
by Claudio Jeker

OpenBGPD
bringing full views to OpenBSD since 2004
OpenBGPD was after OpenSSH the second “subproject” developed as part of OpenBSD but made
available to a broader audience. Shortly after the first official release in OpenBSD 3.5 ports to Free-
BSD and NetBSD appeared. Now 5 years later OpenBGPD grew from a niche BGP routing daemon to
a real alternative if not even first choice for many usage cases. OpenBGPD is different in many
regards when compared with quagga or Ciscos. It offers some unique features that simplify many
setups and comes with sane defaults.

Intro - how it started

On October 22nd 2003 I received an email from Hen-
ning Brauer with the simple text “Hey, aren’t you
doing BPG as well? If so this may be of interest.” At
that time I was working for an ISP using zebra as
routing daemon. Our core routers had massive issues
to keep all sessions alive because zebra’s bgpd could
block for an extended period and neighbors consid-
ered the connection dead and closed the connection.
Attached to his short mail was a description of the
design of a new bgpd.
The idea of a better bgpd was a topic at work for
some time so there was some excitement about this. I
started looking at the code, his description, our own
ideas and the RFC and after a few mail exchanges I
was head over heels in it. At the beginning there were
roughly 3000 lines of code implementing a basic ses-
sion engine and a framework to do IPC. So Henning
and I hammered additional code into this embryonic
bgpd to make it do more then just sitting there and
waiting. First in a private CVS repository and on
December 17th 2003 bgpd got imported into
OpenBSD. After roughly 4 month of development the
initial release happened together with OpenBSD 3.5
which was limited but working. During the next two
releases the code matured and bgpd became the first

decision BGP routing daemon on OpenBSD -- and
thanks to official OpenBGPD releases also the other
BSD projects make more or less current ports availa-
ble that many user enjoy. Slowly one feature after the
other was added and there are still additional ideas
and projects floating around waiting to be imple-
mented.

At the moment bgpd consists of 32 files with almost
2500 commits done over this 5 years. This does not
include bgpctl or bgplg. Here some graphs illustrating
the amount of commits done.

Number of commits per day done in src/usr.sbin/bgpd
from 2003-12-17 to 2009-02-12

After the initial rush of commits a continuous devel-
opment happened until about 2007 when both Hen-
ning and I started to get too busy with way to many
other projects and with the exception of a few spikes

OpenBGPD – bringing full views to OpenBSD since 2004 Claudio Jeker

only minor commits happened. This is a sign of a
mature product. The following graphs show the com-
mits separated for the three main components of
bgpd:

Commit graph for files belonging to the parent process

Commit graph for files belonging to the session engine

Commit graph for files belonging to the route decision engine

Commit graph for files which are used by all three processes

Every now and then a new milestone was reached.
This is a selection of major events, the CVS log
includes the full history.

• Dec. 17. 2003: bgpd was imported

• Jan. 2. 2004: bgpctl was added

• Jan. 13. 2004: max-prefix and announce self sup-
port

• Jan. 30. 2004: initial tcp md5sig support

• Feb. 19. 2004: initial filtering support

• Mar 11. 2004: initial communities support

• Apr. 24. 2004: first bits of IPv6 support added

• Apr. 25. 2004: neighbor cloning

• Apr. 27. 2004: IPsec support

• May 7 2004: support to add prefixes to a pf table

• May 21. 2004: RFC 2796 BGP route reflector sup-
port

• Oct. 19. 2004: allow neighbors to depend on the
link state of an interface

• Nov. 1. 2004: first independent release of
OpenBGPD

• Jul. 29. 2005: IPv6 multiprotocol support starts to
work

• Jan. 24. 2006: soft-reconfigure in and out works

• Jan. 24. 2006: restricted bgpctl socket added

• Feb. 2. 2006: special neighbor-as community
added

• Jun. 17 2006: carp demotion counter support

• Dec. 11. 2006: bgplg was added

• Mar 3. 2007: irrfilter generation added to bgpctl

• Apr. 23. 2007: 4-byte AS number support

• Feb. 11. 2008: another IPv6 specific bug fixed :)

Design

Why is OpenBGPD better then the alternatives?
The answer is simple because of its design.
Splitting the session handling from the routing table
calculation ensured that as long as the userland was
responsive no session would flap. Even if excessive
time is spent in the routing table calculation, the
preemptive scheduler of the system would ensure that
the session engine is sending out the needed keep-
alives. At the same time being able to split the tasks
into 3 processes allowed proper privilege separation.
Only the parent process needs root privileges to alter
the kernel routing table. The session engine and the
route decision engine don’t need special privileges
and run out of a chroot() jail. In 2003 almost nothing
was dropping privileges. Especially the routing dae-
mons failed at it.

