAC 77:88:99:aa:bb:cc from that.

Many operating systems learn the IP-MAC
mapping (fill their arp cache) based on the SPA
and SHA of arp requests, even if they are not
directly targeted (through a matching TPA) by
a given ARP request. That means, ARP spoof-
ing not only works by faking ARP reply pack-
ets (when sent to ether broadcast) but also by
faking arp requests.

By disallowing arp requests from the out-
side with any of the inside MAC or IP ad-
dresses in SHA and SPA, respectively, and arp

replies with any inside IP/MAC in THA/TPA,
we can ensure that no inside system is subject
to arp spoofing hindering communications be-
tween the inside systems. In addition to that,
special cases could be filtered when the ARP
filter is combined with a filter of the ethernet
src or dst MAC address. For example ARP re-
ply to ether broadcast could be a candidate for
blocking in some setups.

The bridge filter code has been extended to
allow filtering on SHA, SPA, THA and TPA.
Assuming em0 as the external interface and an
internal IP address 10.0.0.1 and shall be pro-
tected, the filter rule would be added to bridge0
using ifconfig:

i f c o n f i g b r i d g e 0 r u l e b l o c k i n \
on em0 a r p spa 1 0 . 0 . 0 . 1

It is also a good idea to prevent any use of the
internal MAC addresses - 11:22:33:44:55:66 in
this example - from the outside influencing in-
ternal communications:

i f c o n f i g b r i d g e 0 r u l e b l o c k i n \
on em0 s r c 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6

i f c o n f i g b r i d g e 0 r u l e b l o c k i n \
on em0 a r p r e q u e s t \
sha 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6

i f c o n f i g b r i d g e 0 r u l e b l o c k i n \
on em0 a r p r e p l y \
t h a 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6

Reverse arp can be filtered likewise, using
the rarp keyword instead of arp.

4.2 Observations from working
with the bridge filter code

While it is clear that the bridge needs to die
and replaced with switch(4) - that was unfor-
tunately out of scope for this project which was
done under contract - a few more observations
were made and questions arose.

The bridge filters are very very limited. They
can only block and pass, and add a tag that pf
can later filter on. There is no logging, and that

3



offset length description remarks
0 2 Hardware Address Type (HTYPE) Ethernet: 1
2 2 Protocol Address Type (PTYPE) IPv4: 0x0800
4 1 Hardware Address Length (HLEN) Ethernet: 6
5 1 Protocol Address Length (PLEN) IPv4: 4
6 2 Operation (OPER) request: 1, reply: 2
8 6 Sender Hardware Address (SHA) MAC Address
14 4 Sender Protocol Address (SPA) IP Address
18 6 Target Hardware Address (THA) MAC Address
24 4 Target Protocol Address (TPA) IP Address

is really missing to diagnose more complex fil-
ters. The configuration through ifconfig is very
very basic, the ability to read the bridge filter
rules from a file is kind of a hack - the rules are
split into words and stuffed in an argv/argc-like
array with counter.

The bridge filters are really layer 2 filters -
while implemented in the bridge, they don’t re-
ally belong there, they are useful in scenarios
that do not use the bridge at all. More generic
layer 2 filters would be desireable.

Layer 2 filters could be implemented com-
pletely seperately from the bridge, to be en-
abled and disabled per interface potentially
with a new parser. However, implementing that
and implementing proper logging would dupli-
cate a lot of functionality that we already have
in pf. Especially for logging we really want to
re-use pflog, which, thanks to its bpf logging
format, is already suitable for this kind of use.

Can and should we extend pf to be able to fil-
ter on ethernet header fields and arp packets? If
so, that imposes new questions. pf would have
to be able to see packets which are neither IPv4
nor IPv6, these currently do not go to pf at all.
We would need a new entry point for ethernet
frames - and do we need a seperate layer 2 rule-
set? Mixing ethernet header matching with the
existing matching logic is tricky - how do we
handle non-IP-packets? What do we do with
rules that refer to both IP fields and Ethernet
header fields when we have a non-IP Ethernet
packet, or a non-Ethernet IP packet? Should we

make the layer 2 filters part of pf.conf at all, or
should we keep that completely seperate?

4.3 Acknowledgements
Holger Mikolon provided help and input with
this paper, many thanks.

4


