
What's new in OpenSSH?
Damien Miller <djm@openssh.com>

Introduction

• OpenSSH is approaching 12 years old

• Still adding features

• We don't do “big splash” releases, so you may not
have heard of what has been developed recently

• Let's fix that...

What's new?

• Match

• PKCS#11 support

• sftp extensions

• SSH protocol 1 deprecation

• Certificate authentication

• Elliptic Curve cryptography

Match

• This feature isn't so new, actually introduced in 4.4

• Allows variation of sshd's config depending on
• Username
• Group
• Source address
• Source hostname (if you trust DNS)

• Replaces previous hack of multiple instances +
AllowUsers/AllowGroups

Match

• Very useful for:

• Restricted accounts (e.g. mandatory chroot)

• Limiting authentication by source network
–(e.g disable password auth from internet)

Match – example: controlling auth

PasswordAuthentication no

Override main configuration

Match address 10.0.0.0/8

 PasswordAuthentication yes

Match – example: controlling options

AllowTcpForwarding no

Match group wheel,fwd

 AllowTcpForwarding yes

Wildcard predicates == ok

Match user hosted-*

 PasswordAuthentication no

 PubkeyAuthentication yes

Match – example: anonymous sftp

Match user anonsftp

 ForceCommand internal-sftp -R

 ChrootDirectory /chroot/home

 PermitEmptyPasswords yes

 PasswordAuthentication yes

 AllowAgentForwaring no

 AllowTcpForwarding no

 X11Forwarding no

PKCS#11

• PKCS#11 is a standard for cryptographic tokens
• Smartcards
• Hardware Security Modules (HSM)

• Key storage in PKCS#11 devices appeared in 5.4
• Deprecating the old opensc/libsectok
smartcard code

• Smartcards can store authentication and CA keys

Match – example: use a smarcard key

ssh -I /opt/lib/mycard-pkcs11.so \

 user@host

ssh(1) will dlopen() the specified PKCS#11 provider
and use it to enumerate and use keys on the
device it supports

Match – example: smartcard w/ agent

add keys

ssh-add -s /opt/lib/mycard-pkcs11.so

remove keys

ssh-add -e /opt/lib/mycard-pkcs11.so

PKCS#11 – future work

• Currently, using a smartcard means trying all its keys
• Nice if we could select better
•We can to some extent using IdentityFile in ssh(1),
but this isn't obvious

• Would be nice to allow host keys to be stored in
PKCS#11
• Root compromise != persistent hostkey theft

• No support for certificates (discussed later)

sftp extensions

• The sftp protocol as OpenSSH implements is actually “sftp
v.3”, or more verbosely “draft-ietf-secsh-filexfer-02.txt”

• sftp is a good example of how consensus standards
development can produce bad protocols

• Original versions had an elegant simplicity
• Basically the Unix file API as protocol methods
• Open file => handle
• Read from handle => data
• Reminiscent of 9p from Plan 9

sftp extensions

• Later versions (upto v.6) accreted features

– “Text mode” files to better support Windows

– “Record mode” files to better support OpenVMS

–MIME types, Win32ish ACLs, byte-range locking

• We think that we already have a do-everything network
filesystem protocol in NFS, we don't need another

• So we stopped implementing features after sftp v.3

• This was unfortunate for people who needed new features

sftp extensions

• Fortunately, the sftp protocol has some extension
mechanisms that we have started to use

• In the initial protocol “hello” message, client and
server can advertise extensions that they support

• When the protocol is established, named extension
methods can be used
– E.g. “statvfs@openssh.com”
– Downside: named extensions are more bandwidth

hungry than numbered protocol methods.

sftp extensions

• We have added a number of extensions already:

• posix-rename@openssh.com
– Standard sftp v.3 uses a link()+rm() raceless rename
–Use as “rename” via sftp(1) in OpenSSH >= 4.8

• statvfs@openssh.com, fstatvfs@openssh.com
–Use as “df” via sftp(1) in OpenSSH >= 5.1

• hardlink@openssh.com
–Use as “ln” via sftp(1) in OpenSSH >= 5.7

sftp extensions

• More to come:
• user/group names for files
–sftp v.3 only support numeric uid/gid

• fsync() file handle method
• O_NOFOLLOW open mode

• Some of these are very useful for user-space
filesystems that use the sftp protocol
• (though people must realise it is inherently
racy)

Deprecation of SSHv1

• We recently completed a staged deprecation of
SSHv1

• Why?
• SSHv1 lacks many features of SSHv2
• SSHv1 offers no viable extension mechanism
• SSHv1 suffers from a number of unfixable
cryptographic weaknesses

SSHv1 – CORE-SDI “SSH insertion attack”

• Found by CORE SDI in 1998

• Fundamental problem is SSHv1's use of CRC as a integrity code

– CRC is linear; changes in its input lead to predictable changes in
its output

• CORE SDI figured out how to inject data by calculating how to
reconstruct a valid CRC

• Attack cannot be prevented, but can be probabilistically detected

– Detection code was buggy too!