OpenBGPD – bringing full views to OpenBSD since 2004 Claudio Jeker
Three processes with specific tasks which communicate via socketpairs
plus a control utility to gather information from bgpd

The interprocess communication between the three
processes is based on a simple messaging system that
is now used in many other daemons in OpenBSD.
This imsg framework is using a simple buffer API
which is also used to handle the network sessions.
The buffer code is using poll() to do non-blocking
read and writes to the various sockets open in the
processes. First simple pipes were used to communi-
cate between the processes but later on this was
changed to socketpairs to allow file descriptor passing
between processes. File descriptor passing became
necessary to support configuration reloads and is now
among others used for mrt dumps.
Instead of a CLI OpenBGPD uses a configuration file.
The Cisco like CLI fails in many ways. Probably any
network administrator has a story where a major inci-
dent happened because he could not enter the needed
commands fast enough and some intermediate config
became active and resulted in havoc. It is also hard to
reconfigure stuff because the negated version of the
active command need to be entered first which is
almost impossible to do so in an automated way.
OpenBGPD uses a configuration file that can be
reloaded atomically. The reload succeeds or fails but
no matter what no intermediate config is run at any
time. The possibility to include files into the master
config file makes it easier to generate parts of a con-
figuration via external tools.
There is no virtual tty to log into the daemon offering
some sort of CLI to view the internal state. Instead
OpenBGPD comes with a control tool to get the
status of various parts of bgpd. It is even possible to
clear a neighbor or issue a config reload through that
tool. The control tool uses a local UNIX socket to
communicate with the session engine and via the ses-
sion engine messages are forwarded to the other proc-

esses. Again all information is packed into imsgs and
sent back and forth. Because bgpctl is a normal UNIX
command which is run from the user shell it is possi-
ble to pipe and alter the output with other well known
commands. This is very powerful compared to the
limited options of the other CLIs. Most Cisco CLI
users are jealous about the comfort of a real shell
OpenBGPD users enjoy. In OpenBSD 4.1 a less privi-
leged control socket was added so that it was possible
to implement a looking glass application without
fearing somebody would take over the router.

Internals - How does it work

The BGP protocol is covered in RFC 1771 which got
updated by RFC 4271. BGP itself is a path distance
vector routing protocol where each destination has a
path attribute that is part of the prefix. The prefix with
the shortest path is considered best. On every hop an
element -- the AS number -- is added to the path. BGP
extents this simple algorithm with additional
attributes and filters that may modify the attributes.

Session Engine

In bgpd the session engine initiates a session to a con-
figured neighbor either by opening a TCP connection
to the peer or by accepting an incoming TCP connec-
tion. After an initial welcome message exchange that
ensures that everything is setup consistently the ses-
sion is considered established. To keep the session up
either updates or keepalive messages need to be sent
out after a certain time. Keepalives are directly gener-
ated by the session engine to ensure that even high
load on the RDE does not result in a session drop. The
session engine does basic integrity checking of BGP
messages but beforehand it needs to chop up the byte
stream received via TCP. Messages that don’t modify
the routing table -- OPEN, NOTIFICATION and
KEEPALIVE -- are directly handled by the session
engine. Update messages are sent to the RDE and the
parent process never gets any message with data that
came from the wire.

Route Decision Engine

Apart from the BGP updates only neighbor state
updates are sent from the session engine to the RDE.
The other direction is about as easy because only
updates and update error messages are sent back. The
control messages issued by bgpctl use a second pipe
so that large backlogs are not holding these messages
up for too long.

The RDE needs to store all the prefixes plus the corre-
sponding path attributes in the router information
base (RIB). The RFC specifies three RIBs, Adj-RIB-

socketpair

so
ck

et
pa

ir

socketpair

bgpctl

UNIX socket

/var/run/bgpd.sock

Parent

RDESession Engine

routing socket

root privileges

jailed child

chroot to /var/empty

jailed child

chroot to /var/empty

TCP Sessions
to neighbors

OpenBGPD – bringing full views to OpenBSD since 2004 Claudio Jeker
In, Adj-RIB-Out and Loc-RIB. The first two are the
incoming and outgoing RIB of a peer (adjacency) and
in most cases these tables are not needed. Only when
softreconfig in is configured it is necessary to
store the update before and after filtering. The Adj-
RIB-Out can be calculated at any time from the Loc-
RIB. The Loc-RIB is the local RIB where the deci-
sion process is run on and the actual routing table is
calculated from. By normalizing the dataset plus
some additional deduplication it is possible to store
all data in a memory efficient way.

Datastructures used in the RDE

The RDE splits updates into multiple objects trying to
reduce the memory foot print and making routing
table calculations easy. All routes are added to a
address family dependent red black tree -- the current
IPv4 table consists of roughly 280’000 pt_entries.
The main BGP path attribute object is struct
rde_aspath. Complex data like the aspath or optional
attributes that do not influence the decision process
are stored externally in own hash tables with a refer-
ence count per object to track the number of users.
Having some data in additional tables allows the RDE
to allocate a particular attribute only once instead of
per path and results in a modest additional memory
requirement for softreconfig in. Struct prefix is
the glue between a prefix and the corresponding path
attributes. A struct prefix is marked as belonging to
the Loc-RIB, Adj-RIB-In or both. So the various
RIBs are merged into one big database.

RDE Memory Statistic

RDE memory statistics
 283114 IPv4 network entries using 8.6M of memory
 1074015 prefix entries using 32.8M of memory
 188752 BGP path attribute entries using 14.4M of memory
 169095 BGP AS-PATH attribute entries using 6.5M of memory,
 and holding 188752 references
 9774 BGP attributes entries using 229K of memory
 and holding 178697 references
 9773 BGP attributes using 180K of memory
RIB using 62.7M of memory

This memory statistic is from a router that has 4 full
views and runs on a Via C3 with 700MHz and
512MB of RAM. As one can see for each IPv4 net-
work entry and peer a struct prefix is allocated
which consumes most of the allocated memory.

Lets go back to the processing of messages. When a
neighbor state changes it may be necessary to send
the full table over to the other side. This is currently a
bit of a week point of bgpd. The table dumps are done
in one shot because the RDE is allowed to block for a
long time. While may be true for the BGP sessions it
blocks almost all bgpctl commands as well and so
affects the responsiveness of bgpctl. This is one of the
hot topics that I try to solve in the near feature. Luck-
ily neighbors don’t flap that often...
When an update is received it is bisected into with-
draws and changes. Withdraws don’t carry any
attributes with them. The attributes are not necessary
to identify the prefix to be remove so there is also no
need to filter on withdraws. In the worst case we try to
remove something that is not in the tree. Prefix
changes and additions -- which are just changes with
no previous information stored in the tree -- have path
attributes attached to them and after parsing the mes-
sage the entry is filtered and maybe modified. Actu-
ally it is the other way around, path attributes arrive
with multiple prefixes which share the same attribute
set but that’s nitpicking. If the update is not denied by
a policy it is added to the tree and the route decision
process is run.

Route Decision Process

The route decision process is defined by the RFC and
selects the best path from a selection of available
paths. In bgpd the route decision process orders the
prefix list of a pt_entry. The first entry of this list is
the best path to a destination. The route decision proc-
ess evaluates the following steps to compare two pre-
fixes. The next step is only evaluated if the current
one returned a draw:

1. Only prefixes which belong to the Loc-RIB are
considered. Other prefixes have the lowest prefer-
ence.

peer

hash

rde_aspath

hash

aspath

aspath

hash

attr

hash

nexthop

hash

nexthop

prefix tree

RB tree

pt_entry

attr

rde_aspath

peer

prefix

attr

array

OpenBGPD – bringing full views to OpenBSD since 2004 Claudio Jeker

2. Paths that are marked as not loop free are ineligi-
ble and have therefor a lower preference then eli-
gible prefixes.

3. A prefix is only eligible if the nexthop of that
prefix is reachable.

Now the actual decision process starts

4. The local-preference is compared first. The prefix
with the biggest local-pref is the best one.

5. For prefixes with equal local-pref the AS-PATH
length is compared. The shorter the path to the
destination the better.

6. Prefixes with lower ORIGIN are preferred. The
ORIGIN defines from which source a prefix was
crated. The RFC defines 3 types IGP, EGP and
incomplete with the first one having the lowest
origin number.

7. The MED is compared and the prefix with the
lowest number is used. The multi-exit-discrimina-
tor is special because only prefixes with the same
leftmost AS should be considered unless rde med
compare always is set.

8. Prefixes received by an external BGP session
(EBGP) are preferred over those coming from an
interior peer (IBGP).

9. Now the weight is compared. The weight is a
bgpd extension that can be set locally and is con-
sidered as last tuneable allowing to prefer other-
wise equal prefixes. The lowest weight wins.

From here on the prefixes could be considered equal
but the decision process must return one best prefix.
So additional information is used to make this deci-
sion. The last two steps were arbitrarily chosen and
specified by the RFC.

10. If rde route-age evaluate is set older prefixes
which tend to be more stable are considered. By
default this step is skipped because it makes the
decision process undetermined.