SSHv1 – Use of MD5 in the protocol

• SSHv1 uses MD5 for key derivation and RSA public
key authentication

• No way to specify a different algorithm

• MD5 is broken as a cryptographic hash
– Attackable for the RSA authentication case?

SSHv1 – downgrade attack

• If a client and server support SSHv1 and SSHv2, a man-
in-the-middle may silently downgrade their connection
to SSHv1

• SSH advertises supported versions in initial banner:
– e.g. “SSH-1.99-OpenSSH_5.8”
– SSHv2 checks banners, SSHv1 does not

• Attacker can modify banners, force use of SSHv1
–Why? Attack vulnerable code or protocol components.

SSHv1 – even more crypto badness

• Not-quite PFS (ephemeral host key)

• Probably vulnerable to CPNI-957037 "Plaintext
Recovery Attack Against SSH", Information
Security Group at Royal Holloway, U. London,
November 2008

• Weak private key file format

SSHv1 - weaknesses

• We deprecated it in two steps
– 4.7 – new server installations no longer enable SSHv1
– 5.4 – client must be explicitly configured to use SSHv1

• Quite a few people still liked SSHv1 because of speed
– It's easy to be fast when you are insecure :)
– Why is SSHv2 slower? MAC and key exchange
– We implemented a fast MAC (umac-64) and now a fast

key exchange (ECDH)

Certificate authentication for OpenSSH

• A new, very lightweight certificate format (not X.509)

• Released in OpenSSH-5.4, improved in OpenSSH-5.6

• Design goals: simplicity, modest flexibility, minimal attack
surface

Why (another certificate format)

"We have OpenPGP and X.509, why reinvent the wheel?"

• OpenSSH will not accept complex certificate decoding in
the pre-authentication path:

o PGP and X.509 (especially) are syntactically and
semantically complex

o Too much attack surface in the pre-authentication phase

o Bitter experience has taught us not to trust ASN.1

Differences from X.509

X.509

hierarchical CA structure

complex identity structure

multi-purpose

identity bound by key owner

complex encoding

infinitely extensible

OpenSSH

no hierarchy (maybe later)

identity is just a string

SSH auth only

identity bound by CA

simple encoding

extensible enough (I think)

OpenSSH certificate contents

So, what is in an OpenSSH certificate?

Nonce
Public key (DSA or RSA)
Certificate type (User or Host)
Key identifier
List of valid principals
Validity time range
Critical options
Extensions
Reserved field (currently ignored)
CA key
Signature

Critical options and extensions

Options that limit or affect certificate validity or use. May be
"critical" or not. Critical = server refuses authorisation if it
doesn't recognise an option

Present options are basically a mapping of .ssh/authorized_keys
options into the certificate:

 Critical Non-critical
 force-command permit-X11-forwarding
 source-address permit-agent-forwarding
 permit-user-rc
 permit-pty
 permit-port-forwarding

Generally, options that grant privilege are non-critical.

Certificate encoding

• The certificate is encoded using SSH-style wire primitives
and signed using SSH-style RSA/DSA signatures
o Very little new code.
o Minimises incremental attack surface

• Fixed format: all fields must be present (though some
subfields are optional) and must appear in order.

• Certificates are extensible using new critical options,
extensions, new types (in addition to user/host), or the
currently-ignored "reserved" field.

Certificate integration - User auth

User authentication can be trusted CA keys listed
in ~/.ssh/authorized_keys or via a sshd-wide trust anchor
specified in sshd_config's TrustedCAKeys option

Principal names in the cert must match the local account name
in the case of authorized_keys. A principals="..." key option
allows some indirection here.

For certs signed by TrustedCAKeys, an optional
AuthorizedPrincipalsFile (e.g. ~/.ssh/authorized_principals)
allows listing of certificate principals to accept.

Certificate integration - host auth

CAs trusted to sign host certificates must be listed in a
known_hosts file (either the system /etc/ssh/known_hosts, or
the per-user ~/.ssh/known_hosts)

Trust of host CA's can be restricted to a specific list of domain
wildcards:

@cert-authority localhost,*.mindrot.org,*.djm.net.au ssh-rsa AAAAB3Nz...

Fallback: If a host presents a cert from an unrecognised CA,
then it is treated as a raw public key for authentication
purposes (normal key learning rules apply)

Certificate integration - CA operations

CA operations are built into ssh-keygen:

Create a keypair
$ ssh-keygen -qt ecdsa -C '' -f ~/.ssh/id_ecdsa -N ''

(on the CA) sign the public key to create a user cert
$ sudo ssh-keygen -s /etc/ssh/ssh_ca_key \
 -I "djm" -n djm,shared-nethack \
 -O source-address=10.0.0.0/8 \
 -O force-command=/usr/bin/nethack \
 -O permit-pty \
 -V -1d:+52w1d id_ecdsa.pub \
 -z 314159265
Signed user key id_ecdsa-cert.pub: id "djm" serial 314159265
for djm,shared-nethack valid from 2011-02-10T14:28:00 to 2012-
02-09T14:28:00

Certificates - Revocation

• Revocation story is kind of weak at present.

• Emphasis is on making certs short-lived rather than revocation

• User authentication keys can be revoked using a flat file of
public keys. Host keys are revoked in known_hosts.

• Revoked keys print a scary warning on use:
@@@
@ WARNING: REVOKED HOST KEY DETECTED! @
@@@
The RSA-CERT host key for localhost is marked as revoked.
This could mean that a stolen key is being used to
impersonate this host.

• Can do an OCSP-like protocol if necessary in the future.
(patches welcome)

Certificates - Future plans

• Write a HOWTO-style document

• Improve revocation - OCSP-like protocol?

• Ability to store OpenSSH certs in X.509 certs for easy
smartcard use
o OCTET-STRING certificate extension under an OID IETF

allocated to the OpenSSH project

• Combined OpenSSH and X.509 CA tool: sign CSR and
OpenSSH pubkey in a single operation

• Maybe implement chained certificates

Elliptic curve cryptography

• OpenSSH 5.7 introduced Elliptic Curve Cryptographic key
exchange and public key types
• Key Exchange is ECDH
• New public key type is ECDSA

• Implemented according to RFC5656 “Elliptic Curve
Algorithm Integration in the Secure Shell Transport Layer”
by Douglas Stebila

What is ECC?

• Elliptic Curve Cryptography (ECC) is public-key
cryptography calculated using Elliptic Curves over finite
fields
• Contrast with traditional public key algorithms that

usually calculate in a finite integer group

• Elliptic curves over finite fields provide an algebraic group
structure in which the discrete logarithm problem is “hard”
• Discrete Log problem (DLP): Given gx, find x
• Solving the DLP is harder in curve fields than in prime

fields, so key lengths can be shorter

What is ECC?

• Since the DLP is hard, DLP-dependent cryptosystems work
– DSA => ECDSA
– DH => ECDA
– ECRSA isn't common since RSA doesn't rely on the DLP

• Since key lengths are shorter, ECC-based algorithms are
usually faster for a given security level

• More introductory information at:
– http://wikipedia.org/wiki/Elliptic_curve_cryptography
– http://imperialviolet.org/2010/04/ecc.html

ECC in OpenSSH: Key Exchange

• OpenSSH >= 5.7 support Elliptic Curve Diffie-Hellman key
exchange (ECDH)

• Three security levels provided by three different protocol
methods, each with its own curve field:
– ecdh-sha2-nistp256
– ecdh-sha2-nistp384
– ecdh-sha2-nistp521 (note: not 512)

• OpenSSL is used for elliptic curve operations, including point
serialisation/parsing

KEX – symmetric equivalent security

diffie-hellman-group1-sha1

diffie-hellman-group14-sha1

diffie-hellman-group-exchange-sha1

ecdh-sha2-nistp256

ecdh-sha2-nistp384

ecdh-sha2-nistp521

0 32 64 96 128 160 192 224 256

Equivalent symmetric key size (bits)

KEX – group size (bits)

diffie-hellman-group1-sha1

diffie-hellman-group14-sha1

diffie-hellman-group-exchange-sha1

ecdh-sha2-nistp256

ecdh-sha2-nistp384

ecdh-sha2-nistp521

0 512 1024 1536 2048 2560 3072 3584 4096

Group size (bits)

KEX – time to complete

diffie-hellman-group1-sha1

diffie-hellman-group14-sha1

diffie-hellman-group-exchange-sha1

ecdh-sha2-nistp256

ecdh-sha2-nistp384

ecdh-sha2-nistp521

0 20 40 60 80 100 120

Time to complete key exchange (milliseconds)

ECDH key exchange

• On by default if both ends support it in OpenSSH >= 5.7

• If you require more than 128 bits of symmetric equivalent
security, then you should use the sshd_config
KexAlgorithms option to chose the 384 or 521 bit ECC curve
field.

• OpenSSL's ECC implementation is still being optimised
• 2 x speedup in -current
• Possibly 4 x speedup if we use a hand-optimised 224-

bit curve field.

ECC in OpenSSH: keys

• OpenSSH >= 5.7 supports Elliptic Curve DSA (ECDSA) for
user and host keys

• Again, the curve field is explicit and defines the security
level of the algorithm

• We use the same three curves (mandatory in RFC5656):
• ecdsa-sha2-nistp256
• ecdsa-sha2-nistp384
• ecdsa-sha2-nistp521

• All hidden behind “ecdh” key type used on command-line

ECC in OpenSSH: keys

• ECDSA is slightly faster than regular DSA
• Still a benefit in symmetric-equivalent security
• Shorter keys too

• ECDSA keys can appear wherever RSA or DSA keys work:
• User keys (~/.ssh/id_ecdsa, ~/.ssh/authorized_keys)
• Host keys (/etc/ssh/ssh_host_ecdsa_key)
• Certificates (as signed key or as CA)

• ECDSA keys are preferred when both ends support them

OpenSSH – what's next?

• Small features

• Refactoring

• Better testing

• More bugfixes

Thanks