11. If there is still no best route the router-id of the
neighbor is used. The lowest router-id wins.

12. If there are multiple sessions to the same neighbor
the IP addresses are compared and again the
lowest one is chosen.

When the best prefix changed during the process a
route update is sent to the parent process and an
update is generated for all peers but only after the
output filters were run.

Parent Process

The parent process receives route updates and next-
hop verification requests from the RDE. Additionally
the process listens on the routing socket for anything

interesting like link state changes. The parent process
maintains the forward information base (FIB) which
is what the kernel uses for routing and informs the
RDE about changes affecting nexthops or announced
networks. The other task done by the parent process is
reloading the configuration and passing the new
config down to the child processes.
Managing the routing table is harder then it sounds.
The code to talk to the routing socket is complex
because other daemons or the user himself may alter
the routing table at any time and bgpd needs to pick
up these changes and correctly merge them with the
own view and IPv6 tries to make it even harder by
needing special hacks and using badly aligned struc-
tures.

Configuration

The configuration is based on the yacc parser used by
pf. While the syntax is different the behaviour and
features are the same. The config file consists of four
sections: macros, global configuration, neighbor set-
tings and filters. The macros are not a real section but
they allow to define variables at the beginning that
can be reused later in the config.

There are quite a few settings that affect the operation
of the daemon globally. First of all the AS number
needs to be specified. It also makes sense to specify a
router-id instead of letting bgpd pick (the wrong)
one and to limit the addresses to listen on. It is also
normal to announce one or more networks.

There are additional knobs which influence the RDE.

• nexthop verification can be set less strict

• the decision process can be tuned

• it is possible to run as a transparent router that does
not prepend the own AS to the AS path.

simple global config

AS 65001
router-id 192.0.2.2
listen on 192.0.2.2

network 192.168.42.0/24

Multiple neighbors can be grouped together by a
group section. Each neighbor in the group inherits
the properties from its group. The most important ele-
ment is the remote-as. Normally it is also good to set
a description. This is often enough to get a session
running but there are many other options to change
the default behaviour. bgpd tries to come with sane
defaults so that only a minimal set of options are
needed to be set per peer but not everything can be

OpenBGPD – bringing full views to OpenBSD since 2004 Claudio Jeker
done automatically. It is also possible to define a
neighbor template. If a connection is received from
the specified network range a new neighbor is cloned
from the template. A template does not even require a
remote-as instead the one passed in the OPEN mes-
sage is used.

a possible neighbor config

group "AS65002" {
remote-as 65002

max-prefix 5000 restart 15
neighbor 192.0.2.1 {

descr "AS65002 primary"
}
neighbor 192.0.2.3 {

descr "AS65002 backup"
}

}

The last section is the filter specification. There are
three types of rules: allow, deny and match. A match
rule will only modify the path attributes without influ-
encing the filter decision. A rule can match on neigh-
bors and groups, AS numbers, communities, prefixes
and prefixlen ranges. Every rule can change the path
attributes in various ways.

a minimal filter section

filter out prefixes longer than 24 or shorter than 8 bits
deny from any inet prefixlen 8 >< 24
do not accept a default route, multicast and experimental
networks
deny from any prefix 0.0.0.0/0
deny from any prefix { 224.0.0.0/4, 240.0.0.0/4 } prefixlen
>= 4
mark the prefix so that we know where we learned it from
match from any set community 65001:neighbor-as

This is just the tip of the configuration iceberg. The
bgpd.conf manual page has the complete reference.
With bgpd -nv it is possible to see what bgpd is doing
with the configuration and may be a big help in
debugging a configuration.

Conclusions

After 5 years of OpenBGPD it is clear this is no toy
implementation -- I would say it newer was but I’m
biased. OpenBGPD is used in many mission critical
systems in the core of the Internet. Not only in small
network setups but also in places like Internet
exchange points where many ISP peer with each other
across an OpenBGPD route-server.
Many concepts implemented in bgpd are used in vari-
ous other daemons like the imsg framework or the
configuration file parser. The parser is actually based
on an other successful product -- pf -- but only with
bgpd the parser got so much attention that it got
reused in other tools. Not only the other routing dae-

mons like ospfd, ripd or ospf6d are based on bgpd
also relayd, hostapd, snmpd, ypldap and cwm use
code initially developed for bgpd.
A major mistake in the 4-byte AS number RFC speci-
fication was identified because of OpenBGPD and
this way before the Internet as a whole was affected.
It shows how important alternative implementations
of core protocols are.

	Intro - how it started
	Design
	Internals - How does it work
	Session Engine
	Route Decision Engine
	Route Decision Process
	Parent Process

	Configuration
	Conclusions

